Review
BibTex RIS Cite

Introducing a New Method to Increase Critical Clearing Time (CCT) and Improve Transient Stability of Synchronous Generator Using Brake Resistance

Year 2020, Volume: 6 Issue: 2, 138 - 144, 25.08.2020

Abstract

In general, the stability of the power system can be considered a feature of the system that enables it to remain in equilibrium under normal conditions and regain a different acceptable state if affected by disturbance. Instability in a power system may take many forms, depending on the composition of the system and its operating modes. In order to evaluate the proposed method in damping transient fluctuations and network stability, a study has been carried out on a typical network. Since the topic of the article is in the field of transient stability, in part of the paper, braking resistance modeling in transient stability studies has been investigated. In the section on brake resistor control, brake resistor control is introduced by a switched Thyristor, using the trapezoidal method. Finally, the simulation results of the studied network are presented with the presence of TCBR and its capability of damping in the desired network.

References

  • [1]¬¬ Di Bernardo, M., Di Gaeta, A., Montanaro, U., Olm, J.M., Santini, S., Experimental validation of the discrete-time MCS adaptive strategy, Control Engineering Practice, 2013, 21(6): 847-855. [2]¬ Ma, Y., Jiang, B., Tao, G., Yang, H., Adaptive direct compensation control scheme for spacecraft with multiple actuator faults, Journal of Guidance, Control, and Dynamics, 2019, 42(4): 923-934 [3] Xiao, S., Dong, J., Robust adaptive fault-tolerant tracking control for uncertain linear systems with time-varying performance bounds, International Journal of Robust and Nonlinear Control, 2019, 29(4): 849-855 [4] Tsakalis, W.K., Heydt, G., Evaluation of Time Delay Effects TO Wide-Area Power System Stabilizer Design,” IEEE Trans, Power Sys, 2004, 19(4): 1935–1941 [5] Burkholder, J., and Tao,G., Adaptive Detection of Sensor Uncertainties and Failures, Journal of Guidance, Control, and Dynamics, 2011, 34(6): 1605-1620 [6] Ale, B. J. M., Bellamy, L. J., Cooper, J., Ababei, D., Kurowicka, D.,Morales, O., Spouge, J., Analysis of the Crash of TK 1951 Using CATS, Reliability Engineering & System Safety, 2010, 95(5): 469-477 [7] Jin, X., Qin, J., Shi, Y., Zheng, W.X., Auxiliary fault tolerant control with actuator amplitude saturation and limited rate, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2017, 48(10): 1816-1825 [8] Chandrasekar, J., Bernstein, D.S., Setpoint tracking with actuator offset and sensor bias - Probing the limits of integral control, IEEE Control Systems Magazine, 2007, 1: 61-70 [9] Rolim, J. G. Machado, J.B., A study of the use of corrective switching in transmission systems,” IEEE Trans. Power Syst., 2015, 14: 336-350 [10] Shao, W., Vittal, V., Corrective switching algorithm for relieving overloads and voltage violations, IEEE Trans. Power Syst., 2015, 20(4): 1877-1880 [11] Wang, C., Wen, C., Lin, Y., Adaptive actuator failure compensation for a class of nonlinear systems with unknown control direction, IEEE Transactions on Automatic Control, 2017, 62(1): 385-395 [12] Song, G., Tao, G., Adaptive state-feedback control with sensor failure compensation for asymptotic output tracking, International Journal of Adaptive Control and Signal Processing, 2019, 33(1): 130-141 [13] Soroush, M., Fuller, J. D. Accuracies of optimal transmission switching heuristics based on DCOPF and ACOPF, IEEE Trans. Power Syst., 2013, 29(2): 924-933 [14] Shakarami, M.R., Kazemi, A., Simultaneous Coordinated Tuning of SSSC-Based Stabilizer and PSS Using Quadratic Mathematical Programming, Computer Science and Engineering and Electrical Engineering), 2010, 17: 163-174 [15] Hobbs, B. F., Equilibrium market power modeling for large scale power systems, Proc. Power Eng. Soc. Summer Meeting, 2001, 1: 558-268 [16] Rahimiyan, M., Rajabi Mashhadi, H., Evaluating the efficiency of divestiture policy in promoting competitiveness using an analytical method and agent-based computational economics, Energy Policy, 2010, 38(3):1588-1597 [17] Zhang, X., Zong, Q., Tian, B., Shao, S., Liu, W., Finite-time fault estimation and fault-tolerant control for rigid spacecraft, Journal of Aerospace Engineering, 2018, 31(6): 141-152 [18] Khan, M.W., Wang, J., Ma, M., Xiong, L., Li, P., Wu, F., Optimal energy management and control aspects of distributed microgrid using multi-agent systems. Sustainable. Cities Society, 2018, 20: 18-25

Senkron Jeneratörün Geçici Kararlılığını ve Kritik Temizleme Süresini (CCT) Artırmak için Fren Direnci Kullanımı ile Yeni Bir Yaklaşımın Sunumu

Year 2020, Volume: 6 Issue: 2, 138 - 144, 25.08.2020

Abstract

Genel olarak güç sistemlerinin sürdürülebilirliği, sistemin normal şartlarda dengede kalmasını, türbülanstan etkilenmesi durumunda ise farklı bir duruma gelmesini sağlayan özellik olarak düşünülebilir. Güç sistemindeki kayıplar, sistemin yapısına ve çalışma koşullarına bağlı olarak birçok şekilde olabilir. Bu çalışmada, geçici dalgalanmaları ve ağ istikrarsızlığını azaltmak için yeni bir yöntem uygulanmıştır. Çalışmanın amacı geçici kararlılık olduğundan, geçici kararlılıkta termal direncin modellenmesi makalenin bir bölümünde tanıtılmıştır. Ardından, trapezoidal yöntem kullanılarak fren direnci kontrolüne karşılık gelen matematiksel eşitliğe sahip anahtarlı bir Tristör kullanılmıştır. Elde edilen simülasyon sonuçları, TCBR'nin varlığı ve istenen ağa gömülebilme yeteneği ile sunulmuştur.

