Research Article
BibTex RIS Cite

Atık Biyokütlenin Pirolizinden Hazırlanan Termal Modifiye Biyoçar Elektrotlar ile Elektro-Fenton Sisteminde Astrazon Blue Giderimi

Year 2022, Volume: 8 Issue: 3, 499 - 510, 31.12.2022

Abstract

Bu çalışmada, öncelikle karışık mobilya atığı olan biyokütleden piroliz ile elde edilen biyoçar ürünlerin modifikasyon yapılmadan (ham) ve termal (fiziksel) modifikasyondan sonra elektrotlara dönüştürülmesiyle bir Elektro-Fenton (EF) sistemi kuruldu. Biyoçar ürünlerin termal modifikasyon değişkenleri, gaz türü (N2,CO2), sıcaklık (500,700,900°C) ve süre (1,2,4 saat) olmak üzere 3 değişken olarak belirlendi. Kurulan EF sisteminde katot olarak kullanılan modifiye biyoçar elektrotların, peroksit üretimi-akım verimliliği (CE) ve boya giderim verimi üzerine etkileri incelenerek en etkin biyoçar elektrot ve modifikasyon şartları belirlendi. Çalışmada, pH:3, EF süresi: 0.5 saat, katodik potansiyel:2V, katalizör (FeSO4) konsantrasyonu:0.2 mM, elektrolit (Na2SO4) konsantrasyonu: 50 mM deneysel EF şartları olarak, 50 mg/L Astrazon blue sulu çözeltisi ise model kirletici olarak seçildi. Bu deneysel şartlar altında incelenen biyoçar elektrotlar içinde boya giderimi, peroksit üretimi ve akım verimliği (CE) açısından en etkin biyoçar elektrot, CO2 gazında 700°C’de 1saat süreyle termal modifikasyonu yapılan elektrot (CO2-700-1) olduğu belirlendi. Ayrıca, çalışmanın enerji verimliliği ve ekonomik sonuçları analiz edildi. Elektrotlar, EF sisteminde, %100 boya giderimi için arıtma maliyeti açısından değerlendirildiğinde seçilen en etkin elektrot (CO2-700-1) ile elde edilen arıtım maliyetinin, ham biyoçar (N2-350-4) elektrota göre % 68.2 daha düşük olduğu bulunurken, aynı şartlarda N2 gazı ile modifikasyonu yapılan biyoçar elektrotta (N2-700-1) ise arıtım maliyetindeki düşüş % 66.8 olarak bulundu.

Supporting Institution

TÜBİTAK

Project Number

120Y060

Thanks

Bu çalışma, 120Y060 nolu proje olarak, Türkiye Bilimsel ve Teknolojik Araştırma Kurumu’nun (TÜBİTAK) sağladığı maddi destek ile gerçekleştirilmiştir. Bu çerçevede, projeye verdiği maddi destek için TÜBİTAK’a, teşekkürlerimizi sunarız.

