Research Article
BibTex RIS Cite

Bir Uçak Kanadının Hücum Kenarına Kuş Çarpmasının Düzgün Parçacık Hidrodinamiği Yöntemiyle Sayısal İncelenmesi

Year 2022, Volume: 8 Issue: 3, 547 - 566, 31.12.2022

Abstract

Bir uçağın güvenli kalkış ve iniş gereksinimlerini sağlaması için, ulusal havacılık otoritelerinin belirlemiş olduğu bazı kriterler bulunmaktadır. İstatistiklere göre, kanat yapısı bir uçağın kuş çarpmasına maruz kalma riski en yüksek yapılarından biridir. Bu makalenin amacı bir kanat hücum kenarının olası bir kuş çarpmasına karşı sağlamlığını sayısal olarak ölçmektir. CATIA V5 programı kullanılarak kanat ve kuş yapısının 3 boyutlu modellemeleri yapılmış; daha sonra bu modeller, sonlu elemanlar ağının oluşturulması için LS-DYNA programına aktarılmıştır. Kuşun partikül yapısının oluşturulmasında SPH yöntemi kullanılmıştır. Kuş ve kanat yapısı için birden fazla simülasyon modeli geliştirilmiştir ve her bir simülasyondan elde edilen sonuçlar birbiriyle karşılaştırılmıştır. Bu çalışmadan elde edilen sonuçlara göre; yüksek hızlı kuş çarpması darbelerine karşı 2xxx alüminyum alaşımlarının mukavemetinin yeterli seviyede olmadığı görülmüştür. Bununla birlikte; kabuk elemanı için çarpraz fiber dizilimine sahip kompozit malzeme kullanılması, ön kirişi olumlu yönde etkilemiştir. Ayrıca, bal peteği ve köpük gibi destekleyici malzemelerin kullanılması maksimum etkin gerilmenin düşmesine sebep olmuş ve ön kirişi hasar almaktan korumuştur.

