Research Article
BibTex RIS Cite

Comparison of Turbulence Models and Wall Layer Mesh in a Solar Air Heater

Year 2022, Volume: 8 Issue: 2, 371 - 384, 01.09.2022

Abstract

Turbulence models and the wall layer mesh thickness that are given to the walls are two important parameters for the solution of the fluid mechanics problems in Computational Fluid Dynamics. For different problems in engineering, different turbulence models are efficient. Also the thickness of the wall layer, which is determined before the solution, is another parameter which affects the result of the solution for a selected turbulence model. In this study, three turbulence models, which are k-, Renormalization-Group k- (RNG) and Low Reynolds Number k- models, were compared for 3, 6 and 9 levels of wall layer on a flat solar air heater. The results were compared with the results given in the literature. In the analysis of the solar air heater, solar radiation calculations were made for a better simulation. According to the comparison of the results that were acquired from the CFD solutions and the results in the literature, Renormalization-Group k- using six wall layers is found to be the best method and wall layer thickness among the alternatives that were investigated.

References

  • [1] P. Mishra and K. Aharwal, "A review on selection of turbulence model for CFD analysis of air flow within a cold storage", IOP Conf. Ser.: Mater. Sci. Eng., vol. 402, pp. 012145, September 2018. doi:10.1088/1757-899X/402/1/012145
  • [2] Y. Bartosiewicz, Z. Aidoun, P. Desevaux and Y. Mercadier, "CFD-Experiments Integration in the Evaluation of Six Turbulence Models for Supersonic Ejectors Modeling", 2004. [Online]. Available: http://cfd4aircraft.com/int_conf IC1/papers/Bartosiewicz.pdf. [Accessed: February,03,2022].
  • [3] J. Gagan, K. Smierciew, D. Butrymowicz and J. Karwacki, "Comparative study of turbulence models in application to gas ejectors", International Journal of Thermal Sciences, vol 78, pp. 9-15, 2014. doi: 10.1016/j.ijthermalsci.2013.11.009
  • [4] S. Varga, J. Soares, R. Lima and A. Oliveira, "On the Selection of a Turbulence Model for the Simulation of Steam Ejectors Using CFD", International Journal of Low-Carbon Technologies, vol. 12, no. 3, pp. 233-243, June 2017. doi: 10.1093/ijlct/ctx007
  • [5] M. Bulat and P. Bulat, "Comparison of Turbulence Models in the Calculation of Supersonic Separated Flows", World Applied Sciences Journal, vol. 27, no. 10, pp. 1263-1266, January 2013. doi: 10.5829/idosi.wasj.2013.27.10.13715
  • [6] D. Monk and E. Chadwick, "Comparison of Turbulence Models Effectiveness for a Delta Wing at Low Reynolds Numbers", in 7th european conference for aeronautics and space sciences, Eucass, July, 03-07, 2017, Milan,Italy [Online], Available: https://www.eucass.eu/doi/EUCASS2017-653.pdf [Accessed: February, 22, 2022]. doi: 10.13009/EUCASS2017-653
  • [7] S. Aftab, A. Rafie, N. Razak and K. Ahmad, "Turbulence Model Selection for Low Reynolds Number Flows", PLoS ONE, vol 11, no. 4, p. e0153755, 2016. doi: 10.1371/journal.pone.0153755
  • [8] K. Bharanitharan, S. Senthilkumar and B. Dadhich, "Numerical Investigation on Effect of Turbulence Model Selection for Aerodynamic Prediction of Axial Flow Fan", IOP Conf. Ser.: Mater. Sci. Eng., vol 1130, no. 1, p. 012055, 2021. doi:10.1088/1757-899X/1130/1/012055
  • [9] R. Tog, A. Tousi and A. Tourani, "Comparison of Turbulence Methods in CFD Analysis of Compressible Flows in Radial Turbomachines", Aircraft Engineering and Aerospace Technology: An International Journal, vol. 80, no. 6, pp. 657-665, 2008. doi: 10.1108/00022660810911608
