Research Article
BibTex RIS Cite

Impact of Tower Diameter on Power Output in Solar Chimney Power Plants

Year 2021, Volume: 7 Issue: 3, 253 - 263, 31.12.2021

Abstract

Solar chimney power plants (SCPPs) are very attractive solar energy systems with low maintenance costs and zero CO2 emissions. After its first application, the Manzanares facility, numerous studies were conducted related to the impact of geometric and climatic parameters on the system. In this study, the impact of chimney diameter change on the system, which has not been adequately examined in literature, has been investigated in detail. In the 3D CFD model created with ANSYS commercial software, simulations have been conducted by using the solar ray tracing algorithm and DO (discrete ordinates) model along with RNG k-ε turbulence model. By referencing the Manzanares facility for the other geometric parameters, system behaviour has been assessed by changing the chimney diameter between 4.865-64.866 m. The impact of the change in tower diameter on the pressure and velocity distribution in the system has been analysed first in comparison with the reference situation. In addition, the influence of diameter change on the power output, mass flow rate, efficiency of the system and the average pressure difference at the turbine position has been evaluated. It has been concluded that the chimney diameter value that gives maximum performance for the Manzanares pilot plant is 24.325 m. When the chimney diameter has been configured as 24.325 m, it has been seen that the power output will improve by 85.9% compared to the reference situation and will be 101 kW. Similarly, the efficiency rises by 94% in comparison with the reference case, and becomes 0.194%.