References

  • [1] L. S. Nizampatnam, “Models and Methods for Bırd Strıke Load Predıctıons,” Ph. D. Thesis, Department of Aerospace Engineering, Wichita State University, Kansas City, US, 2007.
  • [2] O. Dede, “Investıgatıon of Effects of Bırd Strıke on Wıng Leadıng Edge by Usıng Explıcıt Fınıte Element Method,” M.S. thesis, Department of Aerospace Engineering, METU, Ankara, Turkey, 2014.
  • [3] R. A. Dolbeer, M. J. Begier, P. R. Miller, J. R. Weller and A. L. Anderson, “Wildlife Strikes to Civil Aircraft in the United States, 1990-2020,” U.S. Department Of Transportatıon Federal Avıatıon Admınıstratıon, Washington, DC, USA, Serial Report Number 27, July 2021. [Online]. Available: https://www.faa.gov/airports/airport_safety/wildlife/media/Wildlife-Strike-Report-1990-2020.pdf
  • [4] O. Gülcan, “Kuş Çarpmaları ve Uçaklara Etkileri Üzerine Bir Gözden Geçirme Çalışması,” Mühendis ve Makina, vol. 60 no. 696, pp. 192-220, 2019.
  • [5] S. Long, X. Mu, Y. Liu, H. Wang, X. Zhang and X. Yao, “Failure modeling of composite wing leading edge under bird strike,” Composite Structures, vol 255, pp. 1-14, 2021, doi:10.1016/j.compstruct.2020.113005.
  • [6] D. Anjan Kumar and Girija V., “A Review on BirdStrike Analysis on Leading Edge of an Aircraft Wing Structure using a SPH Formulation,” International Research Journal of Engineering and Technology (IRJET), vol. 05 no. 10, pp. 330-334, 2018.
  • [7] M. Kahvecioğlu, “Kuş Çarpmasına Maruz Helikopter Kanopilerinin Yapısal Davranışı,” Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, İstanbul Teknik Üniversitesi, İstanbul, Türkiye, 2019.
  • [8] A. W R Allcock And D. M. Collin, “The Development of a Dummy Bird for Use in Bird Strike Research,” Ministry of Technology Aeronautical Research Council Current Papers, London, England, C.P. No. 1071, 1969. [Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.226.6264&rep=rep1&type=pdf
  • [9] J. P. Barber, H. R. Taylor And J. S. Wilbeck, “Characterizatıon of Bird Impacts On A Rigid Plate: Part I,” Air Force Flight Dynamics Laboratory, Technical Report AFF111-TE-75-15, January 1975. [Online]. Available: https://apps.dtic.mil/dtic/tr/fulltext/u2/a021142.pdf
  • [10] R. L. Peterson and J. P. Barber, “Bird Impact Forces in Aircraft Windshield Design,” Vehicle Equipment Division And University of Dayton Research Institute, Technical Report AFFDL TR 75-160, March 1976. [Online]. Available: https://apps.dtic.mil/sti/pdfs/ADA023628.pdf
  • [11] J. S. Wilbeck, “Impact Behavior of Low Strength Projectiles,” Air Force Materials Lab Wright-Patterson AFB OH, 1978. [Online]. Available: https://apps.dtic.mil/sti/citations/ADA060423
  • [12] J. S. Wilbeck and J. L. Rand, “The Development of a Substitute Bird Model,” ASME Journal of Engineering for Gas Turbine and Power, vol. 103, pp. 725-730, 1981.
  • [13] D.J. Benson, “Computational Methods in Lagrangian and Eulerian Hydrocodes,” Computer Methods in Applied Mech. and Eng., vol. 99, pp. 235-394, 1992.
  • [14] M. A. Lavoie, A. Gakwaya, M. N. Ensan and D. Zimcik, “Validation of Available Approaches for Numerical Bird Strike Modeling Tools” International Review of Mechanical Engineering, vol. 1 no. 4, 2007.
