Research Article
BibTex RIS Cite

Dielektrik Malzemelerin Yüzeyleri için Islanabilirlik ve Buharlaşma Hızının Analizine Yönelik Ayrık Kosinüs Dönüşümü Tabanlı Bir Yaklaşım

Year 2021, Volume: 7 Issue: 2, 160 - 168, 30.08.2021

Abstract

Dielektrik malzemelerin yaşlanması, servis verdikleri süre boyunca kaçınılmaz bir durumdur. Dielektrik malzemelerin, elektriksel özelliklerinin yanısıra yüzey özellikleri de kararlı çalışmasına, performansına ve servis verme süresine etki eden önemli faktörler arasındadır. Elektrik alan ve nem varlığında elektriksel yaşlanma olaylarının başladığı ve hızlandığı ele alındığında, ıslanabilirliğin özellikle outdoor uygulamalarda büyük önem arz eden yüzey özellikleri arasında olduğu aşikardır. Islanabilirlik, katın yüzeylerin karakterize edilmesine ve katı-sıvı etkileşimlerini belirlemeye imkan sağlamaktadır. Bu çalışmada dielektrik malzeme yüzeyine damlatılan 167,9 mS/cm iletkenliğe ve 20 µL hacme sahip tuzlu su damlacıklarının anlık görüntüleri dijital mikroskop kullanılarak 1., 10., 20., 30, 40. ve 50. dakikalar olmak üzere 5 farklı zaman noktası için alınmıştır. Elde edilen görüntüler, görüntü işleme teknikleri kullanılarak iyileştirilmiş ve damlacık görüntüsü bölütlenmiştir. Tuzlu su damlacık görüntülerine Ayrık Kosinüs Dönüşümü (AKD) uygulanmış ve AKD katsayıları çıkartılmıştır. Çıkartılan katsayıların standart sapması zamana bağlı olarak saçılım grafiği çizdirilmiş. Elde edilen zamana bağlı noktalar için eğriler (linear ve quadratic) uydurulmuş ve uydurulan eğrilerin matematiksel eşitlikleri elde edilmiştir. Dielektrik malzemelerinin yüzeyleri için ıslanabilirliği ve buharlaşma hızını değerlendirmeye ve yorumlamaya yönelik olarak AKD tabanlı bir yaklaşım sunulmuştur. Sonuç olarak görüntü işleme teknikleri kullanılarak buharlaşma, zaman, ıslanabilirlik ve temas açısı arasındaki ilişki gözlemlenmiştir.

