Research Article
BibTex RIS Cite

LIFE Füzyon Reaktöründe Yüksek Sicaklikta Elektroliz Yöntemi İle Hidrojen Üretimi

Year 2019, Volume: 5 Issue: 1, 1 - 8, 23.04.2019

Abstract

Bu çalışmada,
lazer sürücülü füzyon reaktörünün (LIFE) zamana bağlı nötronik performansı ve
bu performansa bağlı olarak  hidrojen
üretim potansiyeli yüksek sıcaklıkta elektroliz (HTE) yöntemi kullanılarak
incelenmiştir. Zamana bağlı nötronik hesaplamalarda nötron transport kodu MCNP
kullanılmıştır. Nükleer yakıt olarak minör nükleer atıklar ve soğutucu olarak
natural lityum kullanılmıştır. Nötronik hesaplamalarda trityum üretim oranı
(TBR) ve enerji çoğaltım faktörü (M) değerleri hesaplanmıştır. Nötronik
hesaplamalardan elde edilen M yardımı ile HTE yöntemiyle hidrojen üretimi için
gerekli toplam güç hesaplanmıştır. Elde edilen toplam güce bağlı olarak zamana
bağlı LIFE füzyon reaktöründeki hidrojen üretimi incelenmiştir. Hesaplamalar
sonucunda ele alınan bu reaktörün nötronik performansının iyi olduğu ve HTE
yöntemi ile hidrojen üretebildiği belirlenmiştir.

