Research Article
BibTex RIS Cite

Analysis Of Topcam Tunnel Deformations By Random Set Finite Element Method

Year 2019, Volume: 5 Issue: 2, 115 - 127, 28.08.2019

Abstract

In this study it's aimed that comparing field
measurements with tunnel deformation results which are obtained by
using  random set of finite element method. Topcam tunnel is located
Ulubey, Ordu and this tunnel's section between 35 and 192 km is chosen for this
study. Tunnel is modeled by using 2 dimension finite element method and rock
parameters are defined to the model by using Mohr- Coulomb criteria. The
parameters of elasticity module, cohesion, internal friction angle and
relaxation factors upper and lower limit ranges are determined in two separate
sets. Lab, field studies and literature knowledge is used for separating
variables in two sets. The elasticity module, cohesion, internal friction angle
and relaxation factor parameters of in each cluster are produced 256
combinations with Cartesian multiplied among themselves.
Probability
distribution graphs of deformation for 5 spots in the tunnel are
established  with the help of obtained
analysis results. Deformation measurements of field study and probability
distribution graph results are compared for Topcam tunnel. As a result of this
comparison its acquired that the probability distribution graph's maximum and
minimum ranges conform with field studies.

References

  • [1] K.K. Phoo, F.H. Kulhawy, "Characterization of geotechnical variability", Canadian Geotechnical Journal, 36(4): 612-624, 1999.
  • [2] A.P. Dempster, “ Upper and Lower probabilities induced by a multivalued mapping.” Annals of mathematical statistic, 38:325-339, 1967.
  • [3] D.G. Kendall, “ Foundations of a theory of random sets.” In stochastic geometry (eds) E.F. Harding ve D.G. Kendall New York, 1974.
  • [4] G. Shafer, “A Mathematical Theory of Evidence.”Princeton: Princeton University Press, 1976.
  • [5] D. Dubois, H. Prade, “ Random sets and fuzzy interval analysis. Fuzzy Sets and Systems”,syf: 87-101, 1991.
  • [6] G.M. Peschl, “Reliability Analysis in Geotechnics with the Random Set Element Method”,Dissertation. Graz University of Technology, 2004.
  • [7] H.F. Schweiger, G.M. Peschl, R. Pöttler, “ Application of the random set finite element method for analysing tunnel excavation.”,Georisk, 2007.
  • [8] Rocsicence “Phase2 2D finite element program for calculating stresses and estimating support around underground excavations user’s guide”, 1998.
  • [9] W.Niemeier “Statistical tests for detecting movements in repeatedly measured geodetic Networks”, Tectonophysics, 335-351, 1981.
  • [10] T.C. Ulaştırma, Denizcilik ve Haberleşme Bakanlığı-Karayolları Genel Müdürlüğü-Karayolları 7.Bölge Müdürlüğü ”Ordu-Ulubey Ayrımı Topçam Tünelleri Jeolojik, Hidrojeolojik ve mühendislik jeolojisi etüt raporu.” 2013.
  • [11] E.Hoek, “Strength of rock and rock masses.”, ISRM News Journal, 2(2),4-16, 1994.
  • [12]J.C. Jaeger, N.G. Cook, “Fundamentals of rock mechanichs.” London: Chapman and Hall, 1979.
  • [13] E. Hoek, C. Carranza-Tores, ve B. Corkum,”Hoek-Brown criterion” NARMS-TAC Conference.Toronto, 267-273, 2002.
  • [14] E. Hoek, M. Diedreicks, “Empirical Estimation of Rock Mass Modulus.” International Journal of Rock Mechanics and Mining Sciences, 43:203-215, 2006.
  • [15] H.F. Schweiger, A. Nasekhian ve T. Marcher, “A comparison of random set and point estimate methods in finite element analysis of tunnel excavation.” Intenational symposium on geotechnical safety and risk, Almanya, 2011.
  • [16] E.H.Vanmarcke, “Random fields analysis and synthesis.” Cambridge: MIT Press, 1983.
  • [17] D.V.Griffiths, G.A.Fenton, “Influence of soil strength spatial variability on the stability of an undrained clay slope by finite elements.” Proceeding of GeoDenver, 184-193, 2000.
  • [18] S.Lacasse, F.Nadim, “Model uncertainty in pile axial capacity calculations.” Offshore technology conference, 1996.
  • [19] H.Gören, E.Tekin, S.O.Akbaş “Olasılıksal şev stabilitesi analizlerinde yerel değişkenliğin etkisi.” Taşkın ve heyelan sempozyumu, 221- 229, Trabzon, 2013.
  • [20] F.H.Kulhawy, “Finite element modelling criteria for underground openings in rock.” Mechanics and mining sciences & geomechanics abstracts, 11(12), 465-472, 1974.
  • [21] N.Vlachopoulos ve M.S. Diederichs, “ Appropriate uses and pratical limitations of 2D numerical analysis of tunnels ans tunnel support response.” Geotechnical ana geological engineering an international journal,v.31.n.6, 2014.