References

  • R. E. Johnson, R. H. Dettre, Wetting of low-energy surfaces. Vol. 49. Marcel Dekker, Inc.: New York, 1993.
  • M. Karhan, “Experimental investigation of wettability and evaporation for the surface of PMMA dielectric material used in high-voltage applications and outdoor electrical applications” Applied Physics A, vol. 127, no.6, pp.1-11, 2021. Doi: https://doi.org/10.1007/s00339-021-04630-6
  • A. Ersoy, A. Kuntman, “Polimerik yalıtkanlarda yüzey özelliklerinin temas açısı ile incelenmesi”, Elektrik – Elektronik – Bilgisayar Mühendisliği Sempozyumu (ELECO2008), 2008, pp. 107-111.
  • M.C. Lanca, “Electrical ageing studies of polymeric insulation for power cables”. Ph.D. dissertation, Universidade Nova De Lisboa, Portugal, 2002.
  • M. Karhan, M. F. Çakır, M. Uğur, “A New Approach to the Analysis of Water Treeing Using Feature Extraction of Vented Type Water Tree Images”. Journal of Electrical Engineering & Technology, vol.16, no. 3, pp. 1241-1252, 2021. Doi: https://doi.org/10.1007/s42835-021-00667-y
  • L. Hui, L. S. Schadler, J. K. Nelson, “The influence of moisture on the electrical properties of crosslinked polyethylene/silica nanocomposites” IEEE Transactions on Dielectrics and Electrical Insulation, vol. 20, no. 2, pp. 641-653, 2013. Doi: https://doi.org/10.1109/TDEI.2013.6508768
  • M. Karhan, A. E. Yilmaz, M. Uğur, “Investigation the effect of solution conductivity on the growth rate and shape of water trees observed in distribution cables”, Istanbul University-Journal of Electrical & Electronics Engineering, vol. 17, no. 2, pp. 3445-3451, 2017.
  • Y. Fan, R. X. Yang, H. Chen, H. L. Zhang, “The impact of air relative humidity on corona-resistant polyimide film”, 6th International Forum on Strategic Technology IEEE, 2011, Vol. 1, pp. 80-83.
  • S. Y. Misyura, “The dependence of drop evaporation rate and wettability on corrosion kinetics”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 610, pp. 125735, 2021. Doi: https://doi.org/10.1016/j.colsurfa.2020.125735
  • S. Y. Misyura, G. V. Kuznetsov, D. V. Feoktistov, R. S. Volkov, V. S. Morozov, E. G. Orlova, “The influence of the surface microtexture on wettability properties and drop evaporation”, Surface and Coatings Technology, vol. 375, pp. 458-467, 2019. Doi: https://doi.org/10.1016/j.surfcoat.2019.07.058
  • S. Y. Misyura, “Heat transfer and convection of evaporating sessile droplets in transition from superhydrophilic to superhydrophobic structured wall: Optimization of functional properties”, International Communications in Heat and Mass Transfer, vol. 112, pp. 104474, 2020. Doi: https://doi.org/10.1016/j.icheatmasstransfer.2019.104474
  • S. Chakraborty, M. A. Rosen, B. D. MacDonald, “Analysis and feasibility of an evaporative cooling system with diffusion-based sessile droplet evaporation for cooling microprocessors”, Applied Thermal Engineering, vol. 125, pp. 104-110, 2017. Doi: https://doi.org/10.1016/j.applthermaleng.2017.07.006
  • S. Semenov, A. Trybala, R. G. Rubio, N., Starov, V. Kovalchuk, M. G. Velarde, “Simultaneous spreading and evaporation: recent developments”, Advances in Colloid and Interface Science, vol. 206, pp. 382-398, 2014. Doi: https://doi.org/10.1016/j.cis.2013.08.006
  • H. Hu, R. G. Larson, “Evaporation of a sessile droplet on a substrate”, The Journal of Physical Chemistry B, vol. 106, no. 6, pp. 1334-1344, 2002. Doi: https://doi.org/10.1021/jp0118322
  • F. Girard, M. Antoni, S. Faure, A. Steinchen, “Influence of heating temperature and relative humidity in the evaporation of pinned droplets” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 323, no. (1-3), pp. 36-49, 2008. Doi: https://doi.org/10.1016/j.colsurfa.2007.12.022
  • D. Hu, H. Wu, Z. Liu, “Effect of liquid–vapor interface area on the evaporation rate of small sessile droplets”, International Journal of Thermal Sciences, vol. 84, pp. 300-308, 2014. Doi: https://doi.org/10.1016/j.ijthermalsci.2014.05.024
  • H. Almohammadi, A. Amirfazli, “Sessile drop evaporation under an electric field”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 555, pp. 580-585, 2018. Doi: https://doi.org/10.1016/j.colsurfa.2018.07.022
  • S. M. Rowan, M. I. Newton, G. McHale, “Evaporation of microdroplets and the wetting of solid surfaces”, The Journal of Physical Chemistry, vol. 99, no. 35, pp. 13268-13271, 1995. Doi: https://doi.org/10.1021/j100035a034
  • H. Y. Erbil, G. McHale, S. M. Rowan, M. I. Newton, “Determination of the receding contact angle of sessile drops on polymer surfaces by evaporation”. Langmuir, vol. 15, n0. 21, pp. 7378-7385, 1999. Doi: https://doi.org/10.1021/la9900831
  • Z. Wang, X. F. Peng, A. S. Mujumdar, A. Su, D. J. Lee, “Evaporation of ethanol-water mixture drop on horizontal substrate”, Drying Technology, vol. 26, no. 6, pp. 806-810, 2008. Doi: https://doi.org/10.1080/07373930802046526
  • T. Young, “III. An essay on the cohesion of fluids”, Philosophical Transactions of the Royal Society of London, vol. 95, pp. 65-87, 1805. Doi: https://doi.org/10.1098/rstl.1805.0005
  • K. Y. Law, H. Zhao, Surface wetting: characterization, contact angle, and Fundamentals. Basel, Switzerland: Springer International Publishing, 2016.
  • U. Ali, K. J. B. A. Karim, N. A. Buang, “A review of the properties and applications of poly (methyl methacrylate) (PMMA)”, Polymer Reviews, vol. 55, no. 4, pp. 678-705, 2015. Doi: https://doi.org/10.1080/15583724.2015.1031377
  • H. S. Park, H. S. Park, M. S. Gong, “Preparation of silver/poly (methyl methacrylate) nanocomposites by in-situ radical polymerization using silver carbamate complex”, Macromolecular Research, vol. 18, no. 9, pp. 897-903, 2010. Doi: https://doi.org/10.1007/s13233-010-0913-2
  • S. M. Pawde, K. Deshmukh, “Investigation of the structural, thermal, mechanical, and optical properties of poly (methyl methacrylate) and poly (vinylidene fluoride) blends”, Journal of Applied Polymer Science, vol.114, no. 4, pp. 2169-2179, 2009. Doi: https://doi.org/10.1002/app.30641
  • S. Rajendran, M. Sivakumar, R. Subadevi, “Effect of salt concentration in poly (vinyl alcohol)-based solid polymer electrolytes”, Journal of Power Source, vol.124, no.1, pp. 225-230, 2003. Doi: https://doi.org/10.1016/S0378-7753(03)00591-3
  • H. Gu, C. Wang, S. Gong, Y. Mei, H. Li, W. Ma, “Investigation on contact angle measurement methods and wettability transition of porous surfaces”, Surface and Coatings Technology, vol. 292, pp. 72-77, 2016. Doi: https://doi.org/10.1016/j.surfcoat.2016.03.014
  • N. Ahmed, T. Natarajan, K. Rao, “Discrete cosine transform”, IEEE Transactions on Computers, vol. 23, no. 1, pp. 90–93, 1974. Doi: https://doi.org/10.1109/T-C.1974.223784
  • S. Roy, A. K. Pal, “An indirect watermark hiding in discrete cosine transform–singular value decomposition domain for copyright protection”, Royal Society open science, vol. 4 no.6, pp. 170326, 2017. Doi: https://doi.org/10.1098/rsos.170326
  • M. Majhi, A. K. Pal, “An image retrieval scheme based on block level hybrid dct-svd fused features”, Multimedia Tools and Applications, vol. 80, no.5, pp. 7271-7312, 2021. Doi: https://doi.org/10.1007/s11042-020-10005-5