References

  • [1] E. Cuce and P. M. Cuce, “Optimised performance of a thermally resistive PV glazing technology: An experimental validation,” Energy Reports, vol. 5, pp. 1185-1195, Nowember 2019. doi: https://doi.org/10.1016/j.egyr.2019.08.046
  • [2] H. Sen and E. Cuce, “Dynamic pressure distributions in solar chimney power plants: A numerical research for the pilot plant in Manzanares, Spain,” WSSET Newsletter, vol. 12, no. 1, pp. 2-2, 2020.
  • [3] W. Haaf, K. Friedrich, G. Mayr and J. Schlaich, “Solar chimneys part I: principle and construction of the pilot plant in Manzanares,” International Journal of Solar Energy, vol. 2, no. 1, pp. 3-20, 1983. doi: https://doi.org/10.1080/01425918308909911
  • [4] W. Haaf, “Solar chimneys: part ii: preliminary test results from the Manzanares pilot plant,” International Journal of Sustainable Energy, vol. 2, no.2, pp. 141-161, 1984. doi: https://doi.org/10.1080/01425918408909921
  • [5] L. B. Mullett, “The solar chimney—overall efficiency, design and performance,” International journal of ambient energy, vol. 8, no. 1, pp. 35-40, January 1987. doi: https://doi.org/10.1080/01430750.1987.9675512
  • [6] E. Cuce, P. M. Cuce and H. Sen, “A thorough performance assessment of solar chimney power plants: Case study for Manzanares,” Cleaner Engineering and Technology, vol 1, 100026, December 2020. doi: https://doi.org/10.1016/j.clet.2020.100026
  • [7] J. Y. Li, P. H. Guo and Y. Wang, “Effects of collector radius and chimney height on power output of a solar chimney power plant with turbines,” Renewable Energy, vol. 47, pp. 21-28, Nowember 2012. doi: https://doi.org/10.1016/j.renene.2012.03.018
  • [8] U. E. Ayli, E. Özgirgin and M. Tareq, “Solar Chimney Power Plant Performance for Different Seasons Under Varying Solar Irradiance and Temperature Distribution,” Journal of Energy Resources Technology, vol. 143, no. 6, 2021. doi: https://doi.org/10.1115/1.4048533
  • [9] A. Dhahri, A. Omri and J. Orfi, “Numerical study of a solar chimney power plant,” Research Journal of Applied Sciences, Engineering and Technology, vol. 8, no. 18, pp. 1953-1965, Nowember 2014.
  • [10] E. Cuce, H. Sen and P. M. Cuce, “Numerical performance modelling of solar chimney power plants: Influence of chimney height for a pilot plant in Manzanares, Spain” Sustainable Energy Technologies and Assessments, vol. 39, 100704, June 2020. doi: https://doi.org/10.1016/j.seta.2020.100704
  • [11] P. Karimipour Fard and H. Beheshti, “Performance enhancement and environmental impact analysis of a solar chimney power plant: Twenty-four-hour simulation in climate condition of isfahan province, iran,” International Journal of Engineering, vol. 30, no. 8, pp. 1260-1269, August 2017.
  • [12] A. Koonsrisuk, S. Lorente and A. Bejan, “Constructal solar chimney configuration,” International Journal of Heat and Mass Transfer, vol. 53, no. 1-3, pp. 327-333, January 2010. doi: https://doi.org/10.1016/j.ijheatmasstransfer.2009.09.026
  • [13] E. Cuce and P. M. Cuce, “Performance assessment of solar chimneys: Part 1 – Impact of chimney height on power output,” Energy Research Journal, vol. 10, pp. 11-19, June 2019. doi: https://doi.org/10.3844/erjsp.2019.11.19
  • [14] E. Cuce and P. M. Cuce, “Performance assessment Energy Research Journal of solar chimneys: Part 2 – Impacts of slenderness value and collector slope on power output,” Energy Research Journal, vol. 10, pp. 20-26, July 2019. doi: https://doi.org/10.3844/erjsp.2019.20.26
  • [15] K. Ikhlef and S. Larbi, “Energy Performance Analysis of a Solar Chimney Power Plant with and without Thermal Storage System,” 6th International Conference on Automation, Control, Engineering and Computer Science ACECS-2019, İstanbul, Turkey, October 21-23, 2019.
  • [16] A. Hassan, M. Ali, and A. Waqas, “Numerical investigation on performance of solar chimney power plant by varying collector slope and chimney diverging angle,” Energy, vol. 142, pp. 411-425, January 2018. doi: https://doi.org/10.1016/j.energy.2017.10.047
  • [17] A. Koonsrisuk and T. Chitsomboon, “Effects of flow area changes on the potential of solar chimney power plants,” Energy, vol. 51, pp. 400-406, March 2013. doi: https://doi.org/10.1016/j.energy.2012.12.051
  • [18] S. Hu, D. Y. Leung and J. C. Chan, “Impact of the geometry of divergent chimneys on the power output of a solar chimney power plant,” Energy, vol. 120, pp. 1-11, February 2017. doi: https://doi.org/10.1016/j.energy.2016.12.098
  • [19] E. Cuce, A. Saxena, P. M. Cuce, H. Sen, S. Guo and K. Sudhakar, “Performance assessment of solar chimney power plants with the impacts of divergent and convergent chimney geometry,” International Journal of Low-Carbon Technologies. January 2021. doi: https://doi.org/10.1093/ijlct/ctaa097
  • [20] E. Cuce, P. M. Cuce, H. Sen, K. Sudhakar, U. Berardi and U. Serencam, “Impacts of Ground Slope on Main Performance Figures of Solar Chimney Power Plants: A Comprehensive CFD Research with Experimental Validation,” International Journal of Photoenergy, May 2021. doi: https://doi.org/10.1155/2021/6612222
  • [21] P. M. Cuce, E. Cuce and H. Sen, “Improving electricity production in solar chimney power plants with sloping ground design: an extensive CFD research,” Journal of Solar Energy Research Updates, vol.7, no. 1, pp. 122-131, December 2020. doi: http://dx.doi.org/10.31875/2410-2199.2020.07.9
  • [22] ANSYS FLUENT, “Users Theory Guide, ANSYS, Inc.”, USA, Nowember 2013. [Online]. Available: http://www.pmt.usp.br/academic/martoran/notasmodelosgrad/ANSYS%20Fluent%20Theory%20Guide%2015.pdf [Accessed: June. 01, 2021].
  • [23] E., CUCE, “Güneş nacası güç santrallerinde toplayıcı eğiminin çıkış gücüne ve sistemverimine etkisi,” Uludağ University Journal of The Faculty of Engineering, vol. 25, no. 2, pp. 1025-1038, June 2020. doi: 10.17482/uumfd.732862
  • [24] P. H. Guo, J. Y. Li and Y. Wang, “Numerical simulations of solar chimney power plant with radiation model,” Renewable energy, vol. 62, pp. 24-30, February 2014. doi: https://doi.org/10.1016/j.renene.2013.06.039
  • [25] J. R. Schlaich, R. Bergermann, W. Schiel and G. Weinrebe, “Design of commercial solar updraft tower systems—utilization of solar induced convective flows for power generation,” J. Sol. Energy Eng., vol. 127, no. 1, pp. 117-124, February 2005. doi: https://doi.org/10.1115/1.1823493

