Research Article
BibTex RIS Cite

FDM Yöntemi ile Üretilen Güçlendirilmiş Çekirdek Hücrelerin Basınç Dayanımı, Enerji Sönümleme Özellikleri ve Deformasyon Modlarının İncelenmesi

Year 2023, Volume: 9 Issue: 1, 1 - 11, 30.04.2023

Abstract

Sandviç paneller savunma sanayisi, havacılık ve otomotiv gibi yapısal ağırlık tasarrufu gerektiren birçok alanda kullanılmaktadır. Sandviç panellerin mekanik performansı büyük oranda çekirdek tasarımından etkilenmektedir. Periyodik hücrelere sahip sandviç panellerin çekirdek tasarımı ise birim hücre geometrisinin tekrarlı olarak üretilmesi ile oluşturulmaktadır. Bu çalışmada; geliştirilen güçlendirilmiş çekirdek hücrenin basma mukavemeti yarı statik basma yükü altında deneysel olarak incelenmiş, test sonuçları geleneksel bal peteği çekirdek ile karşılaştırılmıştır. Deneysel test numuneleri Eklemeli İmalat Yöntemi ile PLA Filament kullanılarak ile gerçekleştirilmiştir. İki farklı çekirdek tasarımı için deneysel test sonuçları kıyaslandığında, %20 doluluk oranında üretilen güçlendirilmiş çekirdek hücrenin, çekirdeğin maksimum ezilme direncini %28.54 oranında, enerji sönümleme kapasitesini ise %23.4 oranında arttırdığı tespit edilmiştir. Çekirdeklerin deformasyon davranışları incelendiğinde, güçlendirilmiş çekirdek hücrenin basma testi sırasında deformasyon yükünü çekirdek ekseninde tutuğu, duvar ayrılmasını geciktirdiği tespit edilmiştir. Ayrıca üretim esnasında belirlenen doluluk oranının çekirdeğin deformasyonu ve sıkışma direnci üzerinde etkili olduğu belirlenmiştir.