A Discrete Cosine Transform Based Approach to Analysis of Evaporation Rate and Wettability for Dielectric Materials' Surfaces

Year 2021, Volume: 7 Issue: 2, 160 - 168, 30.08.2021

Abstract

The aging of dielectric materials is unavoidable during their service life. In addition to the electrical properties of dielectric materials, the surface properties that affect their stable operation, performance, and service life are among the important factors. Considering that the electrical aging phenomena initiate and grown in the presence of electric field and humidity, it is obvious that wettability is among the surface properties that are of great importance especially in outdoor applications. Wettability allows to characterize of the solid surfaces and determine solid-liquid interactions. In this study, snapshots of saltwater droplets with a conductivity of 167.9 mS/cm and a volume of 20 µL dropped onto the dielectric material surface were taken using a digital microscope for 5 different time points, 1st, 10th, 20th, 30th, 40th, and 50th minutes. The obtained images were enhanced using image processing techniques and the droplet image was segmented. Discrete Cosine Transform (DCT) was applied to the saline droplet images and the DCT coefficients were extracted. The standard deviation of the extracted coefficients was plotted as a time-dependent scatter graph. For the time-dependent points obtained, linear and quadratic polynomial curves were fitted and the mathematical equations of the fitted curves were obtained. A DCT-based approach is presented to evaluate and interpret the wettability and evaporation rate for the dielectric materials' surfaces. As a result, the relationship between evaporation rate, time, wettability, and contact angle is observed using image processing techniques.