Güneş Bacası Güç Santrallerinde Kule Çapının Çıkış Gücüne Etkisi

Year 2021, Volume: 7 Issue: 3, 253 - 263, 31.12.2021

Abstract

Güneş bacası güç santralleri düşük bakım maliyetleri ve sıfır CO2 salınımları ile çok cazip güneş enerjisi sistemleridir. İlk uygulaması olan Manzanares tesisinden sonra geometrik ve iklimsel parametrelerin sisteme etkisi ile ilgili sayısız çalışma yapıldı. Bu çalışmada literatürde yeterince irdelenmeyen baca çapı değişiminin sisteme etkisi detaylı olarak incelendi. ANSYS ticari yazılımı ile oluşturulan 3 boyutlu CFD modelinde güneş ışın izleme algoritması ve DO (ayrık koordinatlar) modeli ile RNG k-ε türbülans modelleri kullanılarak simülasyonlar yapıldı. Diğer geometrik parametreler için referans tesis örnek alınarak baca çapı 4.865-64.866 m arasında değiştirilmek suretiyle sistem davranışı araştırıldı. Baca çapı değişiminin ilk olarak sistem içerisindeki basınç ve hız dağılımına etkisi referans durumla karşılaştırılarak analiz edildi. Ayrıca baca çapı değişiminin sistemin güç çıkışı, kütlesel debisi, verimi ve türbin konumunda ortalama basınç farkına etkisi değerlendirildi. Manzanares pilot tesisi için maksimum performans veren baca çapı değerinin 24.325 m olduğu sonucuna varıldı. Baca çapı 24.325 m yapıldığında referans duruma göre güç çıkışının % 85.9 artarak 101 kW olacağı tespit edildi. Benzer şekilde verim de referans duruma göre % 94 artış göstererek % 0.194 olarak hesaplandı.