References

  • [1] A. Barın, “Dünyada Ve Türkiyede Hidrojen Enerjisi Önemi Ve Uygulamaları,” Transist 2011, Ulusal Toplu Ulaşım Sempozyumu ve Sergisi, Aralık 01-02, 2011, İstanbul.
  • [2] Europeia C., Hydrogen Energy and fuel cells: a vision of our future. High Level Group for Hydrogen and Fuel Cells, 2003.
  • [3] Corbo P., Migliardini F., Veneri, O., Hydrogen fuel cells for road vehicles. Springer Science and Business Media, 2011. [4] Axel M., Nuclear and Particle Physics: Chapter 2 Nuclear Physics. KFU Graz University, 2016.
  • [5] L. Brown, et al., High efficiency generation of hydrogen fuels using nuclear power. General Atomics (US), 2003.
  • [6] A. Z. Ozbilen, "Development, analysis and life cycle assessment of integrated systems for hydrogen production based on the copper-chlorine (Cu-Cl) cycle," Ph.D. dissertation, University of Ontario Institute of Technology, Oshawa, Ontario, Canada, 2013.
  • [7] Y. Chikazawa, M. Konomura, S. Uchida and H. Sato, "A feasibility study of a steam methane reforming hydrogen production plant with a sodium-cooled fast reactor " Nuclear technology, vol. 152(3), pp. 266-272, December 2005. Doi: 10.13182/NT05-A3675.
  • [8] C. W. Forsberg, “Hydrogen production using the advanced high-temperature reactor,” 14th Annual U.S. Hydrogen Meeting, March 4–6, 2003, Washington, D.C.
  • [9] B. Yildiz and M. S. Kazimi, Nuclear energy options for hydrogen and hydrogen-based liquid fuels production. Massachusetts Institute of Technology. Center for Advanced Nuclear Energy Systems. Nuclear Energy and Sustainability Program, 2003.
  • [10] G. Cerri, C. Salvani, C. Corgnale, A. Giovannelli, D. D. L. Manzano, A. O. Martinez and C. Mansilla, " Sulfur–Iodine plant for large scale hydrogen production by nuclear power " International Journal of Hydrogen Energy, vol. 35 (9), pp. 4002-4014, May 2010.
  • [11] A. E. Lutz, R. W. Bradshaw, J. O. Keller and D. E. Witmer, "Thermodynamic analysis of hydrogen production by steam reforming" International Journal of Hydrogen Energy, vol. 28(2), pp.159-167, February 2003.
  • [12] K. J. Kramer, W. R. Meier, J. F. Latkowski and R. P. Abbott, " Parameter study of the LIFE engine nuclear design " Energy Conversion and Management, vol. 51(9), pp.1744-1750, September 2010.
  • [13] J. C. Farmer, E. Moses, and T. Diaz de la Rubia, The Complete Burning of Weapons Grade Plutonium and Highly Enriched Uranium with (Laser Inertial Fusion-Fission Energy) LIFE Engine. Lawrence Livermore National Lab.(LLNL), 2008.
  • [14] R. W. Moir, H. F. Shaw, A. Caro, L. Kaufman, J. F. Latkowski, J. Powers and P. E. A. Turchi, “Molten Salt Fuel Version of Laser Inertial fusion fission energy (LIFE),” Fusion Science and Technology, vol. 56(2), pp. 632-640, August 2009. Doi: 10.13182/FST18-8166.
  • [15] K. J. Kramer, J. F. Latkowski, R. P. Abbott, J. K. Boyd, J. J. Powers and J. E. Seifried, “Neutron transport and nuclear burnup analysis for the laser inertial confinement fusion-fission energy (LIFE) engine”, Fusion Science and Technology, vol. 56(2), pp. 634-641. 2009. Doi: 10.13182/FST18-8132
  • [16] A. Acır, “Neutronic Analysis of the Laser Inertial Confinement Fusion–Fission Energy (LIFE) Engine Using Various Thorium Molten Salts,” Journal of Fusion Energy, vol.32(6), pp. 634-641. December 2013. Doi:10.1007/s10894-013-9628-7
  • [17] A. Acır and E. Baysal “Monte Carlo calculations of the incineration of plutonium and minor actinides of laser fusion inertial confinement fusion fission energy (LIFE) engine”, Plasma Science and Technology, vol.20(7), 075601. May 2018. Doi: 10.1088/2058-6272/aab3c4
  • [18] H. Taşkolu and A. Acır, “Bir Hibrit Reaktörde Trıso Kaplamalı Candu Nükleer Yakıt Atıklarının Nötronik Analizi”, Politeknik Dergisi, cilt 16(4), s.129-133. 2013.
  • [19] A. Acır, “ThO2 Yakıtlı Bir Füzyon-Fisyon Hibrid Reaktöründe Farklı Reflektör Malzemelerin Nötronik Performansa Etkisi”, Politeknik Dergisi, cilt 10(3), s.263-270. 2007.
  • [20] J. F. Briesmeister, “MCNPTM-A general Monte Carlo N-particle transport code”, Version 4C, LA-13709-M, Los Alamos National Laboratory, 2.
  • [21] M. Benedict, T. H. Pigford and H. W. Levi, Nuclear Chemical Engineering, McGraw-Hill series in nuclear engineering, p. 370, Table 8.5
  • [22] S. Fujiwara, S. Kasai, H. Yamauchi, K. Yamada, S. Makino, K. Matsunaga and E. Hoashi, “Hydrogen production by high temperature electrolysis with nuclear reactor”, Progress in Nuclear Energy, vol.50(2-6), pp.422-426. March–August 2008.
  • [23] S. Şahin, M. J. Khan and R. Ahmed, “Fissile fuel breeding and minor actinide transmutation in the life engine”, Fusion Engineering and Design, vol.86(2-3), pp.227-237. March 2011 [24] S. Şahin, H. M. Şahin and A. Acır, “LIFE hybrid reactor as reactor grade plutonium burner”, Energy conversion and management, vol.63, pp.44-50. November 2012
  • [25] G. Özişik, N. Demir, M. Übeyli and H. Yapici, “Hydrogen production via water splitting process in a molten-salt fusion breeder”, International journal of hydrogen energy, vol.35(14), pp.7357-7368. July 2010.
  • [26] G. Genç, “Hydrogen production potential of APEX fusion transmuter fueled minor actinide fluoride”, International journal of hydrogen energy, vol.35(19), pp.10190-10201. October 2010.
  • [27] N. Demir, “Hydrogen production via steam-methane reforming in a SOMBRERO fusion breeder with ceramic fuel particles”, International journal of hydrogen energy, vol.38(2), pp.853-860. January 2013
  • [28] M. Wang, The greenhouse gases, regulated emissions, and energy use in transportation (GREET) model: Version 1.5, Center for Transportation Research, Argonne National Laboratory. August 1999.