References

  • [1] M. M. Harussani, S. M. Sapuan, G. Nadeem, T. Rafin and W. Kirubaanand, “Recent applications of carbon-based composites in defence industry: A review,” Def. Technol., vol. 18, no. 8, pp. 1281–1300, Aug. 2022. doi:10.1016/j.dt.2022.03.006
  • [2] M. Günay and İ. Yeşildağ, “GMAW Esaslı Eklemeli İmalat İle Üretilen Düşük Karbonlu Çeliğin Mekanik Özellikleri,” Gazi J. Eng. Sci., vol. 7, no. 3, pp. 175–182, Dec. 2021. doi:10.30855/gmbd.2021.03.01
  • [3] F. Kartal, C. Nazlı, Z. Yerlikaya and A. Kaptan, “3B Yazıcıda Üretilen Parçaların Çoğaltılması,” Int. J. 3D Print. Technol. Digit. Ind., Apr. 2021. doi:10.46519/ij3dptdi.810269
  • [4] T. Yao, Z. Deng, K. Zhang and S. Li, “A method to predict the ultimate tensile strength of 3D printing polylactic acid (PLA) materials with different printing orientations,” Compos. Part B Eng., vol. 163, pp. 393–402, Apr. 2019. doi:10.1016/j.compositesb.2019.01.025
  • [5] S. R. Rajpurohit and H. K. Dave, “Flexural strength of fused filament fabricated (FFF) PLA parts on an open-source 3D printer,” Adv. Manuf., vol. 6, no. 4, pp. 430–441, Dec. 2018. doi:10.1007/s40436-018-0237-6
  • [6] W. J. Joost, “Reducing Vehicle Weight and Improving U.S. Energy Efficiency Using Integrated Computational Materials Engineering,” JOM, vol. 64, no. 9, pp. 1032–1038, Sep. 2012. doi:10.1007/s11837-012-0424-z
  • [7] G. Lodewijks, Y. Cao, N. Zhao and H. Zhang, “Reducing CO₂ Emissions of an Airport Baggage Handling Transport System Using a Particle Swarm Optimization Algorithm,” IEEE Access, vol. 9, pp. 121894–121905, 2021. doi:10.1109/ACCESS.2021.3109286
  • [8] J. Kee Paik, A. K. Thayamballi and G. Sung Kim, “The strength characteristics of aluminum honeycomb sandwich panels,” Thin-Walled Struct., vol. 35, no. 3, pp. 205–231, Nov. 1999. doi:10.1016/S0263-8231(99)00026-9
  • [9] M. Giglio, A. Gilioli and A. Manes, “Numerical investigation of a three point bending test on sandwich panels with aluminum skins and NomexTM honeycomb core,” Comput. Mater. Sci., vol. 56, pp. 69–78, Apr. 2012. doi:10.1016/j.commatsci.2012.01.007
  • [10] M. R. M. Rejab and W. J. Cantwell, “The mechanical behaviour of corrugated-core sandwich panels,” Compos. Part B Eng., vol. 47, pp. 267–277, 2013. doi:10.1016/j.compositesb.2012.10.031
  • [11] S. Kazemahvazi, D. Tanner and D. Zenkert, “Corrugated all-composite sandwich structures. Part 2: Failure mechanisms and experimental programme,” Compos. Sci. Technol., vol. 69, no. 7–8, pp. 920–925, Jun. 2009. doi:10.1016/j.compscitech.2008.11.035
  • [12] J. Galos, M. Sutcliffe and G. Newaz, “Design, fabrication and testing of sandwich panel decking for use in road freight trailers,” J. Sandw. Struct. Mater., vol. 20, no. 6, pp. 735–758, Sep. 2018. doi:10.1177/1099636216680153
  • [13] A. K. Noor, W. S. Burton and C. W. Bert, “Computational Models for Sandwich Panels and Shells,” Appl. Mech. Rev., vol. 49, no. 3, pp. 155–199, Mar. 1996. doi:10.1115/1.3101923
  • [14] E. Zurnaci, H. Gokkaya, M. Nalbant and G. Sur, “Three-Point Bending Response of Corrugated Core Metallic Sandwich Panels Having Different Core Configurations – An Experimental Study,” Eng. Technol. Appl. Sci. Res., vol. 9, no. 2, pp. 3981–3984, Apr. 2019. doi:10.48084/etasr.2671
  • [15] M. . Ashby, “The properties of foams and lattices,” Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., vol. 364, no. 1838, pp. 15–30, Jan. 2006. doi:10.1098/rsta.2005.1678
  • [16] R. G. Hutchinson and N. A. Fleck, “The structural performance of the periodic truss,” J. Mech. Phys. Solids, vol. 54, no. 4, pp. 756–782, Apr. 2006. doi:10.1016/j.jmps.2005.10.008
  • [17] E. Zurnaci and H. Gökkaya, “The effect of core configuration on the compressive performance of metallic sandwich panels,” Mater. Tehnol., vol. 53, no. 6, pp. 859–864, Dec. 2019. doi:10.17222/mit.2019.023
  • [18] J. Lin, Z. Luo and L. Tong, “Design of Adaptive Cores of Sandwich Structures Using a Compliant Unit Cell Approach and Topology Optimization,” J. Mech. Des., vol. 132, no. 8, p. 081012, 2010. doi:10.1115/1.4002201