References

  • [1] E. Cuce and P. M. Cuce, “Optimised performance of a thermally resistive PV glazing technology: An experimental validation,” Energy Reports, vol. 5, pp. 1185-1195, Nowember 2019. doi: https://doi.org/10.1016/j.egyr.2019.08.046
  • [2] H. Sen and E. Cuce, “Dynamic pressure distributions in solar chimney power plants: A numerical research for the pilot plant in Manzanares, Spain,” WSSET Newsletter, vol. 12, no. 1, pp. 2-2, 2020.
  • [3] W. Haaf, K. Friedrich, G. Mayr and J. Schlaich, “Solar chimneys part I: principle and construction of the pilot plant in Manzanares,” International Journal of Solar Energy, vol. 2, no. 1, pp. 3-20, 1983. doi: https://doi.org/10.1080/01425918308909911
  • [4] W. Haaf, “Solar chimneys: part ii: preliminary test results from the Manzanares pilot plant,” International Journal of Sustainable Energy, vol. 2, no.2, pp. 141-161, 1984. doi: https://doi.org/10.1080/01425918408909921
  • [5] L. B. Mullett, “The solar chimney—overall efficiency, design and performance,” International journal of ambient energy, vol. 8, no. 1, pp. 35-40, January 1987. doi: https://doi.org/10.1080/01430750.1987.9675512
  • [6] E. Cuce, P. M. Cuce and H. Sen, “A thorough performance assessment of solar chimney power plants: Case study for Manzanares,” Cleaner Engineering and Technology, vol 1, 100026, December 2020. doi: https://doi.org/10.1016/j.clet.2020.100026
  • [7] J. Y. Li, P. H. Guo and Y. Wang, “Effects of collector radius and chimney height on power output of a solar chimney power plant with turbines,” Renewable Energy, vol. 47, pp. 21-28, Nowember 2012. doi: https://doi.org/10.1016/j.renene.2012.03.018
  • [8] U. E. Ayli, E. Özgirgin and M. Tareq, “Solar Chimney Power Plant Performance for Different Seasons Under Varying Solar Irradiance and Temperature Distribution,” Journal of Energy Resources Technology, vol. 143, no. 6, 2021. doi: https://doi.org/10.1115/1.4048533
  • [9] A. Dhahri, A. Omri and J. Orfi, “Numerical study of a solar chimney power plant,” Research Journal of Applied Sciences, Engineering and Technology, vol. 8, no. 18, pp. 1953-1965, Nowember 2014.
  • [10] E. Cuce, H. Sen and P. M. Cuce, “Numerical performance modelling of solar chimney power plants: Influence of chimney height for a pilot plant in Manzanares, Spain” Sustainable Energy Technologies and Assessments, vol. 39, 100704, June 2020. doi: https://doi.org/10.1016/j.seta.2020.100704
  • [11] P. Karimipour Fard and H. Beheshti, “Performance enhancement and environmental impact analysis of a solar chimney power plant: Twenty-four-hour simulation in climate condition of isfahan province, iran,” International Journal of Engineering, vol. 30, no. 8, pp. 1260-1269, August 2017.
  • [12] A. Koonsrisuk, S. Lorente and A. Bejan, “Constructal solar chimney configuration,” International Journal of Heat and Mass Transfer, vol. 53, no. 1-3, pp. 327-333, January 2010. doi: https://doi.org/10.1016/j.ijheatmasstransfer.2009.09.026
  • [13] E. Cuce and P. M. Cuce, “Performance assessment of solar chimneys: Part 1 – Impact of chimney height on power output,” Energy Research Journal, vol. 10, pp. 11-19, June 2019. doi: https://doi.org/10.3844/erjsp.2019.11.19
  • [14] E. Cuce and P. M. Cuce, “Performance assessment Energy Research Journal of solar chimneys: Part 2 – Impacts of slenderness value and collector slope on power output,” Energy Research Journal, vol. 10, pp. 20-26, July 2019. doi: https://doi.org/10.3844/erjsp.2019.20.26
  • [15] K. Ikhlef and S. Larbi, “Energy Performance Analysis of a Solar Chimney Power Plant with and without Thermal Storage System,” 6th International Conference on Automation, Control, Engineering and Computer Science ACECS-2019, İstanbul, Turkey, October 21-23, 2019.
  • [16] A. Hassan, M. Ali, and A. Waqas, “Numerical investigation on performance of solar chimney power plant by varying collector slope and chimney diverging angle,” Energy, vol. 142, pp. 411-425, January 2018. doi: https://doi.org/10.1016/j.energy.2017.10.047
  • [17] A. Koonsrisuk and T. Chitsomboon, “Effects of flow area changes on the potential of solar chimney power plants,” Energy, vol. 51, pp. 400-406, March 2013. doi: https://doi.org/10.1016/j.energy.2012.12.051
  • [18] S. Hu, D. Y. Leung and J. C. Chan, “Impact of the geometry of divergent chimneys on the power output of a solar chimney power plant,” Energy, vol. 120, pp. 1-11, February 2017. doi: https://doi.org/10.1016/j.energy.2016.12.098
  • [19] E. Cuce, A. Saxena, P. M. Cuce, H. Sen, S. Guo and K. Sudhakar, “Performance assessment of solar chimney power plants with the impacts of divergent and convergent chimney geometry,” International Journal of Low-Carbon Technologies. January 2021. doi: https://doi.org/10.1093/ijlct/ctaa097
  • [20] E. Cuce, P. M. Cuce, H. Sen, K. Sudhakar, U. Berardi and U. Serencam, “Impacts of Ground Slope on Main Performance Figures of Solar Chimney Power Plants: A Comprehensive CFD Research with Experimental Validation,” International Journal of Photoenergy, May 2021. doi: https://doi.org/10.1155/2021/6612222
  • [21] P. M. Cuce, E. Cuce and H. Sen, “Improving electricity production in solar chimney power plants with sloping ground design: an extensive CFD research,” Journal of Solar Energy Research Updates, vol.7, no. 1, pp. 122-131, December 2020. doi: http://dx.doi.org/10.31875/2410-2199.2020.07.9
  • [22] ANSYS FLUENT, “Users Theory Guide, ANSYS, Inc.”, USA, Nowember 2013. [Online]. Available: http://www.pmt.usp.br/academic/martoran/notasmodelosgrad/ANSYS%20Fluent%20Theory%20Guide%2015.pdf [Accessed: June. 01, 2021].
  • [23] E., CUCE, “Güneş nacası güç santrallerinde toplayıcı eğiminin çıkış gücüne ve sistemverimine etkisi,” Uludağ University Journal of The Faculty of Engineering, vol. 25, no. 2, pp. 1025-1038, June 2020. doi: 10.17482/uumfd.732862
  • [24] P. H. Guo, J. Y. Li and Y. Wang, “Numerical simulations of solar chimney power plant with radiation model,” Renewable energy, vol. 62, pp. 24-30, February 2014. doi: https://doi.org/10.1016/j.renene.2013.06.039
  • [25] J. R. Schlaich, R. Bergermann, W. Schiel and G. Weinrebe, “Design of commercial solar updraft tower systems—utilization of solar induced convective flows for power generation,” J. Sol. Energy Eng., vol. 127, no. 1, pp. 117-124, February 2005. doi: https://doi.org/10.1115/1.1823493
There are 25 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering
Journal Section Research Articles
Authors

Pinar Mert Cuce 0000-0002-6522-7092

Harun Şen 0000-0003-3089-8678

Erdem Cuce 0000-0003-0150-4705

Publication Date December 31, 2021
Submission Date June 18, 2021
Acceptance Date September 25, 2021
Published in Issue Year 2021 Volume: 7 Issue: 3

Cite

IEEE P. M. Cuce, H. Şen, and E. Cuce, “Güneş Bacası Güç Santrallerinde Kule Çapının Çıkış Gücüne Etkisi”, GJES, vol. 7, no. 3, pp. 253–263, 2021.

Gazi Journal of Engineering Sciences (GJES) publishes open access articles under a Creative Commons Attribution 4.0 International License (CC BY). 1366_2000-copia-2.jpg