Üretim Parametrelerinin Termoplastik Kompozitlerin Mekanik Özelliklerine Etkisinin İncelenmesi
Year 2021,
Volume: 7 Issue: 3, 233 - 242, 31.12.2021
Görkem Çakıcı
,
Selim Türkbas
,
Bora Yıldırım
Abstract
Üretim parametreleri, özellikle havacılık sınıfı polieter keton keton (PEKK)/karbon fiber (CF) kompozitlerde termoplastik kompozitlerin mekanik özelliklerinde önemli bir rol oynamaktadır. Sunulan bu çalışmada, farklı sıcaklık değerlerinde konsolide edilen PEKK/CF kompozitlerinin mekanik özellikleri değerlendirilmiştir. Benzer bir basınç profiliyle, kür sıcaklığının PEKK/CF kompozit laminatın gerilme, laminalar arası kesme dayanımı (ILSS) ve düzlem içi kesme dayanımı (IPSS) üzerindeki etkisini belirlemek için çeşitli kür sıcaklıkları uygulandı. Kompozit laminatlardaki gözeneklilik, delaminasyon ve boşluk içeriği, Ultrasonik Test yoluyla NDT yöntemi kullanılarak karakterize edildi. Bu makale, bir polieter keton keton (PEKK)/karbon fiber (CF) kompozitleri kullanılarak otoklav işlemiyle farklı kürleme sıcaklığı numunelerinin karşılaştırılması için üretim kupon test numunelerinin bazı güncel sonuçlarını sunmaktadır. Kür sıcaklığının PEKK/CF kompozitin mekanik özellikleri ve konsolidasyon derecesi üzerindeki etkileri incelenmiştir. PEKK/CF'nin gerilme ve laminalar arası kayma mukavemeti özellikleri, sırasıyla 350°C, 375°C ve 400°C'de farklı kürleme sıcaklık geçmişleri ile hazırlanacak şekilde çalışılmıştır. Yapılan testler ideal kürleme sıcaklığını 400°C derece olarak belirlemiştir.
Supporting Institution
Türk Havacılık ve Uzay Sanayi
Thanks
Türk Havacılık ve Uzay Sanayi'ne desteklerinden dolayı teşekkür ederiz.
References
- [1] Zhang, X., Chen, Y., & Hu, J. (2018). Recent advances in the development of aerospace materials. Progress in Aerospace Sciences, 97, 22-34.
- [2] Rajak, D. K., Pagar, D. D., Kumar, R., & Pruncu, C. I. (2019). Recent progress of reinforcement materials: A comprehensive overview of composite materials. Journal of Materials Research and Technology, 8(6), 6354-6374.
- [3] Hale, D. K. (1976). The physical properties of composite materials. Journal of materials science, 11(11), 2105-2141.
- [4] Jones, R. M. (1998). Mechanics of composite materials. CRC press.
- [5] Yan, D. X., Ren, P. G., Pang, H., Fu, Q., Yang, M. B., & Li, Z. M. (2012). Efficient electromagnetic interference shielding of lightweight graphene/polystyrene composite. Journal of Materials Chemistry, 22(36), 18772-18774.
- [6] Sahmaran, M., Li, V. C., & Andrade, C. (2008). Corrosion resistance performance of steel-reinforced engineered cementitious composite beams. ACI Materials Journal, 105(3), 243.
- [7] Lystrup, A., & Andersen, T. L. (1998). Autoclave consolidation of fibre composites with a high temperature thermoplastic matrix. Journal of Materials Processing Technology, 77(1-3), 80-85.
- [8] Choupin, T., Fayolle, B., Regnier, G., Paris, C., Cinquin, J., & Brulé, B. (2018). Macromolecular modifications of poly (etherketoneketone)(PEKK) copolymer at the melting state. Polymer Degradation and Stability, 155, 103-110.
- [9] Chan, C. M., & Venkatraman, S. (1986). Crosslinking of poly (arylene ether ketone) s 1. Rheological behavior of the melt and mechanical properties of cured resin. Journal of applied polymer science, 32(7), 5933-5943.
- [10] Chan, C. M., & Venkatraman, S. (1987). Crosslinking of poly (arylene ether ketones). II. Crystallization kinetics. Journal of Polymer Science Part B: Polymer Physics, 25(8), 1655-1665.