  • [19] I. Asadi, M., Shirvani, H. and Sanaei, “A simplified model to simulate crash behavior of honeycomb,” in Proceedings of the International Conference of Advanced Design and Manufacture, ICADM 2006, 8-10 Jan 2006, Harbin, China, [Online]. Available: Researchgate, https://www.researchgate.net/publication/228934116. [Accessed: 10 Dec. 2022]
  • [20] G. Atlıhan, İ. Ovalı and A. Eren, “Eklemeli İmalat Yöntemiyle Üretilmiş Bal Petekli Yapıların Titreşim Davranışlarının Nümerik ve Deneysel Olarak İncelenmesi,” Int. J. 3D Print. Technol. Digit. Ind., Jun. 2021. doi:10.46519/ij3dptdi.907282
  • [21] P. Griškevicius, D. Zeleniakiene, V. Leišis and M. Ostrowski, “Experimental and Numerical Study of Impact Energy Absorption of Safety Important Honeycomb Core Sandwich Structures Experimental and Numerical Study of Impact Energy Absorption of Safety Important Honeycomb Core Sandwich Structures,” Mater. Sci., vol. 16, no. 2, pp. 119–123, 2010.
  • [22] M. O. Kaman, M. Y. Solmaz and K. Turan, “Experimental and numerical analysis of critical buckling load of honeycomb sandwich panels,” J. Compos. Mater., vol. 44, no. 24, pp. 2819–2831, 2010. doi:10.1177/0021998310371541
  • [23] V. Crupi, G. Epasto and E. Guglielmino, “Collapse modes in aluminium honeycomb sandwich panels under bending and impact loading,” Int. J. Impact Eng., vol. 43, pp. 6–15, 2012. doi:10.1016/j.ijimpeng.2011.12.002
  • [24] L. Aktay, A. F. Johnson and M. Holzapfel, “Prediction of impact damage on sandwich composite panels,” Comput. Mater. Sci., vol. 32, no. 3–4, pp. 252–260, Mar. 2005. doi:10.1016/j.commatsci.2004.09.044
  • [25] E. Wu and W.-S. Jiang, “Axial crush of metallic honeycombs,” Int. J. Impact Eng., vol. 19, no. 5–6, pp. 439–456, May 1997. doi:10.1016/S0734-743X(97)00004-3
  • [26] M. Yamashita and M. Gotoh, “Impact behavior of honeycomb structures with various cell specifications—numerical simulation and experiment,” Int. J. Impact Eng., vol. 32, no. 1–4, pp. 618–630, Dec. 2005. doi:10.1016/j.ijimpeng.2004.09.001
  • [27] G. G. Galletti, C. Vinquist and O. S. Es-Said, “Theoretical design and analysis of a honeycomb panel sandwich structure loaded in pure bending,” Eng. Fail. Anal., vol. 15, no. 5, pp. 555–562, Jul. 2008. doi:10.1016/j.engfailanal.2007.04.004
  • [28] F. Tarlochan, S. Ramesh and S. Harpreet, “Advanced composite sandwich structure design for energy absorption applications: Blast protection and crashworthiness,” Compos. Part B Eng., vol. 43, no. 5, pp. 2198–2208, Jul. 2012. doi:10.1016/j.compositesb.2012.02.025
  • [29] S. Hou, C. Shu, S. Zhao, T. Liu, X. Han and Q. Li, “Experimental and numerical studies on multi-layered corrugated sandwich panels under crushing loading,” Compos. Struct., vol. 126, pp. 371–385, 2015. doi:10.1016/j.compstruct.2015.02.039
  • [30] F. He, V. K. Thakur and M. Khan, “Evolution and new horizons in modeling crack mechanics of 3D printing polymeric structures,” Mater. Today Chem., vol. 20, pp. 100393, Jun. 2021. doi:10.1016/j.mtchem.2020.100393
  • [31] A. Soltani, R. Noroozi, M. Bodaghi, A. Zolfagharian and R. Hedayati, “3D Printing On-Water Sports Boards with Bio-Inspired Core Designs,” Polymers (Basel)., vol. 12, no. 1, pp. 250, Jan. 2020. doi:10.3390/polym12010250
  • [32] Z. Wang, C. Luan, G. Liao, X. Yao and J. Fu, “Mechanical and self-monitoring behaviors of 3D printing smart continuous carbon fiber-thermoplastic lattice truss sandwich structure,” Compos. Part B Eng., vol. 176, pp. 107215, Nov. 2019. doi:10.1016/j.compositesb.2019.107215
  • [33] E. A. Franco-Urquiza, Y. R. Escamilla and P. I. Alcántara Llanas, “Characterization of 3D Printing on Jute Fabrics,” Polymers (Basel)., vol. 13, no. 19, pp. 3202, Sep. 2021. doi:10.3390/polym13193202
  • [34] Y. Song, Y. Li, W. Song, K. Yee, K.-Y. Lee and V. L. Tagarielli, “Measurements of the mechanical response of unidirectional 3D-printed PLA,” Mater. Des., vol. 123, pp. 154–164, Jun. 2017. doi:10.1016/j.matdes.2017.03.051 __________________________________________________ This is an open access article under the CC-BY license

