Research Article
BibTex RIS Cite

Tırnaklı Birleştirmelerde Sıkma/Çözme Kuvvetinin Malzeme Türü ve Sürtünme Katsayısına Göre Yapay Sinir Ağları Metodu ile Modellenmesi

Year 2018, Volume: 4 Issue: 3, 207 - 215, 24.12.2018

Abstract

Bu çalışmada Tırnaklı
Birleştirmelerin (Snap-Fit) sıkma/çözme kuvvetlerinin hesaplanması için bir
Yapay Sinir Ağı Modeli geliştirilmiştir. Bu hesaplamanın Bilgisayar Destekli
Tasarım metodolojisi kullanılarak sıkma/çözme kuvvetinin belirlenmesi için,
tırnaklı birleştirme bağlantı tasarım modelinin uç açısı (α) ve malzeme
türlerinin sürtünme katsayıları referans alınmıştır.  Bu amaç ile bir Yapay Sinir Ağı (YSA) modeli
geliştirilmiştir.  Bu sayede malzeme türü
ve tırnaklı bağlantının uç açısı verilerek herhangi bir mühendislik hesabına
gerek kalmaksızın, Bilgisayar destekli sonuç hesap edebilen bir yazılım
geliştirilmiştir. Elde edilen modelin MEP% = 0.624073, RMSE= 0.008977 ve R2=
0.99999 olarak bulunmuştur.  Böyle hem
güvenilir hem de hızlı bir yöntem ile malzeme türü ve bağlantı tırnak ucunun açısal
değerlerine göre sonuç üretebilen bir Tasarım yöntemi geliştirilmiştir. 

References

  • [1] Paul R. Bonenberger , The First Snapfits Handbook : Creating Attachments for Plastic Parts, Munich : Hanser, Cincinnati : Hanser/Gardner, 2000.
  • [2] W. McMaster and C. S. Lee, “Designing with “L-” and “U-” Shaped Snap Fits”, Journal of Reınforced Plastıcs And Composıtes, vol. 20, no. 13, pp. 1150-1160, 2001, Doi: 10.1106/590R-UNHN-LF82-HDXH
  • [3] G. Suri and A.F. Luscher,” Development of Analytical Model of Cantilever Hook Performance”, Journal of Mechanical Design, vol. 128(2), pp. 479-493, 2006, Doi:10.1115/1.2168468
  • [4] J. R. Annis, “The Mechanics and Optimization of Cantilever Snap Joints”, Rockwell Automation, pp. 1 – 12, 2004
  • [5] R.W.Messler, S. Genc and G.A. Gabriele,” Integral attachment using snap-fit features: a key to assembly automation. Part 1 – introduction to integral attachment using snap-fit features”, Assembly Automation, vol. 17(2), pp. 143–155, 1997, Doi:10.1108/01445159710171365
  • [6] R.W.Messler, S. Genc and G.A. Gabriele,” Integral attachment using snap-fit features: a key to assembly automation. Part 2 - bringing order to integral attachment: attachment-level design” Assembly Automation, vol.17(2), pp.156-165, 1997, Doi:10.1108/EUM0000000004328
  • [7] R.W.Messler, S. Genc and G.A. Gabriele,” Research articles Integral attachment using snap‐fit features: a key to assembly automation. Part 3 ‐ an attachment‐level design methodology",Assembly Automation, vol. 17(3), pp. 239-248, 1997, Doi:10.1108/01445159710172445
  • [8] R.W.Messler, S. Genc and G.A. Gabriele,” Integral attachment using snap‐fit features: a key to assembly automation. Part 4 ‐ selection of locking features", Assembly Automation, vol.17(4), pp.315-328,1997, Doi:10.1108/01445159710191606
  • [9] S. Genc, R.W.Messler and G.A. Gabriele,” Integral attachment using snap‐fit features: a key to assembly automation. Part 5 ‐ a procedure to constrain parts fully and generate alternative attachment concepts", Assembly Automation, vol. 18(1), pp.68-74, 1998, Doi:10.1108/01445159810201298
  • [10] S. Genc, R.W.Messler and G.A. Gabriele,” Integral attachment using snap‐fit features: a key to assembly automation. Part 6 ‐ evaluating alternatives for design optimization", Assembly Automation, vol.18(2), pp.153-165, 1998, Doi:10.1108/01445159810211873
  • [11] S. Genc, R.W.Messler and G.A. Gabriele,” Integral attachment using snap‐fit features: a key to assembly automation. Part 7 ‐ testing the conceptual design methodology with a case study", Assembly Automation, vol. 18 (3),pp.223-236, 1998, Doi:10.1108/01445159810224851
  • [12] H. Li, J. Ortega, Y. Chen, B. He and K. Jin, “Study of shape memory polymers snap-fit for disassembly”, Assembly Automation, vol. 32(3), pp. 245–250, 2012, Doi:10.1108/01445151211244384
  • [13] J. Carrell, D. Tate, S. Wang and Hong-Chao Zhang, “Shape memory polymer snap-fits for active disassembly”, Journal of Cleaner Production, vol.19, pp. 2066-2074, 2011, Doi:10.1016/j.jclepro.2011.06.027
  • [14] B. He, H. Li and K. Jin, “Shape memory polymer actuated hollow snap-fit design analysis”, Materials and Design, vol. 47, pp. 539–550, 2013, Doi:10.1016/j.matdes.2012.12.038
  • [15] G. Taguchi and S. Konishi, “Taguchi methods, orthogonal arrays and linear graphs, tools for quality engineering”, Dearborn, MI: American supplier Institute, pp. 35-38,1987

Modeling of Mating / Seperating Force in Snap-Fit Joints by Artificial Neural Networks Method by Material Type and Friction Coefficient

Year 2018, Volume: 4 Issue: 3, 207 - 215, 24.12.2018

Abstract

In this study, an Artificial
Neural Network Model has been developed to calculate the mating / separating
forces of Snap-Fit joints. In order to determine the mating / separating force
of this calculation using Computer Aided Design methodology, the tip angle (α)
and friction coefficients of material types are taken as reference. For this
purpose, an Artificial Neural Network (ANN) model has been developed. In this
way, the material type and the end angle of the claw connection is given,
without the need for any engineering account, a software capable of calculating
computer-aided results has been developed. MEP% = 0.624073, RMSE = 0.008977 and
R2 = 0.99999. With such a reliable and fast method, a Design method
has been developed which can produce results according to the material type and
the angular values of the connection snap-fit type.