References

  • [1]¬¬ Di Bernardo, M., Di Gaeta, A., Montanaro, U., Olm, J.M., Santini, S., Experimental validation of the discrete-time MCS adaptive strategy, Control Engineering Practice, 2013, 21(6): 847-855. [2]¬ Ma, Y., Jiang, B., Tao, G., Yang, H., Adaptive direct compensation control scheme for spacecraft with multiple actuator faults, Journal of Guidance, Control, and Dynamics, 2019, 42(4): 923-934 [3] Xiao, S., Dong, J., Robust adaptive fault-tolerant tracking control for uncertain linear systems with time-varying performance bounds, International Journal of Robust and Nonlinear Control, 2019, 29(4): 849-855 [4] Tsakalis, W.K., Heydt, G., Evaluation of Time Delay Effects TO Wide-Area Power System Stabilizer Design,” IEEE Trans, Power Sys, 2004, 19(4): 1935–1941 [5] Burkholder, J., and Tao,G., Adaptive Detection of Sensor Uncertainties and Failures, Journal of Guidance, Control, and Dynamics, 2011, 34(6): 1605-1620 [6] Ale, B. J. M., Bellamy, L. J., Cooper, J., Ababei, D., Kurowicka, D.,Morales, O., Spouge, J., Analysis of the Crash of TK 1951 Using CATS, Reliability Engineering & System Safety, 2010, 95(5): 469-477 [7] Jin, X., Qin, J., Shi, Y., Zheng, W.X., Auxiliary fault tolerant control with actuator amplitude saturation and limited rate, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2017, 48(10): 1816-1825 [8] Chandrasekar, J., Bernstein, D.S., Setpoint tracking with actuator offset and sensor bias - Probing the limits of integral control, IEEE Control Systems Magazine, 2007, 1: 61-70 [9] Rolim, J. G. Machado, J.B., A study of the use of corrective switching in transmission systems,” IEEE Trans. Power Syst., 2015, 14: 336-350 [10] Shao, W., Vittal, V., Corrective switching algorithm for relieving overloads and voltage violations, IEEE Trans. Power Syst., 2015, 20(4): 1877-1880 [11] Wang, C., Wen, C., Lin, Y., Adaptive actuator failure compensation for a class of nonlinear systems with unknown control direction, IEEE Transactions on Automatic Control, 2017, 62(1): 385-395 [12] Song, G., Tao, G., Adaptive state-feedback control with sensor failure compensation for asymptotic output tracking, International Journal of Adaptive Control and Signal Processing, 2019, 33(1): 130-141 [13] Soroush, M., Fuller, J. D. Accuracies of optimal transmission switching heuristics based on DCOPF and ACOPF, IEEE Trans. Power Syst., 2013, 29(2): 924-933 [14] Shakarami, M.R., Kazemi, A., Simultaneous Coordinated Tuning of SSSC-Based Stabilizer and PSS Using Quadratic Mathematical Programming, Computer Science and Engineering and Electrical Engineering), 2010, 17: 163-174 [15] Hobbs, B. F., Equilibrium market power modeling for large scale power systems, Proc. Power Eng. Soc. Summer Meeting, 2001, 1: 558-268 [16] Rahimiyan, M., Rajabi Mashhadi, H., Evaluating the efficiency of divestiture policy in promoting competitiveness using an analytical method and agent-based computational economics, Energy Policy, 2010, 38(3):1588-1597 [17] Zhang, X., Zong, Q., Tian, B., Shao, S., Liu, W., Finite-time fault estimation and fault-tolerant control for rigid spacecraft, Journal of Aerospace Engineering, 2018, 31(6): 141-152 [18] Khan, M.W., Wang, J., Ma, M., Xiong, L., Li, P., Wu, F., Optimal energy management and control aspects of distributed microgrid using multi-agent systems. Sustainable. Cities Society, 2018, 20: 18-25
There are 1 citations in total.

Details

Primary Language English
Subjects Electrical Engineering
Journal Section Research Articles
Authors

Ebadollah Amouzad Mahdiraji 0000-0003-3777-4811

Publication Date August 25, 2020
Submission Date April 8, 2020
Acceptance Date July 12, 2020
Published in Issue Year 2020 Volume: 6 Issue: 2

Cite

IEEE E. Amouzad Mahdiraji, “Introducing a New Method to Increase Critical Clearing Time (CCT) and Improve Transient Stability of Synchronous Generator Using Brake Resistance”, GJES, vol. 6, no. 2, pp. 138–144, 2020.

Gazi Journal of Engineering Sciences (GJES) publishes open access articles under a Creative Commons Attribution 4.0 International License (CC BY). 1366_2000-copia-2.jpg