References

  • [1] P.V. Nidheesh, R. Gandhimathi, S.T. Ramesh, Degradation of dyes from aqueous solution by Fenton processes: a review, Environ. Sci. Pollut. Res. 2013 204. 20 (2013) 2099–2132. https://doi.org/10.1007/S11356-012-1385-Z.
  • [2] B.T. Ergan, M. Soybelli, E. Gengeç, Impact of thermal modification of carbon felt on the performance of oxygen reduction reaction and mineralisation of dye in on-line electro fenton system, (2021). https://doi.org/10.1080/03067319.2021.2015341.
  • [3] B.T. Ergan, E. Gengec, Dye degradation and kinetics of online Electro-Fenton system with thermally activated carbon fiber cathodes, J. Environ. Chem. Eng. 8 (2020) 104217. https://doi.org/10.1016/j.jece.2020.104217.
  • [4] F. Deng, H. Olvera-Vargas, O. Garcia-Rodriguez, Y. Zhu, J. Jiang, S. Qiu, J. Yang, Waste-wood-derived biochar cathode and its application in electro-Fenton for sulfathiazole treatment at alkaline pH with pyrophosphate electrolyte, J. Hazard. Mater. 377 (2019) 249–258. https://doi.org/10.1016/J.JHAZMAT.2019.05.077.
  • [5] C.T. Wang, W.L. Chou, M.H. Chung, Y.M. Kuo, COD removal from real dyeing wastewater by electro-Fenton technology using an activated carbon fiber cathode, Desalination. 253 (2010) 129–134. https://doi.org/10.1016/j.desal.2009.11.020.
  • [6] H. Lei, H. Li, Z. Li, Z. Li, K. Chen, X. Zhang, H. Wang, Electro-Fenton degradation of cationic red X-GRL using an activated carbon fiber cathode, Process Saf. Environ. Prot. 88 (2010) 431–438. https://doi.org/10.1016/j.psep.2010.06.005.
  • [7] G. Divyapriya, P.V. Nidheesh, Importance of Graphene in the Electro-Fenton Process, Cite This ACS Omega. 5 (2020) 4732. https://doi.org/10.1021/acsomega.9b04201.
  • [8] O. Karatas, N.A. Gengec, E. Gengec, A. Khataee, M. Kobya, High-performance carbon black electrode for oxygen reduction reaction and oxidation of atrazine by electro-Fenton process, Chemosphere. 287 (2022) 132370. https://doi.org/10.1016/J.CHEMOSPHERE.2021.132370.
  • [9] Y. Gong, J. Li, Y. Zhang, M. Zhang, X. Tian, A. Wang, Partial degradation of levofloxacin for biodegradability improvement by electro-Fenton process using an activated carbon fiber felt cathode, J. Hazard. Mater. 304 (2016) 320–328. https://doi.org/10.1016/j.jhazmat.2015.10.064.
  • [10] H. Lan, W. He, A. Wang, R. Liu, H. Liu, J. Qu, C.P. Huang, An activated carbon fiber cathode for the degradation of glyphosate in aqueous solutions by the Electro-Fenton mode: Optimal operational conditions and the deposition of iron on cathode on electrode reusability, Water Res. 105 (2016) 575–582. https://doi.org/10.1016/j.watres.2016.09.036.
  • [11] A. Wang, J. Qu, J. Ru, H. Liu, J. Ge, Mineralization of an azo dye Acid Red 14 by electro-Fenton’s reagent using an activated carbon fiber cathode, Dye. Pigment. 65 (2005) 227–233. https://doi.org/10.1016/j.dyepig.2004.07.019.
  • [12] G. Xia, Y. Lu, H. Xu, Electrogeneration of hydrogen peroxide for electro-Fenton via oxygen reduction using polyacrylonitrile-based carbon fiber brush cathode, Electrochim. Acta. 158 (2015) 390–396. https://doi.org/10.1016/j.electacta.2015.01.102.
  • [13] B. Wang, J. Fang, Critical Reviews in Environmental Science and Technology Recent advances in engineered biochar productions and applications Recent advances in engineered biochar productions and applications, (2018). https://doi.org/10.1080/10643389.2017.1418580.
  • [14] V. Benavente, A. Fullana, Torrefaction of olive mill waste, Biomass and Bioenergy. 73 (2015) 186–194. https://doi.org/10.1016/J.BIOMBIOE.2014.12.020.
  • [15] W.H. Chen, Y.Q. Zhuang, S.H. Liu, T.T. Juang, C.M. Tsai, Product characteristics from the torrefaction of oil palm fiber pellets in inert and oxidative atmospheres, Bioresour. Technol. 199 (2016) 367–374. https://doi.org/10.1016/J.BIORTECH.2015.08.066.
  • [16] T. Nunoura, S.R. Wade, J.P. Bourke, M.J. Antal, Studies of the Flash Carbonization Process. 1. Propagation of the Flaming Pyrolysis Reaction and Performance of a Catalytic Afterburner, Ind. Eng. Chem. Res. 45 (2005) 585–599. https://doi.org/10.1021/IE050854Y.
  • [17] S.R. Wade, T. Nunoura, M.J. Antal, Studies of the Flash Carbonization Process. 2. Violent Ignition Behavior of Pressurized Packed Beds of Biomass: A Factorial Study, (2006). https://doi.org/10.1021/IE051374.
  • [18] J.S. Cha, S.H. Park, S.C. Jung, C. Ryu, J.K. Jeon, M.C. Shin, Y.K. Park, Production and utilization of biochar: A review, J. Ind. Eng. Chem. 40 (2016) 1–15. https://doi.org/10.1016/J.JIEC.2016.06.002.
  • [19] V. Hansen, D. Müller-Stöver, J. Ahrenfeldt, J.K. Holm, U.B. Henriksen, H. Hauggaard-Nielsen, Gasification biochar as a valuable by-product for carbon sequestration and soil amendment, Biomass and Bioenergy. 72 (2015) 300–308. https://doi.org/10.1016/j.biombioe.2014.10.013.
  • [20] J. Wang, S. Wang, Preparation, modification and environmental application of biochar: A review, J. Clean. Prod. 227 (2019) 1002–1022. https://doi.org/10.1016/J.JCLEPRO.2019.04.282.
  • [21] T.X.H. Le, C. Charmette, M. Bechelany, M. Cretin, Facile Preparation of Porous Carbon Cathode to Eliminate Paracetamol in Aqueous Medium Using Electro-Fenton System, Electrochim. Acta. 188 (2016) 378–384. https://doi.org/10.1016/j.electacta.2015.12.005.
  • [22] I. Kashif, A.A. Soliman, E.M. Sakr, A. Ratep, Spectrochimica Acta Part A : Molecular and Biomolecular Spectroscopy XRD and FTIR studies the effect of heat treatment and doping the transition metal oxide on LiNbO 3 and LiNb 3 O 8 nano-crystallite phases in lithium borate glass system, 113 (2013) 15–21.
  • [23] G. Xia, Y. Lu, H. Xu, Electrogeneration of hydrogen peroxide for electro-Fenton via oxygen reduction using polyacrylonitrile-based carbon fiber brush cathode, Electrochim. Acta. 158 (2015) 390–396. https://doi.org/10.1016/j.electacta.2015.01.102.
  • [24] G. Xia, Y. Lu, H. Xu, An energy-saving production of hydrogen peroxide via oxygen reduction for electro-Fenton using electrochemically modified polyacrylonitrile-based carbon fiber brush cathode, Sep. Purif. Technol. 156 (2015) 553–560. https://doi.org/10.1016/j.seppur.2015.10.048.
  • [25] A. Özcan, Y. Şahin, A. Savaş Koparal, M.A. Oturan, Carbon sponge as a new cathode material for the electro-Fenton process: Comparison with carbon felt cathode and application to degradation of synthetic dye basic blue 3 in aqueous medium, J. Electroanal. Chem. 616 (2008) 71–78. https://doi.org/10.1016/j.jelechem.2008.01.002.
  • [26] Standard Operating Procedure GSI/SOP/BS/RA/C/7 (2009). “Procedure For Analyzing Hydrogen Peroxide Concentrations in Water.