Investigation of the Compressive Strength, Energy Absorption Properties and Deformation Modes of the Reinforced Core Cell Produced by the FDM Method

Year 2023, Volume: 9 Issue: 1, 1 - 11, 30.04.2023

Abstract

Sandwich panels are used in many sectors that require structural weight savings such as defence, aviation and automotive industry. The most important factor over the mechanical resistance of sandwich panels is the core design. The core design of sandwich panels with periodic cells is formed by repetitive production of the unit cell geometry. In this study; the compressive strength of the developed reinforced core cell was experimentally investigated under quasi-static compression load, and the test results were compared with the conventional honeycomb core. Experimental test samples were carried out by Fused Deposition Modeling (FDM) using PLA filament material. When the experimental test results for two different core designs were compared, it was determined that the reinforced core cell produced at 20% filling rate increased the maximum crushing resistance of the core by 28.54% and the energy absorbing capacity by 23.4%. According to the observed deformation behaviors, it was determined that the reinforced core cell kept the deformation load on the core axis during the compression test and delayed the core wall buckling. In addition, it was determined that the filling rate determined during production was effective on the deformation of the core and compression resistance.

References

  • [1] M. M. Harussani, S. M. Sapuan, G. Nadeem, T. Rafin and W. Kirubaanand, “Recent applications of carbon-based composites in defence industry: A review,” Def. Technol., vol. 18, no. 8, pp. 1281–1300, Aug. 2022. doi:10.1016/j.dt.2022.03.006
  • [2] M. Günay and İ. Yeşildağ, “GMAW Esaslı Eklemeli İmalat İle Üretilen Düşük Karbonlu Çeliğin Mekanik Özellikleri,” Gazi J. Eng. Sci., vol. 7, no. 3, pp. 175–182, Dec. 2021. doi:10.30855/gmbd.2021.03.01
  • [3] F. Kartal, C. Nazlı, Z. Yerlikaya and A. Kaptan, “3B Yazıcıda Üretilen Parçaların Çoğaltılması,” Int. J. 3D Print. Technol. Digit. Ind., Apr. 2021. doi:10.46519/ij3dptdi.810269
  • [4] T. Yao, Z. Deng, K. Zhang and S. Li, “A method to predict the ultimate tensile strength of 3D printing polylactic acid (PLA) materials with different printing orientations,” Compos. Part B Eng., vol. 163, pp. 393–402, Apr. 2019. doi:10.1016/j.compositesb.2019.01.025
  • [5] S. R. Rajpurohit and H. K. Dave, “Flexural strength of fused filament fabricated (FFF) PLA parts on an open-source 3D printer,” Adv. Manuf., vol. 6, no. 4, pp. 430–441, Dec. 2018. doi:10.1007/s40436-018-0237-6
  • [6] W. J. Joost, “Reducing Vehicle Weight and Improving U.S. Energy Efficiency Using Integrated Computational Materials Engineering,” JOM, vol. 64, no. 9, pp. 1032–1038, Sep. 2012. doi:10.1007/s11837-012-0424-z