  • [10] L. Gibson, L. Galloway, S. i. Kim and S. Spence, "Assessment of Turbulence Model Predictions for a Centrifugal Compressor Simulation", Journal of the Global Power and Propulsion Society, vol. 1, pp. 142-156, 2017. doi: 10.22261/JGPPS.2II890
  • [11] L. Han and P. Huachen, "The Influence of Turbulence Model Selection and Leakage onsiderations on CFD Simulation Results for a Centrifugal Pump", Advanced Materials Research, vols. 594-597, pp. 1940-1944, November, 2012. doi: 10.4028/www.scientific.net/AMR.594-597.1940
  • [12] A. Rezaeiha, H. Montazeri and B. Blocken, "On the Accuracy of Turbulence Models for CFD Simulations of Vertical Axis Wind Turbines", Energy, vol. 180, pp. 838-857, May 2019. doi:10.1016/j.energy.2019.05.053
  • [13] A. Meana-Fernandez, J. Oro, K. Diaz and S. Velarde-Suarez, "Turbulence-Model Comparison for Aerodynamic Performance Prediction of a Typical Vertical-Axis Wind-Turbine Airfoil", Energies, vol. 12, no. 3, pp. 488, February, 2019. doi: 10.3390/en12030488
  • [14] P. Marsh, D. Ranmuthugala, I. Penesis and G. Thomas, "The Influence of Turbulence Model and Two and Three Dimensional Domain Selection on the Simulated Performance Characteristics of Vertical Axis Tidal Turbines", Renewable Energy, vol. 105, pp. 106-116, December, 2017. doi: 10.1016/j.renene.2016.11.063
  • [15] M.-H. Kim, N.-i. Tak and J.-M. Noh, "Study on Influence of Turbulence Model Selection on Prediction of Flow Distribution and Hot Spot Fuel Temperature in Prismatic HTGR Cores", Engineering Applications of Computational Fluid Mechanics, vol. 8, no. 2, pp. 263-273, November, 2014. doi: 10.1080/19942060.2014.11015512
  • [16] A. Guardo, M. Coussirat, M. Larrayoz, F. Recasens and E. Egusquiza, "Influence of the Turbulence Model in CFD Modeling of Wall-to-Fluid Heat Transfer in Packed Beds", Chemical Engineering Science, vol. 60, no. 6, pp. 1733-1742, January, 2005. doi: 10.1016/j.ces.2004.10.034
  • [17] G. Brown, D. Fletcher, J. Leggoe and D. Whyte, "Investigation of the Turbulence Model Selection on the Predicted Flow Behaviour in and Industrial Crystallizer - RANS and URANS Approaches", Chemical Engineering Research and Design, vol. 140, pp. 205-220, October, 2018. doi:10.1016/j.cherd.2018.10.007
  • [18] F. Mirzaei, F. Mirzaei and E. Kashi, "Turbulence Model Selection for Heavy Gases Dispersion Modeling in Topographically Complex Area", Journal of Applied Fluid Mechanics, vol. 12, no. 6, pp. 1745-1755, November, 2019. doi: 10.29252/jafm.12.06.29685
  • [19] Autodesk, "Wall Layers", May, 27, 2021. [Online]. Available: https://knowledge.autodesk.com/support/cfd/learn explore/caas/CloudHelp/cloudhelp/2021/ENU/SimCFD UsersGuide/files/The CFD-Process/Setup-Tasks/Meshing/GUID-F9C4DDB4-8111-4F25-8EDE-D7C38B3BAD99-html.html. [Accessed: May, 04, 2022].
  • [20]M. Vivekanandan, D. Jagadeesh, A. Natarajan, N. Mohan, M. Dineshkumar, “Experimental and CFD Investigation of Fully Developed Flow Solar Air Heater”, Materials Today: Proceedings, vol. 37, part 2, pp. 2158-2163, 2021. doi:10.1016/j.matpr.2020.07.638
  • [21] A.P. Singh, A. Kumar, Akshayveer, O.P. Singh, “Natural Convection Solar Air Heater: Bell-Mouth Integrated Converging Channel for High Flow Applications”, Building and Environment, vol. 187, 107367, January 2021. doi:10.1016/j.buildenv.2020.107367