- [11] Chang, I. Y., & Lees, J. K. (1988). Recent development in thermoplastic composites: a review of matrix systems and processing methods. Journal of thermoplastic composite materials, 1(3), 277-296.
- [12] Griffiths, G. R., Hillier, W. D., & WHITING, J. S. (1989). Thermoplastic composite manufacturing technology for a flight standard tailplane. Plastics and rubber international, 12(4), 215-220.
- [13] Beyeler, E., Phillips, W., & Güçeri, S. I. (1988). Experimental investigation of laser-assisted thermoplastic tape consolidation. Journal of Thermoplastic Composite Materials, 1(1), 107-121.
- [14] Gilmore, S. D. (1991). Thermal and residual stress analysis in process of thermoplastic composites. Delaware Univ., Newark, DE (United States).
- [15] Ghasemi Nejhad, M. N., Cope, R. D., & Güçeri, S. I. (1991). Thermal analysis of in-situ thermoplastic composite tape laying. Journal of Thermoplastic Composite Materials, 4(1), 20-45.
- [16] Fernández, I., Blas, F., & Frövel, M. (2003). Autoclave forming of thermoplastic composite parts. Journal of Materials Processing Technology, 143, 266-269.
- [17] Smith, R. A. (1994). Ultrasonic defect sizing in carbon-fibre composites: An initial study. Insight (Northampton), 36(8), 595-605.
- [18] Grosse, C. U., Goldammer, M., Grager, J. C., Heichler, G., Jahnke, P., Jatzlau, P., ... & Ulrich, M. (2016). Comparison of NDT techniques to evaluate CFRP-Results obtained in a MAIzfp round robin test.
- [19] Saenz-Castillo, D., Martín, M. I., Calvo, S., Rodriguez-Lence, F., & Güemes, A. (2019). Effect of processing parameters and void content on mechanical properties and NDI of thermoplastic composites. Composites Part A: Applied Science and Manufacturing, 121, 308-320.
- [20] Suarez, J. C., Molleda, F., & Guemes, A. (1993). Void content in carbon fibre/epoxy resin composites and its effects on compressive properties. ICCM/9. Composites: Properties and Applications., 6, 589-596.
- [21] Wisnom, M. R., Reynolds, T., & Gwilliam, N. (1996). Reduction in interlaminar shear strength by discrete and distributed voids. Composites Science and Technology, 56(1), 93-101.
- [22] Costa, M. L., & Sérgio Frascino, M. (2001). de Almeida, and Mirabel Cerqueira Rezende. The influence of porosity on the interlaminar shear strength of carbon/epoxy and carbon/bismaleimide fabric laminates. Composites Science and Technology, 61(14), 2101-2108.
An Investigate of the Effect of Manufacturing Parameters on the Mechanical Properties of Thermoplastic Composites
Year 2021,
Volume: 7 Issue: 3, 233 - 242, 31.12.2021
Görkem Çakıcı
,
Selim Türkbas
,
Bora Yıldırım
Abstract
Manufacturing parameters play an essential role in the mechanical properties of thermoplastic composites, especially in aerospace grade polyether ketone ketone (PEKK) / carbon fibre (CF) composites. In this presented study, the mechanical properties of PEKK/CF composites consolidated at different temperature values have been evaluated. Various cure temperatures were applied with an identical pressure profile to determine the effect of cure temperature on tensile, interlaminar shear strength (ILSS) and in-plane shear strenght (IPSS) of PEKK/CF composite laminate. Porosity, delamination and void content within the composite laminates were characterized using the NDT method via Ultrasonic Testing. This paper presents some current manufacturing coupon test specimens for comparing different cure temperature specimens by autoclave process using polyether ketone ketone (PEKK) / carbon fibre (CF) composites. Effects of curing temperature on the mechanical properties and consolidation grade of PEKK/CF composite are studied. Tensile and interlaminar shear strength properties of PEKK/CF have been studied to prepared with different curing temperature histories at 350°C, 377°C, and 400°C, respectively. The tests were carried out have determined the ideal curing temperature as 400°C degrees.
References
- [1] Zhang, X., Chen, Y., & Hu, J. (2018). Recent advances in the development of aerospace materials. Progress in Aerospace Sciences, 97, 22-34.
- [2] Rajak, D. K., Pagar, D. D., Kumar, R., & Pruncu, C. I. (2019). Recent progress of reinforcement materials: A comprehensive overview of composite materials. Journal of Materials Research and Technology, 8(6), 6354-6374.