  • [7] G. Lodewijks, Y. Cao, N. Zhao and H. Zhang, “Reducing CO₂ Emissions of an Airport Baggage Handling Transport System Using a Particle Swarm Optimization Algorithm,” IEEE Access, vol. 9, pp. 121894–121905, 2021. doi:10.1109/ACCESS.2021.3109286
  • [8] J. Kee Paik, A. K. Thayamballi and G. Sung Kim, “The strength characteristics of aluminum honeycomb sandwich panels,” Thin-Walled Struct., vol. 35, no. 3, pp. 205–231, Nov. 1999. doi:10.1016/S0263-8231(99)00026-9
  • [9] M. Giglio, A. Gilioli and A. Manes, “Numerical investigation of a three point bending test on sandwich panels with aluminum skins and NomexTM honeycomb core,” Comput. Mater. Sci., vol. 56, pp. 69–78, Apr. 2012. doi:10.1016/j.commatsci.2012.01.007
  • [10] M. R. M. Rejab and W. J. Cantwell, “The mechanical behaviour of corrugated-core sandwich panels,” Compos. Part B Eng., vol. 47, pp. 267–277, 2013. doi:10.1016/j.compositesb.2012.10.031
  • [11] S. Kazemahvazi, D. Tanner and D. Zenkert, “Corrugated all-composite sandwich structures. Part 2: Failure mechanisms and experimental programme,” Compos. Sci. Technol., vol. 69, no. 7–8, pp. 920–925, Jun. 2009. doi:10.1016/j.compscitech.2008.11.035
  • [12] J. Galos, M. Sutcliffe and G. Newaz, “Design, fabrication and testing of sandwich panel decking for use in road freight trailers,” J. Sandw. Struct. Mater., vol. 20, no. 6, pp. 735–758, Sep. 2018. doi:10.1177/1099636216680153
  • [13] A. K. Noor, W. S. Burton and C. W. Bert, “Computational Models for Sandwich Panels and Shells,” Appl. Mech. Rev., vol. 49, no. 3, pp. 155–199, Mar. 1996. doi:10.1115/1.3101923
  • [14] E. Zurnaci, H. Gokkaya, M. Nalbant and G. Sur, “Three-Point Bending Response of Corrugated Core Metallic Sandwich Panels Having Different Core Configurations – An Experimental Study,” Eng. Technol. Appl. Sci. Res., vol. 9, no. 2, pp. 3981–3984, Apr. 2019. doi:10.48084/etasr.2671
  • [15] M. . Ashby, “The properties of foams and lattices,” Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., vol. 364, no. 1838, pp. 15–30, Jan. 2006. doi:10.1098/rsta.2005.1678
  • [16] R. G. Hutchinson and N. A. Fleck, “The structural performance of the periodic truss,” J. Mech. Phys. Solids, vol. 54, no. 4, pp. 756–782, Apr. 2006. doi:10.1016/j.jmps.2005.10.008
  • [17] E. Zurnaci and H. Gökkaya, “The effect of core configuration on the compressive performance of metallic sandwich panels,” Mater. Tehnol., vol. 53, no. 6, pp. 859–864, Dec. 2019. doi:10.17222/mit.2019.023
  • [18] J. Lin, Z. Luo and L. Tong, “Design of Adaptive Cores of Sandwich Structures Using a Compliant Unit Cell Approach and Topology Optimization,” J. Mech. Des., vol. 132, no. 8, p. 081012, 2010. doi:10.1115/1.4002201
  • [19] I. Asadi, M., Shirvani, H. and Sanaei, “A simplified model to simulate crash behavior of honeycomb,” in Proceedings of the International Conference of Advanced Design and Manufacture, ICADM 2006, 8-10 Jan 2006, Harbin, China, [Online]. Available: Researchgate, https://www.researchgate.net/publication/228934116. [Accessed: 10 Dec. 2022]