  • [15] M. Guida, F. Marulo, M. Meo and M. Riccio, “Analysis of Bird Impact on a Composite Tailplane Leading Edge,” Applied Composite Materials, vol. 15 no. 4 pp. 241-257, 2008, doi:10.1007/s10443-008-9070-6.
  • [16] R. Hedayati and S. Zisei-Rad, “Effect of bird geometry and orientation on bird-target impact analysis using SPH method,” International Journal of Crashworthiness, vol. 17 no. 4, pp. 1-15, 2012. doi: 10.1080/13588265.2012.674333.
  • [17] S. Heimbs, W. Machunze, G. Brand and B. Schlipf, “Bird Strike Analysis for Impact-Resistant Design of Aircraft Wing Krueger Flap,” 2015 SIMULIA Community Conference, Berlin, Germany, 2015. [Online]. Available: https://www.researchgate.net/publication/279753232_Bird_Strike_Analysis_for_Impact-Resistant_Design_of_Aircraft_Wing_Krueger_Flap
  • [18] R. Vijayakumar, K. Gulbarga and R. Ravindranath, “Bırd Strıke Sımulatıon on Composıte Structures,” 41st European Rotorcraft Forum 2015, Rotary Wing R&D Centre, Hindustan Aeronautics Limited, Bangalore-560017, India, 2015. [Online]. Available:https://dspace-erf.nlr.nl/xmlui/bitstream/handle/20.500.11881/3587/ERF2015_0074_paper.pdf?sequence=1
  • [19] Z. Eren, S. Tataroğlu, D. Balkan and Z. Mecitoğlu, “Modeling of Bird Strike on a Composite Helicopter Rotor Blade,” 58th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Grapevine, Texas, US, 2017. doi:10.2514/6.2017-1991.
  • [20] S. Meguid, R. Mao and T. Ng, “FE analysis of geometry effects of an artificial bird striking an aeroengine fan blade,” International Journal of Impact Engineering, vol. 35 no.6, pp. 487-498, 2008. doi: 10.1016/j.ijimpeng.2007.04.008.
  • [21] T. Kiper, “Kuş Çarpmasının Bir Eğitim Uçağı Kanadı Üzerindeki Etkilerinin Analizi,” Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, Gazi Üniversitesi, Ankara, Türkiye, 2015.
  • [22] S. Tan, “Bir Uçak Kanadının Hücum Kenarına Kuş Çarpmasının Sayısal Olarak Modellenmesi ve Analizi,” Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, İstanbul Teknik Üniversitesi, İstanbul, Türkiye, 2013.
  • [23] B. Wade, P. Feraboli and M. Osborne, “Simulating laminated composites using LS-DYNA material model MAT54 part I: [0] and [90] ply single-element investigation,” Federal Aviation Administration, Springfield, Virginia, US, Feb., 2015. [Online]. Available: https://www.researchgate.net/publication/322152587_Simulating_Laminated_Composite_Materials_Using_LS-DYNA_Material_Model_MAT54_Single-Element_Investigation
  • [24] Federal Aviation Administration, Aviation Maintenance Technician Handbook: Airframe, Volume 1: FAA-H-8083-31A, 2018th ed., Aviation Supplies and Academics, Dec. 2018.
  • [25] G. H. Staab, Laminar Composites, 2nd ed., Elsevier Science, Waltham, MA, 2015. [26] Q. H. Shah and A. Topa, “Modeling Large Deformation and Failure of Expanded Polystyrene Crushable Foam Using LS-DYNA,” Modelling and Simulation in Engineering, pp. 1-7, 2014. doi: 10.1155/2014/292647
  • [27] J. Hellström and A. Lindblom, “Development of Simulation Model of an ODB,” Master’s Thesis, Department of Applied Physics and Mechanical Engineering, Luleå University of Technology, Luleå, Sweden, 2007.