References

  • R. E. Johnson, R. H. Dettre, Wetting of low-energy surfaces. Vol. 49. Marcel Dekker, Inc.: New York, 1993.
  • M. Karhan, “Experimental investigation of wettability and evaporation for the surface of PMMA dielectric material used in high-voltage applications and outdoor electrical applications” Applied Physics A, vol. 127, no.6, pp.1-11, 2021. Doi: https://doi.org/10.1007/s00339-021-04630-6
  • A. Ersoy, A. Kuntman, “Polimerik yalıtkanlarda yüzey özelliklerinin temas açısı ile incelenmesi”, Elektrik – Elektronik – Bilgisayar Mühendisliği Sempozyumu (ELECO2008), 2008, pp. 107-111.
  • M.C. Lanca, “Electrical ageing studies of polymeric insulation for power cables”. Ph.D. dissertation, Universidade Nova De Lisboa, Portugal, 2002.
  • M. Karhan, M. F. Çakır, M. Uğur, “A New Approach to the Analysis of Water Treeing Using Feature Extraction of Vented Type Water Tree Images”. Journal of Electrical Engineering & Technology, vol.16, no. 3, pp. 1241-1252, 2021. Doi: https://doi.org/10.1007/s42835-021-00667-y
  • L. Hui, L. S. Schadler, J. K. Nelson, “The influence of moisture on the electrical properties of crosslinked polyethylene/silica nanocomposites” IEEE Transactions on Dielectrics and Electrical Insulation, vol. 20, no. 2, pp. 641-653, 2013. Doi: https://doi.org/10.1109/TDEI.2013.6508768
  • M. Karhan, A. E. Yilmaz, M. Uğur, “Investigation the effect of solution conductivity on the growth rate and shape of water trees observed in distribution cables”, Istanbul University-Journal of Electrical & Electronics Engineering, vol. 17, no. 2, pp. 3445-3451, 2017.
  • Y. Fan, R. X. Yang, H. Chen, H. L. Zhang, “The impact of air relative humidity on corona-resistant polyimide film”, 6th International Forum on Strategic Technology IEEE, 2011, Vol. 1, pp. 80-83.
  • S. Y. Misyura, “The dependence of drop evaporation rate and wettability on corrosion kinetics”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 610, pp. 125735, 2021. Doi: https://doi.org/10.1016/j.colsurfa.2020.125735
  • S. Y. Misyura, G. V. Kuznetsov, D. V. Feoktistov, R. S. Volkov, V. S. Morozov, E. G. Orlova, “The influence of the surface microtexture on wettability properties and drop evaporation”, Surface and Coatings Technology, vol. 375, pp. 458-467, 2019. Doi: https://doi.org/10.1016/j.surfcoat.2019.07.058
  • S. Y. Misyura, “Heat transfer and convection of evaporating sessile droplets in transition from superhydrophilic to superhydrophobic structured wall: Optimization of functional properties”, International Communications in Heat and Mass Transfer, vol. 112, pp. 104474, 2020. Doi: https://doi.org/10.1016/j.icheatmasstransfer.2019.104474
  • S. Chakraborty, M. A. Rosen, B. D. MacDonald, “Analysis and feasibility of an evaporative cooling system with diffusion-based sessile droplet evaporation for cooling microprocessors”, Applied Thermal Engineering, vol. 125, pp. 104-110, 2017. Doi: https://doi.org/10.1016/j.applthermaleng.2017.07.006
  • S. Semenov, A. Trybala, R. G. Rubio, N., Starov, V. Kovalchuk, M. G. Velarde, “Simultaneous spreading and evaporation: recent developments”, Advances in Colloid and Interface Science, vol. 206, pp. 382-398, 2014. Doi: https://doi.org/10.1016/j.cis.2013.08.006
  • H. Hu, R. G. Larson, “Evaporation of a sessile droplet on a substrate”, The Journal of Physical Chemistry B, vol. 106, no. 6, pp. 1334-1344, 2002. Doi: https://doi.org/10.1021/jp0118322
  • F. Girard, M. Antoni, S. Faure, A. Steinchen, “Influence of heating temperature and relative humidity in the evaporation of pinned droplets” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 323, no. (1-3), pp. 36-49, 2008. Doi: https://doi.org/10.1016/j.colsurfa.2007.12.022
  • D. Hu, H. Wu, Z. Liu, “Effect of liquid–vapor interface area on the evaporation rate of small sessile droplets”, International Journal of Thermal Sciences, vol. 84, pp. 300-308, 2014. Doi: https://doi.org/10.1016/j.ijthermalsci.2014.05.024