Removal of Astrazon Blue in The Electro-Fenton System with Thermally Modified Biochar Electrodes Prepared from Pyrolysis of Waste Biomass

Year 2022, Volume: 8 Issue: 3, 499 - 510, 31.12.2022

Abstract

In this study, Firstly, an Electro-Fenton (EF) system was established by converting the biochar products obtained by pyrolysis from the mixed furniture waste biomass to electrodes of without modification (raw) and after thermal (physical) modification.The thermal modification variables of biochars were determined as 3 variables: gas type (N2,CO2), temperature (500,700,900°C) and time (1,2,4 hours). In the established EF system, the effects of modified biochar electrodes used as cathodes on peroxide production-current efficiency (CE) and dye removal efficiency were examined and the most effective biochar electrode and modification conditions were determined. In the study, pH:3, EF time: 0.5 hours, cathodic potential:2V, catalyst (FeSO4) concentration:0.2 mM, electrolyte (Na2SO4) concentration: 50 mM as experimental EF conditions and Astrazon blue aqueous solution of 50 mM were chosen as a model contaminant. Among the biochar electrodes examined under these experimental conditions, the most effective biochar electrode in terms of dye removal, peroxide production and current efficiency (CE) was determined as the electrode (CO2-700-1), which was thermally modified in CO2 gas at 700°C for 1 hour.In addition, the energy efficiency and economic results of the study were analyzed. When the electrodes are evaluated in terms of treatment cost for 100% dye removal in the EF system, it is found that the treatment cost obtained with the most efficient electrode (CO2-700-1) is 68.2% lower than the raw biochar (N2-350-4) electrode. In the biochar electrode (N2-700-1) modified with N2 gas under same conditions, the reduction in treatment cost was found to be 66.8%.