Numerical Investigation of Bird Strike on an Aircraft Wing Leading Edge by Smooth Particle Hydrodynamics Method

Year 2022, Volume: 8 Issue: 3, 547 - 566, 31.12.2022

Abstract

There are some criterias set by the national aviation authorities to ensure the safe take-off and landing requirements for an aircraft. According to the statistics, wing structure is one of the structures of an aircraft with the highest risk of bird impact. The purpose of this article is to investigate the robustness of a wing leading edge against a possible bird strike. 3D modeling of wing and bird structure was made using Catia V5 program; these models were then transferred to the LS-DYNA program to create a finite element mesh. SPH method was used to create the particle structure of the bird. Multiple simulation models have been developed for bird and wing structure, and the results from each simulation have been compared. According to the results obtained from this study; the strength of 2xxx aluminum alloys has been found to be insufficient against high-speed bird impacts. However, the use of composite material with a cross-ply sequence for the shell element has positively affected the front spar. In addition, the use of supporting materials such as honeycombs and foam caused to decrease maximum effective stress and protected the front spar from damage.

References

  • [1] L. S. Nizampatnam, “Models and Methods for Bırd Strıke Load Predıctıons,” Ph. D. Thesis, Department of Aerospace Engineering, Wichita State University, Kansas City, US, 2007.
  • [2] O. Dede, “Investıgatıon of Effects of Bırd Strıke on Wıng Leadıng Edge by Usıng Explıcıt Fınıte Element Method,” M.S. thesis, Department of Aerospace Engineering, METU, Ankara, Turkey, 2014.
  • [3] R. A. Dolbeer, M. J. Begier, P. R. Miller, J. R. Weller and A. L. Anderson, “Wildlife Strikes to Civil Aircraft in the United States, 1990-2020,” U.S. Department Of Transportatıon Federal Avıatıon Admınıstratıon, Washington, DC, USA, Serial Report Number 27, July 2021. [Online]. Available: https://www.faa.gov/airports/airport_safety/wildlife/media/Wildlife-Strike-Report-1990-2020.pdf
  • [4] O. Gülcan, “Kuş Çarpmaları ve Uçaklara Etkileri Üzerine Bir Gözden Geçirme Çalışması,” Mühendis ve Makina, vol. 60 no. 696, pp. 192-220, 2019.
  • [5] S. Long, X. Mu, Y. Liu, H. Wang, X. Zhang and X. Yao, “Failure modeling of composite wing leading edge under bird strike,” Composite Structures, vol 255, pp. 1-14, 2021, doi:10.1016/j.compstruct.2020.113005.
  • [6] D. Anjan Kumar and Girija V., “A Review on BirdStrike Analysis on Leading Edge of an Aircraft Wing Structure using a SPH Formulation,” International Research Journal of Engineering and Technology (IRJET), vol. 05 no. 10, pp. 330-334, 2018.
  • [7] M. Kahvecioğlu, “Kuş Çarpmasına Maruz Helikopter Kanopilerinin Yapısal Davranışı,” Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, İstanbul Teknik Üniversitesi, İstanbul, Türkiye, 2019.
  • [8] A. W R Allcock And D. M. Collin, “The Development of a Dummy Bird for Use in Bird Strike Research,” Ministry of Technology Aeronautical Research Council Current Papers, London, England, C.P. No. 1071, 1969. [Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.226.6264&rep=rep1&type=pdf
  • [9] J. P. Barber, H. R. Taylor And J. S. Wilbeck, “Characterizatıon of Bird Impacts On A Rigid Plate: Part I,” Air Force Flight Dynamics Laboratory, Technical Report AFF111-TE-75-15, January 1975. [Online]. Available: https://apps.dtic.mil/dtic/tr/fulltext/u2/a021142.pdf
  • [10] R. L. Peterson and J. P. Barber, “Bird Impact Forces in Aircraft Windshield Design,” Vehicle Equipment Division And University of Dayton Research Institute, Technical Report AFFDL TR 75-160, March 1976. [Online]. Available: https://apps.dtic.mil/sti/pdfs/ADA023628.pdf
  • [11] J. S. Wilbeck, “Impact Behavior of Low Strength Projectiles,” Air Force Materials Lab Wright-Patterson AFB OH, 1978. [Online]. Available: https://apps.dtic.mil/sti/citations/ADA060423
  • [12] J. S. Wilbeck and J. L. Rand, “The Development of a Substitute Bird Model,” ASME Journal of Engineering for Gas Turbine and Power, vol. 103, pp. 725-730, 1981.