  • [22]A.P. Singh, A. Kumar, Akshayveer, O.P. Singh, “Effect of Integrating High Flow Naturally Driven Dual Solar Air Heaters with Trombe Wall”, Energy Conversion and Management, vol. 249, 114861, December 2021. doi:10.1016/j.enconman.2021.114861
  • [23]A. Kumar, A.P. Singh, Akshayveer, O.P. Singh, “Performance Characteristics of a New Curved Double-Pass Counter Flow Solar Air Heater”, Energy, vol. 239, part A, 121886, January 2022. doi: 10.1016/j.energy.2021.121886
  • [24]K.D. Yadav, R.K. Prasad, “Performance Analysis of Parallel Flow Flat Plate Solar Air Heater Having Arc Shaped Wire Roughened Absorber Plate”, Renewable Energy Focus, vol. 32, pp. 23-44, March 2020. doi: 10.1016/j.ref.2019.10.002
  • [25]R. Kumar, V. Goel, “Unconventional Solar Air Heater with Triangular Flow-Passage: A CFD Based Comparative Performance Assessment of Different Cross-Sectional Rib-Roughnesses”, Renewable Energy, vol. 172, pp. 1267-1278, July 2021. doi: 10.1016/j.renene.2021.03.068
  • [26]Z. Zhao, L. Luo, D. Qui, Z. Wang, B. Sundén, “On the Solar Air Heater Thermal Enhancement and Flow Topology Using Differently Shaped Ribs Combined with Delta-Winglet Vortex Generators”, Energy, vol. 224, 119944, June 2021. doi:10.1016/j.energy.2021.119944
  • [27]K. Saurabh, H. Thakur, “Heat Transfer and Fluid Flow Analysis of Artificially Roughened Solar Air Heater”, Materials Today: Proceedings, vol. 56, part 2, pp. 910-920, 2022. doi: 10.1016/j.matpr.2022.02.540
  • [28] G. Kalaiarasi, R. Verlaj, M. Vanjeswaran and N. Pandian, "Experimental Analysis ana Comparison of Flat Plate Solar Air Heater with and without Integrated Sensible Heat Storage", Renewable Energy, vol. 150, no. 6, pp. 255-265, May 2020. doi:10.1016/j.renene.2019.12.116
  • [29] Autodesk, "General Fluid Flow and Heat Transfer Equations", December, 09, 2019. [Online]. Available: https://knowledge.autodesk.com/support/cfd/learn-explore/caas/CloudHelp/cloudhelp/2014/ENU/SimCFD/files/GUID-83A92AE5-0E9E-4E2D-B61F-64B3696E5F66-htm.html. [Accessed: February, 15, 2022].
  • [30] Autodesk, "Turbulent Flow", Autodesk, December, 09, 2019. [Online]. Available: https://knowledge.autodesk.com/support/cfd/learn-explore/caas/CloudHelp/cloudhelp/2014/ENU/SimCFD/files/GUID-BBA4E008-8346-465B-9FD3-D193CF108AF0-htm.html. [Accessed: February, 21, 2022].
  • [31] Autodesk, "Two Equation Turbulence Models (TKE & TED)", Autodesk, May, 27, 2021. [Online]. Available: https://knowledge.autodesk.com/support/cfd/learn-explore/caas/CloudHelp/cloudhelp/2021/ENU/SimCFD-Learning/files/Reference-Material/Theoretical-Background/Governing-Equations/Turbulent-Flow/GUID-61C4EB55-362C-48A0-8B22-20F9148D190D-html.html. [Accessed: February, 20, 2022].
  • [32] Autodesk, "Turbulence, CFD 2021", May, 27, 2021. [Online]. Available: https://knowledge.autodesk.com/support/cfd/learn-explore/caas/CloudHelp/cloudhelp/2021/ENU/SimCFD-UsersGuide/files/The-CFD-Process/Solving-the-Simulation/Solve-Quick-Edit-dialog-Physics/GUID-E9E8ACA1-8D49-4A49-8A35-52DB1A2C3E5F-html.html. [Accessed: February, 14, 2022].
  • [33] Ö. Erol, "Numerical Investigation of the Fins and Turbulators on the Performance of a Solar Air Heater", in 23rd Congress on Thermal Science and Technology with International Participation, ULIBTK 2021, September, 08-10, 2021, Gaziantep, Turkey, N. Yücel, R. Yumrutaş, M.S. Söylemez, M. Kanoğlu, A. Atmaca, H. Yağlı, Eds., pp. 502-509.
  • [34] Ö. Erol, "Analysis of the Performance of a Solar Air Heater with Different Configurations: Effect of Fins and Turbulators", Heat Transfer Research, vol. 53, no. 6, pp. 45-39, March 2022. doi: 10.1615/HeatTransRes.2022041666