Project Number

120Y060

References

  • [1] P.V. Nidheesh, R. Gandhimathi, S.T. Ramesh, Degradation of dyes from aqueous solution by Fenton processes: a review, Environ. Sci. Pollut. Res. 2013 204. 20 (2013) 2099–2132. https://doi.org/10.1007/S11356-012-1385-Z.
  • [2] B.T. Ergan, M. Soybelli, E. Gengeç, Impact of thermal modification of carbon felt on the performance of oxygen reduction reaction and mineralisation of dye in on-line electro fenton system, (2021). https://doi.org/10.1080/03067319.2021.2015341.
  • [3] B.T. Ergan, E. Gengec, Dye degradation and kinetics of online Electro-Fenton system with thermally activated carbon fiber cathodes, J. Environ. Chem. Eng. 8 (2020) 104217. https://doi.org/10.1016/j.jece.2020.104217.
  • [4] F. Deng, H. Olvera-Vargas, O. Garcia-Rodriguez, Y. Zhu, J. Jiang, S. Qiu, J. Yang, Waste-wood-derived biochar cathode and its application in electro-Fenton for sulfathiazole treatment at alkaline pH with pyrophosphate electrolyte, J. Hazard. Mater. 377 (2019) 249–258. https://doi.org/10.1016/J.JHAZMAT.2019.05.077.
  • [5] C.T. Wang, W.L. Chou, M.H. Chung, Y.M. Kuo, COD removal from real dyeing wastewater by electro-Fenton technology using an activated carbon fiber cathode, Desalination. 253 (2010) 129–134. https://doi.org/10.1016/j.desal.2009.11.020.
  • [6] H. Lei, H. Li, Z. Li, Z. Li, K. Chen, X. Zhang, H. Wang, Electro-Fenton degradation of cationic red X-GRL using an activated carbon fiber cathode, Process Saf. Environ. Prot. 88 (2010) 431–438. https://doi.org/10.1016/j.psep.2010.06.005.
  • [7] G. Divyapriya, P.V. Nidheesh, Importance of Graphene in the Electro-Fenton Process, Cite This ACS Omega. 5 (2020) 4732. https://doi.org/10.1021/acsomega.9b04201.
  • [8] O. Karatas, N.A. Gengec, E. Gengec, A. Khataee, M. Kobya, High-performance carbon black electrode for oxygen reduction reaction and oxidation of atrazine by electro-Fenton process, Chemosphere. 287 (2022) 132370. https://doi.org/10.1016/J.CHEMOSPHERE.2021.132370.
  • [9] Y. Gong, J. Li, Y. Zhang, M. Zhang, X. Tian, A. Wang, Partial degradation of levofloxacin for biodegradability improvement by electro-Fenton process using an activated carbon fiber felt cathode, J. Hazard. Mater. 304 (2016) 320–328. https://doi.org/10.1016/j.jhazmat.2015.10.064.
  • [10] H. Lan, W. He, A. Wang, R. Liu, H. Liu, J. Qu, C.P. Huang, An activated carbon fiber cathode for the degradation of glyphosate in aqueous solutions by the Electro-Fenton mode: Optimal operational conditions and the deposition of iron on cathode on electrode reusability, Water Res. 105 (2016) 575–582. https://doi.org/10.1016/j.watres.2016.09.036.
  • [11] A. Wang, J. Qu, J. Ru, H. Liu, J. Ge, Mineralization of an azo dye Acid Red 14 by electro-Fenton’s reagent using an activated carbon fiber cathode, Dye. Pigment. 65 (2005) 227–233. https://doi.org/10.1016/j.dyepig.2004.07.019.
  • [12] G. Xia, Y. Lu, H. Xu, Electrogeneration of hydrogen peroxide for electro-Fenton via oxygen reduction using polyacrylonitrile-based carbon fiber brush cathode, Electrochim. Acta. 158 (2015) 390–396. https://doi.org/10.1016/j.electacta.2015.01.102.
  • [13] B. Wang, J. Fang, Critical Reviews in Environmental Science and Technology Recent advances in engineered biochar productions and applications Recent advances in engineered biochar productions and applications, (2018). https://doi.org/10.1080/10643389.2017.1418580.
  • [14] V. Benavente, A. Fullana, Torrefaction of olive mill waste, Biomass and Bioenergy. 73 (2015) 186–194. https://doi.org/10.1016/J.BIOMBIOE.2014.12.020.
  • [15] W.H. Chen, Y.Q. Zhuang, S.H. Liu, T.T. Juang, C.M. Tsai, Product characteristics from the torrefaction of oil palm fiber pellets in inert and oxidative atmospheres, Bioresour. Technol. 199 (2016) 367–374. https://doi.org/10.1016/J.BIORTECH.2015.08.066.
