Research Article
BibTex RIS Cite

The Effect of Nanofluid Usage on Electricity Consumption in Thermoelectric Refrigeration Application: An Experimental Study

Year 2022, Volume: 8 Issue: 2, 228 - 236, 01.09.2022

Abstract

In this study, the effects of nanofluid use in thermoelectric coolers on electricity consumption were investigated. A water-cooled block was placed on the hot side of the TEC in the designed system and a water-to-air heat exchanger was added to the system to cool the coolant. By adding 1% by mass of three distinct nanoparticles (Al2O3, TiO2 ve SiO2) to the fluid, the temperature differences of the cooler cabinet were tested at three distinct outdoor temperatures (18, 24 and 30 °C). In addition, to measure the performance of the cabinet when loaded, 1 litre of water was left in the cabinet and the tests were repeated. In the case where water without nanoparticle addition, which is the reference case, was used as the coolant, the measurement was made for 1 hour and the final temperature of the cooler cabinet was observed. Then the times to obtain the same cooler cabinet temperature by using various nanoparticles were observed. It has been observed that the temperature of the cooler cabinet drops to the desired temperatures earlier in cases where nanofluid was used compared to cooling with water. For this reason, this study is important in terms of efficient use of energy resources.

References

  • [1] Y. He, R. Li, Y. Fan, Y. Zheng, and G. Chen, “Study on the performance of a solid-state thermoelectric refrigeration system equipped with ionic wind fans for ultra-quiet operation,” Int. J. Refrig., vol. 130, pp. 441–451, 2021, doi: 10.1016/j.ijrefrig.2021.06.017.
  • [2] E. Cuce, T. Guclu, and P. M. Cuce, “Improving thermal performance of thermoelectric coolers (TECs) through a nanofluid driven water to air heat exchanger design: An experimental research,” Energy Convers. Manag., vol. 214, no. April, p. 112893, 2020, doi: 10.1016/j.enconman.2020.112893.
  • [3] T. Guclu and E. Cuce, “Thermoelectric Coolers (TECs): From Theory to Practice,” J. Electron. Mater., vol. 48, no. 1, pp. 211–230, 2019, doi: 10.1007/s11664-018-6753-0.
  • [4] X. D. Wang, Q. H. Wang, and J. L. Xu, “Performance analysis of two-stage TECs (thermoelectric coolers) using a three-dimensional heat-electricity coupled model,” Energy, vol. 65, pp. 419–429, 2014, doi: 10.1016/j.energy.2013.10.047.
  • [5] J. Yu and B. Wang, “Enhancing the maximum coefficient of performance of thermoelectric cooling modules using internally cascaded thermoelectric couples,” Int. J. Refrig., vol. 32, no. 1, pp. 32–39, 2009, doi: 10.1016/j.ijrefrig.2008.08.006.
  • [6] R. Chein and Y. Chen, “Performances of thermoelectric cooler integrated with microchannel heat sinks,” Int. J. Refrig., vol. 28, no. 6, pp. 828–839, 2005, doi: 10.1016/j.ijrefrig.2005.02.001.
  • [7] L. Zhu and J. Yu, “Optimization of heat sink of thermoelectric cooler using entropy generation analysis,” Int. J. Therm. Sci., vol. 118, pp. 168–175, 2017, doi: 10.1016/j.ijthermalsci.2017.04.015.