Topçam Tüneli Deformasyonlarının Rastgele Küme Sonlu Elemanlar Yöntemi İle Hesaplanması

Year 2019, Volume: 5 Issue: 2, 115 - 127, 28.08.2019

Abstract

Bu çalışmada rastgele
küme sonlu elemanlar metodu ile elde edilen tünel deformasyon sonuçlarının
arazi ölçümleriyle karşılaştırılması amaçlanmıştır. Çalışma için Ordu ili
Ulubey ilçesinde bulunan Topçam tüneli 35+192 km kesiti seçilmiştir. Tünel 2
boyutlu sonlu elemanlar yöntemi ile modellenmiş ve Mohr-Columb kriterleri kullanılarak
kaya parametreleri modele tanımlanmıştır. Elastisite modülü, kohezyon, içsel
sürtünme açısı ve rahatlama faktörü parametrelerinin üst ve alt limit
aralıkları iki ayrı küme halinde belirlenmiştir. Değişkenleri iki kümeye ayırma
işleminde laboratuvar, arazi çalışmaları ve literatür bilgisi kullanılmıştır.
Her bir kümedeki elastisite modülü, kohezyon, içsel sürtünme açısı ve rahatlama
faktörü değerlerinin kendi aralarında kartezyen çarpımı yapılarak 256 ayrı
kombinasyon oluşturulmuştur. Elde edilen analiz sonuçlarından tüneldeki 5 nokta
için deformasyonların olasılıksal dağılım grafikleri teşkil edilmiştir. Topçam
tüneli için sahada yapılan deformasyon ölçümleri ile olasılıksal dağılım
grafiğinden elde edilen sonuçlar karşılaştırılmıştır. Bu karşılaştırmanın
sonucunda olasılıksal dağılım grafiğindeki maksimum ve minimum aralıkların saha
ölçümleri ile uyumlu olduğu görülmüştür. 

References

  • [1] K.K. Phoo, F.H. Kulhawy, "Characterization of geotechnical variability", Canadian Geotechnical Journal, 36(4): 612-624, 1999.
  • [2] A.P. Dempster, “ Upper and Lower probabilities induced by a multivalued mapping.” Annals of mathematical statistic, 38:325-339, 1967.
  • [3] D.G. Kendall, “ Foundations of a theory of random sets.” In stochastic geometry (eds) E.F. Harding ve D.G. Kendall New York, 1974.
  • [4] G. Shafer, “A Mathematical Theory of Evidence.”Princeton: Princeton University Press, 1976.
  • [5] D. Dubois, H. Prade, “ Random sets and fuzzy interval analysis. Fuzzy Sets and Systems”,syf: 87-101, 1991.
  • [6] G.M. Peschl, “Reliability Analysis in Geotechnics with the Random Set Element Method”,Dissertation. Graz University of Technology, 2004.
  • [7] H.F. Schweiger, G.M. Peschl, R. Pöttler, “ Application of the random set finite element method for analysing tunnel excavation.”,Georisk, 2007.
  • [8] Rocsicence “Phase2 2D finite element program for calculating stresses and estimating support around underground excavations user’s guide”, 1998.
  • [9] W.Niemeier “Statistical tests for detecting movements in repeatedly measured geodetic Networks”, Tectonophysics, 335-351, 1981.
  • [10] T.C. Ulaştırma, Denizcilik ve Haberleşme Bakanlığı-Karayolları Genel Müdürlüğü-Karayolları 7.Bölge Müdürlüğü ”Ordu-Ulubey Ayrımı Topçam Tünelleri Jeolojik, Hidrojeolojik ve mühendislik jeolojisi etüt raporu.” 2013.
  • [11] E.Hoek, “Strength of rock and rock masses.”, ISRM News Journal, 2(2),4-16, 1994.
  • [12]J.C. Jaeger, N.G. Cook, “Fundamentals of rock mechanichs.” London: Chapman and Hall, 1979.
  • [13] E. Hoek, C. Carranza-Tores, ve B. Corkum,”Hoek-Brown criterion” NARMS-TAC Conference.Toronto, 267-273, 2002.
  • [14] E. Hoek, M. Diedreicks, “Empirical Estimation of Rock Mass Modulus.” International Journal of Rock Mechanics and Mining Sciences, 43:203-215, 2006.
  • [15] H.F. Schweiger, A. Nasekhian ve T. Marcher, “A comparison of random set and point estimate methods in finite element analysis of tunnel excavation.” Intenational symposium on geotechnical safety and risk, Almanya, 2011.
  • [16] E.H.Vanmarcke, “Random fields analysis and synthesis.” Cambridge: MIT Press, 1983.
  • [17] D.V.Griffiths, G.A.Fenton, “Influence of soil strength spatial variability on the stability of an undrained clay slope by finite elements.” Proceeding of GeoDenver, 184-193, 2000.
  • [18] S.Lacasse, F.Nadim, “Model uncertainty in pile axial capacity calculations.” Offshore technology conference, 1996.
  • [19] H.Gören, E.Tekin, S.O.Akbaş “Olasılıksal şev stabilitesi analizlerinde yerel değişkenliğin etkisi.” Taşkın ve heyelan sempozyumu, 221- 229, Trabzon, 2013.
  • [20] F.H.Kulhawy, “Finite element modelling criteria for underground openings in rock.” Mechanics and mining sciences & geomechanics abstracts, 11(12), 465-472, 1974.
  • [21] N.Vlachopoulos ve M.S. Diederichs, “ Appropriate uses and pratical limitations of 2D numerical analysis of tunnels ans tunnel support response.” Geotechnical ana geological engineering an international journal,v.31.n.6, 2014.
There are 21 citations in total.

Details

Primary Language Turkish
Subjects Civil Engineering
Journal Section Research Articles
Authors

Erhan Tekin This is me

Gamze Dönder 0000-0002-4169-9335

Nail Ünsal This is me

Publication Date August 28, 2019
Submission Date April 8, 2019
Acceptance Date June 30, 2019
Published in Issue Year 2019 Volume: 5 Issue: 2

Cite

IEEE E. Tekin, G. Dönder, and N. Ünsal, “Topçam Tüneli Deformasyonlarının Rastgele Küme Sonlu Elemanlar Yöntemi İle Hesaplanması”, GJES, vol. 5, no. 2, pp. 115–127, 2019.

Gazi Journal of Engineering Sciences (GJES) publishes open access articles under a Creative Commons Attribution 4.0 International License (CC BY). 1366_2000-copia-2.jpg