Hydrogen Production By Using High Temperature Electrolysis Method in a LIFE Fusion Reactor

Year 2019, Volume: 5 Issue: 1, 1 - 8, 23.04.2019

Abstract

In this study,
the time-dependent neutronic performance and hydrogen production potential by
using high temperature electrolysis (HTE) method was investigated for laser
driver fusion reactor (LIFE). During the calculation of time dependent neutron
parameters, MCNP neutron  transport code
is used. While minor nuclear wastes are used as nuclear fuel, natural lithium
coolant is used as coolant. As a result of the neutronic calculations, time
dependent TBR and M values of LIFE reactor were obtained. The total power
required for HTE method was calculated by using the time dependent M value
which is obtained as a result of the neutronic calculations. Time dependent
hydrogen production was investigated depending on the total power obtained from
the LIFE fusion reactor. As a result of the calculations, it was found that
this reactor has a good neutronic performance and can produce hydrogen by HTE
method.

References

  • [1] A. Barın, “Dünyada Ve Türkiyede Hidrojen Enerjisi Önemi Ve Uygulamaları,” Transist 2011, Ulusal Toplu Ulaşım Sempozyumu ve Sergisi, Aralık 01-02, 2011, İstanbul.
  • [2] Europeia C., Hydrogen Energy and fuel cells: a vision of our future. High Level Group for Hydrogen and Fuel Cells, 2003.
  • [3] Corbo P., Migliardini F., Veneri, O., Hydrogen fuel cells for road vehicles. Springer Science and Business Media, 2011. [4] Axel M., Nuclear and Particle Physics: Chapter 2 Nuclear Physics. KFU Graz University, 2016.
  • [5] L. Brown, et al., High efficiency generation of hydrogen fuels using nuclear power. General Atomics (US), 2003.
  • [6] A. Z. Ozbilen, "Development, analysis and life cycle assessment of integrated systems for hydrogen production based on the copper-chlorine (Cu-Cl) cycle," Ph.D. dissertation, University of Ontario Institute of Technology, Oshawa, Ontario, Canada, 2013.
  • [7] Y. Chikazawa, M. Konomura, S. Uchida and H. Sato, "A feasibility study of a steam methane reforming hydrogen production plant with a sodium-cooled fast reactor " Nuclear technology, vol. 152(3), pp. 266-272, December 2005. Doi: 10.13182/NT05-A3675.
  • [8] C. W. Forsberg, “Hydrogen production using the advanced high-temperature reactor,” 14th Annual U.S. Hydrogen Meeting, March 4–6, 2003, Washington, D.C.
  • [9] B. Yildiz and M. S. Kazimi, Nuclear energy options for hydrogen and hydrogen-based liquid fuels production. Massachusetts Institute of Technology. Center for Advanced Nuclear Energy Systems. Nuclear Energy and Sustainability Program, 2003.
  • [10] G. Cerri, C. Salvani, C. Corgnale, A. Giovannelli, D. D. L. Manzano, A. O. Martinez and C. Mansilla, " Sulfur–Iodine plant for large scale hydrogen production by nuclear power " International Journal of Hydrogen Energy, vol. 35 (9), pp. 4002-4014, May 2010.
  • [11] A. E. Lutz, R. W. Bradshaw, J. O. Keller and D. E. Witmer, "Thermodynamic analysis of hydrogen production by steam reforming" International Journal of Hydrogen Energy, vol. 28(2), pp.159-167, February 2003.
  • [12] K. J. Kramer, W. R. Meier, J. F. Latkowski and R. P. Abbott, " Parameter study of the LIFE engine nuclear design " Energy Conversion and Management, vol. 51(9), pp.1744-1750, September 2010.
  • [13] J. C. Farmer, E. Moses, and T. Diaz de la Rubia, The Complete Burning of Weapons Grade Plutonium and Highly Enriched Uranium with (Laser Inertial Fusion-Fission Energy) LIFE Engine. Lawrence Livermore National Lab.(LLNL), 2008.