- [3] Hale, D. K. (1976). The physical properties of composite materials. Journal of materials science, 11(11), 2105-2141.
- [4] Jones, R. M. (1998). Mechanics of composite materials. CRC press.
- [5] Yan, D. X., Ren, P. G., Pang, H., Fu, Q., Yang, M. B., & Li, Z. M. (2012). Efficient electromagnetic interference shielding of lightweight graphene/polystyrene composite. Journal of Materials Chemistry, 22(36), 18772-18774.
- [6] Sahmaran, M., Li, V. C., & Andrade, C. (2008). Corrosion resistance performance of steel-reinforced engineered cementitious composite beams. ACI Materials Journal, 105(3), 243.
- [7] Lystrup, A., & Andersen, T. L. (1998). Autoclave consolidation of fibre composites with a high temperature thermoplastic matrix. Journal of Materials Processing Technology, 77(1-3), 80-85.
- [8] Choupin, T., Fayolle, B., Regnier, G., Paris, C., Cinquin, J., & Brulé, B. (2018). Macromolecular modifications of poly (etherketoneketone)(PEKK) copolymer at the melting state. Polymer Degradation and Stability, 155, 103-110.
- [9] Chan, C. M., & Venkatraman, S. (1986). Crosslinking of poly (arylene ether ketone) s 1. Rheological behavior of the melt and mechanical properties of cured resin. Journal of applied polymer science, 32(7), 5933-5943.
- [10] Chan, C. M., & Venkatraman, S. (1987). Crosslinking of poly (arylene ether ketones). II. Crystallization kinetics. Journal of Polymer Science Part B: Polymer Physics, 25(8), 1655-1665.
- [11] Chang, I. Y., & Lees, J. K. (1988). Recent development in thermoplastic composites: a review of matrix systems and processing methods. Journal of thermoplastic composite materials, 1(3), 277-296.
- [12] Griffiths, G. R., Hillier, W. D., & WHITING, J. S. (1989). Thermoplastic composite manufacturing technology for a flight standard tailplane. Plastics and rubber international, 12(4), 215-220.
- [13] Beyeler, E., Phillips, W., & Güçeri, S. I. (1988). Experimental investigation of laser-assisted thermoplastic tape consolidation. Journal of Thermoplastic Composite Materials, 1(1), 107-121.
- [14] Gilmore, S. D. (1991). Thermal and residual stress analysis in process of thermoplastic composites. Delaware Univ., Newark, DE (United States).
- [15] Ghasemi Nejhad, M. N., Cope, R. D., & Güçeri, S. I. (1991). Thermal analysis of in-situ thermoplastic composite tape laying. Journal of Thermoplastic Composite Materials, 4(1), 20-45.
- [16] Fernández, I., Blas, F., & Frövel, M. (2003). Autoclave forming of thermoplastic composite parts. Journal of Materials Processing Technology, 143, 266-269.
- [17] Smith, R. A. (1994). Ultrasonic defect sizing in carbon-fibre composites: An initial study. Insight (Northampton), 36(8), 595-605.
- [18] Grosse, C. U., Goldammer, M., Grager, J. C., Heichler, G., Jahnke, P., Jatzlau, P., ... & Ulrich, M. (2016). Comparison of NDT techniques to evaluate CFRP-Results obtained in a MAIzfp round robin test.
- [19] Saenz-Castillo, D., Martín, M. I., Calvo, S., Rodriguez-Lence, F., & Güemes, A. (2019). Effect of processing parameters and void content on mechanical properties and NDI of thermoplastic composites. Composites Part A: Applied Science and Manufacturing, 121, 308-320.
- [20] Suarez, J. C., Molleda, F., & Guemes, A. (1993). Void content in carbon fibre/epoxy resin composites and its effects on compressive properties. ICCM/9. Composites: Properties and Applications., 6, 589-596.
- [21] Wisnom, M. R., Reynolds, T., & Gwilliam, N. (1996). Reduction in interlaminar shear strength by discrete and distributed voids. Composites Science and Technology, 56(1), 93-101.
- [22] Costa, M. L., & Sérgio Frascino, M. (2001). de Almeida, and Mirabel Cerqueira Rezende. The influence of porosity on the interlaminar shear strength of carbon/epoxy and carbon/bismaleimide fabric laminates. Composites Science and Technology, 61(14), 2101-2108.