  • [13] D.J. Benson, “Computational Methods in Lagrangian and Eulerian Hydrocodes,” Computer Methods in Applied Mech. and Eng., vol. 99, pp. 235-394, 1992.
  • [14] M. A. Lavoie, A. Gakwaya, M. N. Ensan and D. Zimcik, “Validation of Available Approaches for Numerical Bird Strike Modeling Tools” International Review of Mechanical Engineering, vol. 1 no. 4, 2007.
  • [15] M. Guida, F. Marulo, M. Meo and M. Riccio, “Analysis of Bird Impact on a Composite Tailplane Leading Edge,” Applied Composite Materials, vol. 15 no. 4 pp. 241-257, 2008, doi:10.1007/s10443-008-9070-6.
  • [16] R. Hedayati and S. Zisei-Rad, “Effect of bird geometry and orientation on bird-target impact analysis using SPH method,” International Journal of Crashworthiness, vol. 17 no. 4, pp. 1-15, 2012. doi: 10.1080/13588265.2012.674333.
  • [17] S. Heimbs, W. Machunze, G. Brand and B. Schlipf, “Bird Strike Analysis for Impact-Resistant Design of Aircraft Wing Krueger Flap,” 2015 SIMULIA Community Conference, Berlin, Germany, 2015. [Online]. Available: https://www.researchgate.net/publication/279753232_Bird_Strike_Analysis_for_Impact-Resistant_Design_of_Aircraft_Wing_Krueger_Flap
  • [18] R. Vijayakumar, K. Gulbarga and R. Ravindranath, “Bırd Strıke Sımulatıon on Composıte Structures,” 41st European Rotorcraft Forum 2015, Rotary Wing R&D Centre, Hindustan Aeronautics Limited, Bangalore-560017, India, 2015. [Online]. Available:https://dspace-erf.nlr.nl/xmlui/bitstream/handle/20.500.11881/3587/ERF2015_0074_paper.pdf?sequence=1
  • [19] Z. Eren, S. Tataroğlu, D. Balkan and Z. Mecitoğlu, “Modeling of Bird Strike on a Composite Helicopter Rotor Blade,” 58th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Grapevine, Texas, US, 2017. doi:10.2514/6.2017-1991.
  • [20] S. Meguid, R. Mao and T. Ng, “FE analysis of geometry effects of an artificial bird striking an aeroengine fan blade,” International Journal of Impact Engineering, vol. 35 no.6, pp. 487-498, 2008. doi: 10.1016/j.ijimpeng.2007.04.008.
  • [21] T. Kiper, “Kuş Çarpmasının Bir Eğitim Uçağı Kanadı Üzerindeki Etkilerinin Analizi,” Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, Gazi Üniversitesi, Ankara, Türkiye, 2015.
  • [22] S. Tan, “Bir Uçak Kanadının Hücum Kenarına Kuş Çarpmasının Sayısal Olarak Modellenmesi ve Analizi,” Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, İstanbul Teknik Üniversitesi, İstanbul, Türkiye, 2013.
  • [23] B. Wade, P. Feraboli and M. Osborne, “Simulating laminated composites using LS-DYNA material model MAT54 part I: [0] and [90] ply single-element investigation,” Federal Aviation Administration, Springfield, Virginia, US, Feb., 2015. [Online]. Available: https://www.researchgate.net/publication/322152587_Simulating_Laminated_Composite_Materials_Using_LS-DYNA_Material_Model_MAT54_Single-Element_Investigation
  • [24] Federal Aviation Administration, Aviation Maintenance Technician Handbook: Airframe, Volume 1: FAA-H-8083-31A, 2018th ed., Aviation Supplies and Academics, Dec. 2018.
  • [25] G. H. Staab, Laminar Composites, 2nd ed., Elsevier Science, Waltham, MA, 2015. [26] Q. H. Shah and A. Topa, “Modeling Large Deformation and Failure of Expanded Polystyrene Crushable Foam Using LS-DYNA,” Modelling and Simulation in Engineering, pp. 1-7, 2014. doi: 10.1155/2014/292647
  • [27] J. Hellström and A. Lindblom, “Development of Simulation Model of an ODB,” Master’s Thesis, Department of Applied Physics and Mechanical Engineering, Luleå University of Technology, Luleå, Sweden, 2007.
There are 26 citations in total.

Details

Primary Language Turkish
Subjects Mechanical Engineering, Material Production Technologies
Journal Section Articles
Authors

Mehmet Furkan Sarıbaş 0000-0003-3646-9583

Sami Karadeniz 0000-0002-7373-3120

Publication Date December 31, 2022
Submission Date January 25, 2022
Acceptance Date December 30, 2022
Published in Issue Year 2022 Volume: 8 Issue: 3

Cite

IEEE M. F. Sarıbaş and S. Karadeniz, “Bir Uçak Kanadının Hücum Kenarına Kuş Çarpmasının Düzgün Parçacık Hidrodinamiği Yöntemiyle Sayısal İncelenmesi”, GJES, vol. 8, no. 3, pp. 547–566, 2022.

Gazi Journal of Engineering Sciences (GJES) publishes open access articles under a Creative Commons Attribution 4.0 International License (CC BY). 1366_2000-copia-2.jpg