  • [8] L. Zhu, H. Tan, and J. Yu, “Analysis on optimal heat exchanger size of thermoelectric cooler for electronic cooling applications,” Energy Convers. Manag., vol. 76, pp. 685–690, 2013, doi: 10.1016/j.enconman.2013.08.014. [9] H. Sadighi Dizaji, S. Jafarmadar, S. Khalilarya, and A. Moosavi, “An exhaustive experimental study of a novel air-water based thermoelectric cooling unit,” Appl. Energy, vol. 181, pp. 357–366, 2016, doi: 10.1016/j.apenergy.2016.08.074.
  • [10] M. Gupta, V. Singh, R. Kumar, and Z. Said, “A review on thermophysical properties of nanofluids and heat transfer applications,” Renew. Sustain. Energy Rev., vol. 74, no. December 2015, pp. 638–670, 2017, doi: 10.1016/j.rser.2017.02.073.
  • [11] E. Cuce, P. M. Cuce, T. Guclu, and A. B. Besir, “On the Use of Nanofluids in Solar Energy Applications,” J. Therm. Sci., vol. 29, no. 3, pp. 513–534, 2020, doi: 10.1007/s11630-020-1269-3.
  • [12] S. Wiriyasart, P. Suksusron, C. Hommalee, A. Siricharoenpanich, and P. Naphon, “Heat transfer enhancement of thermoelectric cooling module with nanofluid and ferrofluid as base fluids,” Case Stud. Therm. Eng., vol. 24, no. February, p. 100877, 2021, doi: 10.1016/j.csite.2021.100877.
  • [13] X. Lin, S. Mo, B. Mo, L. Jia, Y. Chen, and Z. Cheng, “Thermal management of high-power LED based on thermoelectric cooler and nanofluid-cooled microchannel heat sink,” Appl. Therm. Eng., vol. 172, no. August 2019, p. 115165, 2020, doi: 10.1016/j.applthermaleng.2020.115165.
  • [14] M. R. Sohel, S. S. Khaleduzzaman, R. Saidur, A. Hepbasli, M. F. M. Sabri, and I. M. Mahbubul, “An experimental investigation of heat transfer enhancement of a minichannel heat sink using Al2O3-H2O nanofluid,” Int. J. Heat Mass Transf., vol. 74, pp. 164–172, 2014, doi: 10.1016/j.ijheatmasstransfer.2014.03.010.
  • [15] S. K. Mohammadian and Y. Zhang, “Analysis of nanofluid effects on thermoelectric cooling by micro-pin-fin heat exchangers,” Appl. Therm. Eng., vol. 70, no. 1, pp. 282–290, 2014, doi: 10.1016/j.applthermaleng.2014.05.010.
  • [16] N. Ahammed, L. G. Asirvatham, and S. Wongwises, “Thermoelectric cooling of electronic devices with nanofluid in a multiport minichannel heat exchanger,” Exp. Therm. Fluid Sci., vol. 74, pp. 81–90, 2016, doi: 10.1016/j.expthermflusci.2015.11.023.
  • [17] M. Khoshvaght-Aliabadi and M. Sahamiyan, “Performance of nanofluid flow in corrugated minichannels heat sink (CMCHS),” Energy Convers. Manag., vol. 108, pp. 297–308, 2016, doi: 10.1016/j.enconman.2015.11.026.
  • [18] S. M. Peyghambarzadeh, S. H. Hashemabadi, A. R. Chabi, and M. Salimi, “Performance of water based CuO and Al2O3 nanofluids in a Cu-Be alloy heat sink with rectangular microchannels,” Energy Convers. Manag., vol. 86, pp. 28–38, 2014, doi: 10.1016/j.enconman.2014.05.013.
  • [19] P. Naphon and L. Nakharintr, “Heat transfer of nanofluids in the mini-rectangular fin heat sinks,” Int. Commun. Heat Mass Transf., vol. 40, no. 1, pp. 25–31, 2013, doi: 10.1016/j.icheatmasstransfer.2012.10.012.
  • [20] B. Rimbault, C. T. Nguyen, and N. Galanis, “Experimental investigation of CuO-water nanofluid flow and heat transfer inside a microchannel heat sink,” Int. J. Therm. Sci., vol. 84, pp. 275–292, 2014, doi: 10.1016/j.ijthermalsci.2014.05.025.

Termoelektrik Buzdolabı Uygulamalarında Nanoakışkan Kullanımının Elektrik Tüketimi Üzerindeki Etkisi: Deneysel Bir Çalışma