References

  • [1] Paul R. Bonenberger , The First Snapfits Handbook : Creating Attachments for Plastic Parts, Munich : Hanser, Cincinnati : Hanser/Gardner, 2000.
  • [2] W. McMaster and C. S. Lee, “Designing with “L-” and “U-” Shaped Snap Fits”, Journal of Reınforced Plastıcs And Composıtes, vol. 20, no. 13, pp. 1150-1160, 2001, Doi: 10.1106/590R-UNHN-LF82-HDXH
  • [3] G. Suri and A.F. Luscher,” Development of Analytical Model of Cantilever Hook Performance”, Journal of Mechanical Design, vol. 128(2), pp. 479-493, 2006, Doi:10.1115/1.2168468
  • [4] J. R. Annis, “The Mechanics and Optimization of Cantilever Snap Joints”, Rockwell Automation, pp. 1 – 12, 2004
  • [5] R.W.Messler, S. Genc and G.A. Gabriele,” Integral attachment using snap-fit features: a key to assembly automation. Part 1 – introduction to integral attachment using snap-fit features”, Assembly Automation, vol. 17(2), pp. 143–155, 1997, Doi:10.1108/01445159710171365
  • [6] R.W.Messler, S. Genc and G.A. Gabriele,” Integral attachment using snap-fit features: a key to assembly automation. Part 2 - bringing order to integral attachment: attachment-level design” Assembly Automation, vol.17(2), pp.156-165, 1997, Doi:10.1108/EUM0000000004328
  • [7] R.W.Messler, S. Genc and G.A. Gabriele,” Research articles Integral attachment using snap‐fit features: a key to assembly automation. Part 3 ‐ an attachment‐level design methodology",Assembly Automation, vol. 17(3), pp. 239-248, 1997, Doi:10.1108/01445159710172445
  • [8] R.W.Messler, S. Genc and G.A. Gabriele,” Integral attachment using snap‐fit features: a key to assembly automation. Part 4 ‐ selection of locking features", Assembly Automation, vol.17(4), pp.315-328,1997, Doi:10.1108/01445159710191606
  • [9] S. Genc, R.W.Messler and G.A. Gabriele,” Integral attachment using snap‐fit features: a key to assembly automation. Part 5 ‐ a procedure to constrain parts fully and generate alternative attachment concepts", Assembly Automation, vol. 18(1), pp.68-74, 1998, Doi:10.1108/01445159810201298
  • [10] S. Genc, R.W.Messler and G.A. Gabriele,” Integral attachment using snap‐fit features: a key to assembly automation. Part 6 ‐ evaluating alternatives for design optimization", Assembly Automation, vol.18(2), pp.153-165, 1998, Doi:10.1108/01445159810211873
  • [11] S. Genc, R.W.Messler and G.A. Gabriele,” Integral attachment using snap‐fit features: a key to assembly automation. Part 7 ‐ testing the conceptual design methodology with a case study", Assembly Automation, vol. 18 (3),pp.223-236, 1998, Doi:10.1108/01445159810224851
  • [12] H. Li, J. Ortega, Y. Chen, B. He and K. Jin, “Study of shape memory polymers snap-fit for disassembly”, Assembly Automation, vol. 32(3), pp. 245–250, 2012, Doi:10.1108/01445151211244384
  • [13] J. Carrell, D. Tate, S. Wang and Hong-Chao Zhang, “Shape memory polymer snap-fits for active disassembly”, Journal of Cleaner Production, vol.19, pp. 2066-2074, 2011, Doi:10.1016/j.jclepro.2011.06.027
  • [14] B. He, H. Li and K. Jin, “Shape memory polymer actuated hollow snap-fit design analysis”, Materials and Design, vol. 47, pp. 539–550, 2013, Doi:10.1016/j.matdes.2012.12.038
  • [15] G. Taguchi and S. Konishi, “Taguchi methods, orthogonal arrays and linear graphs, tools for quality engineering”, Dearborn, MI: American supplier Institute, pp. 35-38,1987
There are 15 citations in total.

Details

Primary Language Turkish
Subjects Mechanical Engineering
Journal Section Research Articles
Authors

Fulya Erdemir 0000-0002-1383-6857

Murat Tolga Özkan 0000-0001-7260-5082

Publication Date December 24, 2018
Submission Date November 6, 2018
Acceptance Date December 13, 2018
Published in Issue Year 2018 Volume: 4 Issue: 3

Cite

IEEE F. Erdemir and M. T. Özkan, “Tırnaklı Birleştirmelerde Sıkma/Çözme Kuvvetinin Malzeme Türü ve Sürtünme Katsayısına Göre Yapay Sinir Ağları Metodu ile Modellenmesi”, GJES, vol. 4, no. 3, pp. 207–215, 2018.

Gazi Journal of Engineering Sciences (GJES) publishes open access articles under a Creative Commons Attribution 4.0 International License (CC BY). 1366_2000-copia-2.jpg