Hava Akışkanlı Bir Güneş Toplacında Türbülans Modellerinin ve Duvar Tabaka Ağ Yapısının Karşılaştırması

Year 2022, Volume: 8 Issue: 2, 371 - 384, 01.09.2022

Abstract

Türbülans modelleri ve duvarlara atanan duvar tabaka ağ kalınlığı, hesaplamalı akışkanlar dinamiğinin kullanıldığı akış problemlerinin iki önemli parametresini oluşturmaktadır. Mühendislikteki farklı problemler için farklı türbülans modelleri etkin bir şekilde kullanılmaktadır. Ayrıca duvar ağ yapısı oluşturulurken belirlenen duvar tabaka ağ kalınlığı da seçilmiş olan türbülans modelinden elde edilecek sonucu etkileyen bir parametredir. Bu çalışmada, hava akışkanlı bir güneş toplacı için üç farklı türbülans modeli, k-, RNG k- ve düşük Reynolds sayısı için k- modelleri, 3, 6 ve 9 kademe duvar tabaka ağ kalınlıklarında incelenmiştir. Elde edilen sonuçlar incelendiğinde, incelemesi yapılan modeller arasındaki en iyi sonucun altı seviye duvar tabaka ağ yapısına sahip RNG metodu olduğu görülmektedir.