Year 2022, Volume: 8 Issue: 2, 228 - 236, 01.09.2022

Abstract

Bu çalışmada, termoelektrik soğutucularda nanoakışkan kullanımının elektrik tüketimi üzerindeki etkileri araştırılmıştır. Bu amaçla tasarlanan sistemde TEC'in sıcak tarafına su soğutmalı blok yerleştirilmiş ve soğutucu akışkanın ısısını almak için sisteme sudan havaya ısı eşanjörü eklenmiştir. Akışkana kütlece %1 oranında üç farklı nanopartikül eklenerek soğutucu kabinin sıcaklık farkları üç farklı dış ortam sıcaklığında test edilmiştir. Ayrıca soğutucu kabinin dolu olması durumundaki performansını ölçmek için kabine 1 litre su bırakılmış ve testler tekrarlanmıştır. Soğutma sıvısı olarak referans durum olan nanopartikül ilavesiz su kullanılması durumunda 1 saat boyunca ölçüm yapılmış ve soğutucu kabinin son sıcaklığı belirlenmiştir. Daha sonra çeşitli nanopartiküller kullanılarak aynı soğutucu kabin sıcaklığının elde edildiği zamanlar gözlemlenmiştir. Yüksüz koşullarda aynı soğutma kabini sıcaklığına ulaşmak için tüketilen enerji miktarı karşılaştırıldığında, referans duruma göre en yüksek iyileştirme Al2O3-Su nanoakışkanı ile %57 olarak hesaplanmıştır. Yüklü koşullarda, 18 °C ortam sıcaklığında Al2O3-Su nanoakışkanı kullanıldığında enerji tüketiminde en yüksek iyileşme %50 olarak elde edilmiştir. Referans duruma göre tüm nanoakışkan kullanım durumlarında enerji tasarrufu sağlandığı gözlenmiştir. Nanoakışkan kullanıldığı durumlarda soğutucu kabin sıcaklığının su ile soğutmaya göre aynı sürelerde daha düşük sıcaklıklara düştüğü, yani daha az enerji tükettiği gözlenmiştir. Bu nedenle bu çalışma enerji kaynaklarının verimli kullanılması açısından önemlidir 