  • H. Almohammadi, A. Amirfazli, “Sessile drop evaporation under an electric field”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 555, pp. 580-585, 2018. Doi: https://doi.org/10.1016/j.colsurfa.2018.07.022
  • S. M. Rowan, M. I. Newton, G. McHale, “Evaporation of microdroplets and the wetting of solid surfaces”, The Journal of Physical Chemistry, vol. 99, no. 35, pp. 13268-13271, 1995. Doi: https://doi.org/10.1021/j100035a034
  • H. Y. Erbil, G. McHale, S. M. Rowan, M. I. Newton, “Determination of the receding contact angle of sessile drops on polymer surfaces by evaporation”. Langmuir, vol. 15, n0. 21, pp. 7378-7385, 1999. Doi: https://doi.org/10.1021/la9900831
  • Z. Wang, X. F. Peng, A. S. Mujumdar, A. Su, D. J. Lee, “Evaporation of ethanol-water mixture drop on horizontal substrate”, Drying Technology, vol. 26, no. 6, pp. 806-810, 2008. Doi: https://doi.org/10.1080/07373930802046526
  • T. Young, “III. An essay on the cohesion of fluids”, Philosophical Transactions of the Royal Society of London, vol. 95, pp. 65-87, 1805. Doi: https://doi.org/10.1098/rstl.1805.0005
  • K. Y. Law, H. Zhao, Surface wetting: characterization, contact angle, and Fundamentals. Basel, Switzerland: Springer International Publishing, 2016.
  • U. Ali, K. J. B. A. Karim, N. A. Buang, “A review of the properties and applications of poly (methyl methacrylate) (PMMA)”, Polymer Reviews, vol. 55, no. 4, pp. 678-705, 2015. Doi: https://doi.org/10.1080/15583724.2015.1031377
  • H. S. Park, H. S. Park, M. S. Gong, “Preparation of silver/poly (methyl methacrylate) nanocomposites by in-situ radical polymerization using silver carbamate complex”, Macromolecular Research, vol. 18, no. 9, pp. 897-903, 2010. Doi: https://doi.org/10.1007/s13233-010-0913-2
  • S. M. Pawde, K. Deshmukh, “Investigation of the structural, thermal, mechanical, and optical properties of poly (methyl methacrylate) and poly (vinylidene fluoride) blends”, Journal of Applied Polymer Science, vol.114, no. 4, pp. 2169-2179, 2009. Doi: https://doi.org/10.1002/app.30641
  • S. Rajendran, M. Sivakumar, R. Subadevi, “Effect of salt concentration in poly (vinyl alcohol)-based solid polymer electrolytes”, Journal of Power Source, vol.124, no.1, pp. 225-230, 2003. Doi: https://doi.org/10.1016/S0378-7753(03)00591-3
  • H. Gu, C. Wang, S. Gong, Y. Mei, H. Li, W. Ma, “Investigation on contact angle measurement methods and wettability transition of porous surfaces”, Surface and Coatings Technology, vol. 292, pp. 72-77, 2016. Doi: https://doi.org/10.1016/j.surfcoat.2016.03.014
  • N. Ahmed, T. Natarajan, K. Rao, “Discrete cosine transform”, IEEE Transactions on Computers, vol. 23, no. 1, pp. 90–93, 1974. Doi: https://doi.org/10.1109/T-C.1974.223784
  • S. Roy, A. K. Pal, “An indirect watermark hiding in discrete cosine transform–singular value decomposition domain for copyright protection”, Royal Society open science, vol. 4 no.6, pp. 170326, 2017. Doi: https://doi.org/10.1098/rsos.170326
  • M. Majhi, A. K. Pal, “An image retrieval scheme based on block level hybrid dct-svd fused features”, Multimedia Tools and Applications, vol. 80, no.5, pp. 7271-7312, 2021. Doi: https://doi.org/10.1007/s11042-020-10005-5
There are 30 citations in total.

Details

Primary Language Turkish
Journal Section Research Articles
Authors

Mustafa Karhan 0000-0001-6747-8971

Publication Date August 30, 2021
Submission Date June 17, 2021
Acceptance Date August 6, 2021
Published in Issue Year 2021 Volume: 7 Issue: 2

Cite

IEEE M. Karhan, “Dielektrik Malzemelerin Yüzeyleri için Islanabilirlik ve Buharlaşma Hızının Analizine Yönelik Ayrık Kosinüs Dönüşümü Tabanlı Bir Yaklaşım”, GJES, vol. 7, no. 2, pp. 160–168, 2021.

Gazi Journal of Engineering Sciences (GJES) publishes open access articles under a Creative Commons Attribution 4.0 International License (CC BY). 1366_2000-copia-2.jpg