References

  • [1] P. Mishra and K. Aharwal, "A review on selection of turbulence model for CFD analysis of air flow within a cold storage", IOP Conf. Ser.: Mater. Sci. Eng., vol. 402, pp. 012145, September 2018. doi:10.1088/1757-899X/402/1/012145
  • [2] Y. Bartosiewicz, Z. Aidoun, P. Desevaux and Y. Mercadier, "CFD-Experiments Integration in the Evaluation of Six Turbulence Models for Supersonic Ejectors Modeling", 2004. [Online]. Available: http://cfd4aircraft.com/int_conf IC1/papers/Bartosiewicz.pdf. [Accessed: February,03,2022].
  • [3] J. Gagan, K. Smierciew, D. Butrymowicz and J. Karwacki, "Comparative study of turbulence models in application to gas ejectors", International Journal of Thermal Sciences, vol 78, pp. 9-15, 2014. doi: 10.1016/j.ijthermalsci.2013.11.009
  • [4] S. Varga, J. Soares, R. Lima and A. Oliveira, "On the Selection of a Turbulence Model for the Simulation of Steam Ejectors Using CFD", International Journal of Low-Carbon Technologies, vol. 12, no. 3, pp. 233-243, June 2017. doi: 10.1093/ijlct/ctx007
  • [5] M. Bulat and P. Bulat, "Comparison of Turbulence Models in the Calculation of Supersonic Separated Flows", World Applied Sciences Journal, vol. 27, no. 10, pp. 1263-1266, January 2013. doi: 10.5829/idosi.wasj.2013.27.10.13715
  • [6] D. Monk and E. Chadwick, "Comparison of Turbulence Models Effectiveness for a Delta Wing at Low Reynolds Numbers", in 7th european conference for aeronautics and space sciences, Eucass, July, 03-07, 2017, Milan,Italy [Online], Available: https://www.eucass.eu/doi/EUCASS2017-653.pdf [Accessed: February, 22, 2022]. doi: 10.13009/EUCASS2017-653
  • [7] S. Aftab, A. Rafie, N. Razak and K. Ahmad, "Turbulence Model Selection for Low Reynolds Number Flows", PLoS ONE, vol 11, no. 4, p. e0153755, 2016. doi: 10.1371/journal.pone.0153755
  • [8] K. Bharanitharan, S. Senthilkumar and B. Dadhich, "Numerical Investigation on Effect of Turbulence Model Selection for Aerodynamic Prediction of Axial Flow Fan", IOP Conf. Ser.: Mater. Sci. Eng., vol 1130, no. 1, p. 012055, 2021. doi:10.1088/1757-899X/1130/1/012055
  • [9] R. Tog, A. Tousi and A. Tourani, "Comparison of Turbulence Methods in CFD Analysis of Compressible Flows in Radial Turbomachines", Aircraft Engineering and Aerospace Technology: An International Journal, vol. 80, no. 6, pp. 657-665, 2008. doi: 10.1108/00022660810911608
  • [10] L. Gibson, L. Galloway, S. i. Kim and S. Spence, "Assessment of Turbulence Model Predictions for a Centrifugal Compressor Simulation", Journal of the Global Power and Propulsion Society, vol. 1, pp. 142-156, 2017. doi: 10.22261/JGPPS.2II890
  • [11] L. Han and P. Huachen, "The Influence of Turbulence Model Selection and Leakage onsiderations on CFD Simulation Results for a Centrifugal Pump", Advanced Materials Research, vols. 594-597, pp. 1940-1944, November, 2012. doi: 10.4028/www.scientific.net/AMR.594-597.1940
  • [12] A. Rezaeiha, H. Montazeri and B. Blocken, "On the Accuracy of Turbulence Models for CFD Simulations of Vertical Axis Wind Turbines", Energy, vol. 180, pp. 838-857, May 2019. doi:10.1016/j.energy.2019.05.053
  • [13] A. Meana-Fernandez, J. Oro, K. Diaz and S. Velarde-Suarez, "Turbulence-Model Comparison for Aerodynamic Performance Prediction of a Typical Vertical-Axis Wind-Turbine Airfoil", Energies, vol. 12, no. 3, pp. 488, February, 2019. doi: 10.3390/en12030488
  • [14] P. Marsh, D. Ranmuthugala, I. Penesis and G. Thomas, "The Influence of Turbulence Model and Two and Three Dimensional Domain Selection on the Simulated Performance Characteristics of Vertical Axis Tidal Turbines", Renewable Energy, vol. 105, pp. 106-116, December, 2017. doi: 10.1016/j.renene.2016.11.063
  • [15] M.-H. Kim, N.-i. Tak and J.-M. Noh, "Study on Influence of Turbulence Model Selection on Prediction of Flow Distribution and Hot Spot Fuel Temperature in Prismatic HTGR Cores", Engineering Applications of Computational Fluid Mechanics, vol. 8, no. 2, pp. 263-273, November, 2014. doi: 10.1080/19942060.2014.11015512
  • [16] A. Guardo, M. Coussirat, M. Larrayoz, F. Recasens and E. Egusquiza, "Influence of the Turbulence Model in CFD Modeling of Wall-to-Fluid Heat Transfer in Packed Beds", Chemical Engineering Science, vol. 60, no. 6, pp. 1733-1742, January, 2005. doi: 10.1016/j.ces.2004.10.034
  • [17] G. Brown, D. Fletcher, J. Leggoe and D. Whyte, "Investigation of the Turbulence Model Selection on the Predicted Flow Behaviour in and Industrial Crystallizer - RANS and URANS Approaches", Chemical Engineering Research and Design, vol. 140, pp. 205-220, October, 2018. doi:10.1016/j.cherd.2018.10.007
  • [18] F. Mirzaei, F. Mirzaei and E. Kashi, "Turbulence Model Selection for Heavy Gases Dispersion Modeling in Topographically Complex Area", Journal of Applied Fluid Mechanics, vol. 12, no. 6, pp. 1745-1755, November, 2019. doi: 10.29252/jafm.12.06.29685