  • [14] R. W. Moir, H. F. Shaw, A. Caro, L. Kaufman, J. F. Latkowski, J. Powers and P. E. A. Turchi, “Molten Salt Fuel Version of Laser Inertial fusion fission energy (LIFE),” Fusion Science and Technology, vol. 56(2), pp. 632-640, August 2009. Doi: 10.13182/FST18-8166.
  • [15] K. J. Kramer, J. F. Latkowski, R. P. Abbott, J. K. Boyd, J. J. Powers and J. E. Seifried, “Neutron transport and nuclear burnup analysis for the laser inertial confinement fusion-fission energy (LIFE) engine”, Fusion Science and Technology, vol. 56(2), pp. 634-641. 2009. Doi: 10.13182/FST18-8132
  • [16] A. Acır, “Neutronic Analysis of the Laser Inertial Confinement Fusion–Fission Energy (LIFE) Engine Using Various Thorium Molten Salts,” Journal of Fusion Energy, vol.32(6), pp. 634-641. December 2013. Doi:10.1007/s10894-013-9628-7
  • [17] A. Acır and E. Baysal “Monte Carlo calculations of the incineration of plutonium and minor actinides of laser fusion inertial confinement fusion fission energy (LIFE) engine”, Plasma Science and Technology, vol.20(7), 075601. May 2018. Doi: 10.1088/2058-6272/aab3c4
  • [18] H. Taşkolu and A. Acır, “Bir Hibrit Reaktörde Trıso Kaplamalı Candu Nükleer Yakıt Atıklarının Nötronik Analizi”, Politeknik Dergisi, cilt 16(4), s.129-133. 2013.
  • [19] A. Acır, “ThO2 Yakıtlı Bir Füzyon-Fisyon Hibrid Reaktöründe Farklı Reflektör Malzemelerin Nötronik Performansa Etkisi”, Politeknik Dergisi, cilt 10(3), s.263-270. 2007.
  • [20] J. F. Briesmeister, “MCNPTM-A general Monte Carlo N-particle transport code”, Version 4C, LA-13709-M, Los Alamos National Laboratory, 2.
  • [21] M. Benedict, T. H. Pigford and H. W. Levi, Nuclear Chemical Engineering, McGraw-Hill series in nuclear engineering, p. 370, Table 8.5
  • [22] S. Fujiwara, S. Kasai, H. Yamauchi, K. Yamada, S. Makino, K. Matsunaga and E. Hoashi, “Hydrogen production by high temperature electrolysis with nuclear reactor”, Progress in Nuclear Energy, vol.50(2-6), pp.422-426. March–August 2008.
  • [23] S. Şahin, M. J. Khan and R. Ahmed, “Fissile fuel breeding and minor actinide transmutation in the life engine”, Fusion Engineering and Design, vol.86(2-3), pp.227-237. March 2011 [24] S. Şahin, H. M. Şahin and A. Acır, “LIFE hybrid reactor as reactor grade plutonium burner”, Energy conversion and management, vol.63, pp.44-50. November 2012
  • [25] G. Özişik, N. Demir, M. Übeyli and H. Yapici, “Hydrogen production via water splitting process in a molten-salt fusion breeder”, International journal of hydrogen energy, vol.35(14), pp.7357-7368. July 2010.
  • [26] G. Genç, “Hydrogen production potential of APEX fusion transmuter fueled minor actinide fluoride”, International journal of hydrogen energy, vol.35(19), pp.10190-10201. October 2010.
  • [27] N. Demir, “Hydrogen production via steam-methane reforming in a SOMBRERO fusion breeder with ceramic fuel particles”, International journal of hydrogen energy, vol.38(2), pp.853-860. January 2013
  • [28] M. Wang, The greenhouse gases, regulated emissions, and energy use in transportation (GREET) model: Version 1.5, Center for Transportation Research, Argonne National Laboratory. August 1999.
There are 26 citations in total.

Details

Primary Language Turkish
Subjects Mechanical Engineering
Journal Section Research Articles
Authors

Adem Acır

Samet Aktı This is me

Publication Date April 23, 2019
Submission Date November 18, 2018
Acceptance Date March 7, 2019
Published in Issue Year 2019 Volume: 5 Issue: 1

Cite

IEEE A. Acır and S. Aktı, “LIFE Füzyon Reaktöründe Yüksek Sicaklikta Elektroliz Yöntemi İle Hidrojen Üretimi”, GJES, vol. 5, no. 1, pp. 1–8, 2019.

Gazi Journal of Engineering Sciences (GJES) publishes open access articles under a Creative Commons Attribution 4.0 International License (CC BY). 1366_2000-copia-2.jpg