References

  • [1] Y. He, R. Li, Y. Fan, Y. Zheng, and G. Chen, “Study on the performance of a solid-state thermoelectric refrigeration system equipped with ionic wind fans for ultra-quiet operation,” Int. J. Refrig., vol. 130, pp. 441–451, 2021, doi: 10.1016/j.ijrefrig.2021.06.017.
  • [2] E. Cuce, T. Guclu, and P. M. Cuce, “Improving thermal performance of thermoelectric coolers (TECs) through a nanofluid driven water to air heat exchanger design: An experimental research,” Energy Convers. Manag., vol. 214, no. April, p. 112893, 2020, doi: 10.1016/j.enconman.2020.112893.
  • [3] T. Guclu and E. Cuce, “Thermoelectric Coolers (TECs): From Theory to Practice,” J. Electron. Mater., vol. 48, no. 1, pp. 211–230, 2019, doi: 10.1007/s11664-018-6753-0.
  • [4] X. D. Wang, Q. H. Wang, and J. L. Xu, “Performance analysis of two-stage TECs (thermoelectric coolers) using a three-dimensional heat-electricity coupled model,” Energy, vol. 65, pp. 419–429, 2014, doi: 10.1016/j.energy.2013.10.047.
  • [5] J. Yu and B. Wang, “Enhancing the maximum coefficient of performance of thermoelectric cooling modules using internally cascaded thermoelectric couples,” Int. J. Refrig., vol. 32, no. 1, pp. 32–39, 2009, doi: 10.1016/j.ijrefrig.2008.08.006.
  • [6] R. Chein and Y. Chen, “Performances of thermoelectric cooler integrated with microchannel heat sinks,” Int. J. Refrig., vol. 28, no. 6, pp. 828–839, 2005, doi: 10.1016/j.ijrefrig.2005.02.001.
  • [7] L. Zhu and J. Yu, “Optimization of heat sink of thermoelectric cooler using entropy generation analysis,” Int. J. Therm. Sci., vol. 118, pp. 168–175, 2017, doi: 10.1016/j.ijthermalsci.2017.04.015.
  • [8] L. Zhu, H. Tan, and J. Yu, “Analysis on optimal heat exchanger size of thermoelectric cooler for electronic cooling applications,” Energy Convers. Manag., vol. 76, pp. 685–690, 2013, doi: 10.1016/j.enconman.2013.08.014. [9] H. Sadighi Dizaji, S. Jafarmadar, S. Khalilarya, and A. Moosavi, “An exhaustive experimental study of a novel air-water based thermoelectric cooling unit,” Appl. Energy, vol. 181, pp. 357–366, 2016, doi: 10.1016/j.apenergy.2016.08.074.
  • [10] M. Gupta, V. Singh, R. Kumar, and Z. Said, “A review on thermophysical properties of nanofluids and heat transfer applications,” Renew. Sustain. Energy Rev., vol. 74, no. December 2015, pp. 638–670, 2017, doi: 10.1016/j.rser.2017.02.073.
  • [11] E. Cuce, P. M. Cuce, T. Guclu, and A. B. Besir, “On the Use of Nanofluids in Solar Energy Applications,” J. Therm. Sci., vol. 29, no. 3, pp. 513–534, 2020, doi: 10.1007/s11630-020-1269-3.
  • [12] S. Wiriyasart, P. Suksusron, C. Hommalee, A. Siricharoenpanich, and P. Naphon, “Heat transfer enhancement of thermoelectric cooling module with nanofluid and ferrofluid as base fluids,” Case Stud. Therm. Eng., vol. 24, no. February, p. 100877, 2021, doi: 10.1016/j.csite.2021.100877.
  • [13] X. Lin, S. Mo, B. Mo, L. Jia, Y. Chen, and Z. Cheng, “Thermal management of high-power LED based on thermoelectric cooler and nanofluid-cooled microchannel heat sink,” Appl. Therm. Eng., vol. 172, no. August 2019, p. 115165, 2020, doi: 10.1016/j.applthermaleng.2020.115165.
  • [14] M. R. Sohel, S. S. Khaleduzzaman, R. Saidur, A. Hepbasli, M. F. M. Sabri, and I. M. Mahbubul, “An experimental investigation of heat transfer enhancement of a minichannel heat sink using Al2O3-H2O nanofluid,” Int. J. Heat Mass Transf., vol. 74, pp. 164–172, 2014, doi: 10.1016/j.ijheatmasstransfer.2014.03.010.
  • [15] S. K. Mohammadian and Y. Zhang, “Analysis of nanofluid effects on thermoelectric cooling by micro-pin-fin heat exchangers,” Appl. Therm. Eng., vol. 70, no. 1, pp. 282–290, 2014, doi: 10.1016/j.applthermaleng.2014.05.010.
  • [16] N. Ahammed, L. G. Asirvatham, and S. Wongwises, “Thermoelectric cooling of electronic devices with nanofluid in a multiport minichannel heat exchanger,” Exp. Therm. Fluid Sci., vol. 74, pp. 81–90, 2016, doi: 10.1016/j.expthermflusci.2015.11.023.
  • [17] M. Khoshvaght-Aliabadi and M. Sahamiyan, “Performance of nanofluid flow in corrugated minichannels heat sink (CMCHS),” Energy Convers. Manag., vol. 108, pp. 297–308, 2016, doi: 10.1016/j.enconman.2015.11.026.
  • [18] S. M. Peyghambarzadeh, S. H. Hashemabadi, A. R. Chabi, and M. Salimi, “Performance of water based CuO and Al2O3 nanofluids in a Cu-Be alloy heat sink with rectangular microchannels,” Energy Convers. Manag., vol. 86, pp. 28–38, 2014, doi: 10.1016/j.enconman.2014.05.013.
  • [19] P. Naphon and L. Nakharintr, “Heat transfer of nanofluids in the mini-rectangular fin heat sinks,” Int. Commun. Heat Mass Transf., vol. 40, no. 1, pp. 25–31, 2013, doi: 10.1016/j.icheatmasstransfer.2012.10.012.
  • [20] B. Rimbault, C. T. Nguyen, and N. Galanis, “Experimental investigation of CuO-water nanofluid flow and heat transfer inside a microchannel heat sink,” Int. J. Therm. Sci., vol. 84, pp. 275–292, 2014, doi: 10.1016/j.ijthermalsci.2014.05.025.
There are 19 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering
Journal Section Research Articles
Authors

Ayşe Pınar Mert Cüce 0000-0002-6522-7092

Tamer Güçlü 0000-0002-5864-3864

Erdem Cuce 0000-0003-0150-4705

Publication Date September 1, 2022
Submission Date February 7, 2022
Acceptance Date May 19, 2022
Published in Issue Year 2022 Volume: 8 Issue: 2

Cite

IEEE A. P. Mert Cüce, T. Güçlü, and E. Cuce, “The Effect of Nanofluid Usage on Electricity Consumption in Thermoelectric Refrigeration Application: An Experimental Study”, GJES, vol. 8, no. 2, pp. 228–236, 2022.

Gazi Journal of Engineering Sciences (GJES) publishes open access articles under a Creative Commons Attribution 4.0 International License (CC BY). 1366_2000-copia-2.jpg