  • [19] Autodesk, "Wall Layers", May, 27, 2021. [Online]. Available: https://knowledge.autodesk.com/support/cfd/learn explore/caas/CloudHelp/cloudhelp/2021/ENU/SimCFD UsersGuide/files/The CFD-Process/Setup-Tasks/Meshing/GUID-F9C4DDB4-8111-4F25-8EDE-D7C38B3BAD99-html.html. [Accessed: May, 04, 2022].
  • [20]M. Vivekanandan, D. Jagadeesh, A. Natarajan, N. Mohan, M. Dineshkumar, “Experimental and CFD Investigation of Fully Developed Flow Solar Air Heater”, Materials Today: Proceedings, vol. 37, part 2, pp. 2158-2163, 2021. doi:10.1016/j.matpr.2020.07.638
  • [21] A.P. Singh, A. Kumar, Akshayveer, O.P. Singh, “Natural Convection Solar Air Heater: Bell-Mouth Integrated Converging Channel for High Flow Applications”, Building and Environment, vol. 187, 107367, January 2021. doi:10.1016/j.buildenv.2020.107367
  • [22]A.P. Singh, A. Kumar, Akshayveer, O.P. Singh, “Effect of Integrating High Flow Naturally Driven Dual Solar Air Heaters with Trombe Wall”, Energy Conversion and Management, vol. 249, 114861, December 2021. doi:10.1016/j.enconman.2021.114861
  • [23]A. Kumar, A.P. Singh, Akshayveer, O.P. Singh, “Performance Characteristics of a New Curved Double-Pass Counter Flow Solar Air Heater”, Energy, vol. 239, part A, 121886, January 2022. doi: 10.1016/j.energy.2021.121886
  • [24]K.D. Yadav, R.K. Prasad, “Performance Analysis of Parallel Flow Flat Plate Solar Air Heater Having Arc Shaped Wire Roughened Absorber Plate”, Renewable Energy Focus, vol. 32, pp. 23-44, March 2020. doi: 10.1016/j.ref.2019.10.002
  • [25]R. Kumar, V. Goel, “Unconventional Solar Air Heater with Triangular Flow-Passage: A CFD Based Comparative Performance Assessment of Different Cross-Sectional Rib-Roughnesses”, Renewable Energy, vol. 172, pp. 1267-1278, July 2021. doi: 10.1016/j.renene.2021.03.068
  • [26]Z. Zhao, L. Luo, D. Qui, Z. Wang, B. Sundén, “On the Solar Air Heater Thermal Enhancement and Flow Topology Using Differently Shaped Ribs Combined with Delta-Winglet Vortex Generators”, Energy, vol. 224, 119944, June 2021. doi:10.1016/j.energy.2021.119944
  • [27]K. Saurabh, H. Thakur, “Heat Transfer and Fluid Flow Analysis of Artificially Roughened Solar Air Heater”, Materials Today: Proceedings, vol. 56, part 2, pp. 910-920, 2022. doi: 10.1016/j.matpr.2022.02.540
  • [28] G. Kalaiarasi, R. Verlaj, M. Vanjeswaran and N. Pandian, "Experimental Analysis ana Comparison of Flat Plate Solar Air Heater with and without Integrated Sensible Heat Storage", Renewable Energy, vol. 150, no. 6, pp. 255-265, May 2020. doi:10.1016/j.renene.2019.12.116
  • [29] Autodesk, "General Fluid Flow and Heat Transfer Equations", December, 09, 2019. [Online]. Available: https://knowledge.autodesk.com/support/cfd/learn-explore/caas/CloudHelp/cloudhelp/2014/ENU/SimCFD/files/GUID-83A92AE5-0E9E-4E2D-B61F-64B3696E5F66-htm.html. [Accessed: February, 15, 2022].
  • [30] Autodesk, "Turbulent Flow", Autodesk, December, 09, 2019. [Online]. Available: https://knowledge.autodesk.com/support/cfd/learn-explore/caas/CloudHelp/cloudhelp/2014/ENU/SimCFD/files/GUID-BBA4E008-8346-465B-9FD3-D193CF108AF0-htm.html. [Accessed: February, 21, 2022].
  • [31] Autodesk, "Two Equation Turbulence Models (TKE & TED)", Autodesk, May, 27, 2021. [Online]. Available: https://knowledge.autodesk.com/support/cfd/learn-explore/caas/CloudHelp/cloudhelp/2021/ENU/SimCFD-Learning/files/Reference-Material/Theoretical-Background/Governing-Equations/Turbulent-Flow/GUID-61C4EB55-362C-48A0-8B22-20F9148D190D-html.html. [Accessed: February, 20, 2022].
  • [32] Autodesk, "Turbulence, CFD 2021", May, 27, 2021. [Online]. Available: https://knowledge.autodesk.com/support/cfd/learn-explore/caas/CloudHelp/cloudhelp/2021/ENU/SimCFD-UsersGuide/files/The-CFD-Process/Solving-the-Simulation/Solve-Quick-Edit-dialog-Physics/GUID-E9E8ACA1-8D49-4A49-8A35-52DB1A2C3E5F-html.html. [Accessed: February, 14, 2022].
  • [33] Ö. Erol, "Numerical Investigation of the Fins and Turbulators on the Performance of a Solar Air Heater", in 23rd Congress on Thermal Science and Technology with International Participation, ULIBTK 2021, September, 08-10, 2021, Gaziantep, Turkey, N. Yücel, R. Yumrutaş, M.S. Söylemez, M. Kanoğlu, A. Atmaca, H. Yağlı, Eds., pp. 502-509.
  • [34] Ö. Erol, "Analysis of the Performance of a Solar Air Heater with Different Configurations: Effect of Fins and Turbulators", Heat Transfer Research, vol. 53, no. 6, pp. 45-39, March 2022. doi: 10.1615/HeatTransRes.2022041666
There are 34 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering
Journal Section Research Articles
Authors

Ozgur Erol 0000-0002-8824-4290

Publication Date September 1, 2022
Submission Date February 22, 2022
Acceptance Date August 9, 2022
Published in Issue Year 2022 Volume: 8 Issue: 2

Cite

IEEE O. Erol, “Comparison of Turbulence Models and Wall Layer Mesh in a Solar Air Heater”, GJES, vol. 8, no. 2, pp. 371–384, 2022.

Gazi Journal of Engineering Sciences (GJES) publishes open access articles under a Creative Commons Attribution 4.0 International License (CC BY). 1366_2000-copia-2.jpg