  • [16] T. Nunoura, S.R. Wade, J.P. Bourke, M.J. Antal, Studies of the Flash Carbonization Process. 1. Propagation of the Flaming Pyrolysis Reaction and Performance of a Catalytic Afterburner, Ind. Eng. Chem. Res. 45 (2005) 585–599. https://doi.org/10.1021/IE050854Y.
  • [17] S.R. Wade, T. Nunoura, M.J. Antal, Studies of the Flash Carbonization Process. 2. Violent Ignition Behavior of Pressurized Packed Beds of Biomass: A Factorial Study, (2006). https://doi.org/10.1021/IE051374.
  • [18] J.S. Cha, S.H. Park, S.C. Jung, C. Ryu, J.K. Jeon, M.C. Shin, Y.K. Park, Production and utilization of biochar: A review, J. Ind. Eng. Chem. 40 (2016) 1–15. https://doi.org/10.1016/J.JIEC.2016.06.002.
  • [19] V. Hansen, D. Müller-Stöver, J. Ahrenfeldt, J.K. Holm, U.B. Henriksen, H. Hauggaard-Nielsen, Gasification biochar as a valuable by-product for carbon sequestration and soil amendment, Biomass and Bioenergy. 72 (2015) 300–308. https://doi.org/10.1016/j.biombioe.2014.10.013.
  • [20] J. Wang, S. Wang, Preparation, modification and environmental application of biochar: A review, J. Clean. Prod. 227 (2019) 1002–1022. https://doi.org/10.1016/J.JCLEPRO.2019.04.282.
  • [21] T.X.H. Le, C. Charmette, M. Bechelany, M. Cretin, Facile Preparation of Porous Carbon Cathode to Eliminate Paracetamol in Aqueous Medium Using Electro-Fenton System, Electrochim. Acta. 188 (2016) 378–384. https://doi.org/10.1016/j.electacta.2015.12.005.
  • [22] I. Kashif, A.A. Soliman, E.M. Sakr, A. Ratep, Spectrochimica Acta Part A : Molecular and Biomolecular Spectroscopy XRD and FTIR studies the effect of heat treatment and doping the transition metal oxide on LiNbO 3 and LiNb 3 O 8 nano-crystallite phases in lithium borate glass system, 113 (2013) 15–21.
  • [23] G. Xia, Y. Lu, H. Xu, Electrogeneration of hydrogen peroxide for electro-Fenton via oxygen reduction using polyacrylonitrile-based carbon fiber brush cathode, Electrochim. Acta. 158 (2015) 390–396. https://doi.org/10.1016/j.electacta.2015.01.102.
  • [24] G. Xia, Y. Lu, H. Xu, An energy-saving production of hydrogen peroxide via oxygen reduction for electro-Fenton using electrochemically modified polyacrylonitrile-based carbon fiber brush cathode, Sep. Purif. Technol. 156 (2015) 553–560. https://doi.org/10.1016/j.seppur.2015.10.048.
  • [25] A. Özcan, Y. Şahin, A. Savaş Koparal, M.A. Oturan, Carbon sponge as a new cathode material for the electro-Fenton process: Comparison with carbon felt cathode and application to degradation of synthetic dye basic blue 3 in aqueous medium, J. Electroanal. Chem. 616 (2008) 71–78. https://doi.org/10.1016/j.jelechem.2008.01.002.
  • [26] Standard Operating Procedure GSI/SOP/BS/RA/C/7 (2009). “Procedure For Analyzing Hydrogen Peroxide Concentrations in Water.
There are 26 citations in total.

Details

Primary Language Turkish
Subjects Chemical Engineering
Journal Section Articles
Authors

Basak Temur Ergan 0000-0002-0708-5102

Ebubekir Sıddık Aydın 0000-0002-8704-4502

Erhan Gengec 0000-0003-3666-0791

Project Number 120Y060
Publication Date December 31, 2022
Submission Date July 26, 2022
Acceptance Date October 27, 2022
Published in Issue Year 2022 Volume: 8 Issue: 3

Cite

IEEE B. Temur Ergan, E. S. Aydın, and E. Gengec, “Atık Biyokütlenin Pirolizinden Hazırlanan Termal Modifiye Biyoçar Elektrotlar ile Elektro-Fenton Sisteminde Astrazon Blue Giderimi”, GJES, vol. 8, no. 3, pp. 499–510, 2022.

Gazi Journal of Engineering Sciences (GJES) publishes open access articles under a Creative Commons Attribution 4.0 International License (CC BY). 1366_2000-copia-2.jpg