  • [20] G. Atlıhan, İ. Ovalı and A. Eren, “Eklemeli İmalat Yöntemiyle Üretilmiş Bal Petekli Yapıların Titreşim Davranışlarının Nümerik ve Deneysel Olarak İncelenmesi,” Int. J. 3D Print. Technol. Digit. Ind., Jun. 2021. doi:10.46519/ij3dptdi.907282
  • [21] P. Griškevicius, D. Zeleniakiene, V. Leišis and M. Ostrowski, “Experimental and Numerical Study of Impact Energy Absorption of Safety Important Honeycomb Core Sandwich Structures Experimental and Numerical Study of Impact Energy Absorption of Safety Important Honeycomb Core Sandwich Structures,” Mater. Sci., vol. 16, no. 2, pp. 119–123, 2010.
  • [22] M. O. Kaman, M. Y. Solmaz and K. Turan, “Experimental and numerical analysis of critical buckling load of honeycomb sandwich panels,” J. Compos. Mater., vol. 44, no. 24, pp. 2819–2831, 2010. doi:10.1177/0021998310371541
  • [23] V. Crupi, G. Epasto and E. Guglielmino, “Collapse modes in aluminium honeycomb sandwich panels under bending and impact loading,” Int. J. Impact Eng., vol. 43, pp. 6–15, 2012. doi:10.1016/j.ijimpeng.2011.12.002
  • [24] L. Aktay, A. F. Johnson and M. Holzapfel, “Prediction of impact damage on sandwich composite panels,” Comput. Mater. Sci., vol. 32, no. 3–4, pp. 252–260, Mar. 2005. doi:10.1016/j.commatsci.2004.09.044
  • [25] E. Wu and W.-S. Jiang, “Axial crush of metallic honeycombs,” Int. J. Impact Eng., vol. 19, no. 5–6, pp. 439–456, May 1997. doi:10.1016/S0734-743X(97)00004-3
  • [26] M. Yamashita and M. Gotoh, “Impact behavior of honeycomb structures with various cell specifications—numerical simulation and experiment,” Int. J. Impact Eng., vol. 32, no. 1–4, pp. 618–630, Dec. 2005. doi:10.1016/j.ijimpeng.2004.09.001
  • [27] G. G. Galletti, C. Vinquist and O. S. Es-Said, “Theoretical design and analysis of a honeycomb panel sandwich structure loaded in pure bending,” Eng. Fail. Anal., vol. 15, no. 5, pp. 555–562, Jul. 2008. doi:10.1016/j.engfailanal.2007.04.004
  • [28] F. Tarlochan, S. Ramesh and S. Harpreet, “Advanced composite sandwich structure design for energy absorption applications: Blast protection and crashworthiness,” Compos. Part B Eng., vol. 43, no. 5, pp. 2198–2208, Jul. 2012. doi:10.1016/j.compositesb.2012.02.025
  • [29] S. Hou, C. Shu, S. Zhao, T. Liu, X. Han and Q. Li, “Experimental and numerical studies on multi-layered corrugated sandwich panels under crushing loading,” Compos. Struct., vol. 126, pp. 371–385, 2015. doi:10.1016/j.compstruct.2015.02.039
  • [30] F. He, V. K. Thakur and M. Khan, “Evolution and new horizons in modeling crack mechanics of 3D printing polymeric structures,” Mater. Today Chem., vol. 20, pp. 100393, Jun. 2021. doi:10.1016/j.mtchem.2020.100393
  • [31] A. Soltani, R. Noroozi, M. Bodaghi, A. Zolfagharian and R. Hedayati, “3D Printing On-Water Sports Boards with Bio-Inspired Core Designs,” Polymers (Basel)., vol. 12, no. 1, pp. 250, Jan. 2020. doi:10.3390/polym12010250
  • [32] Z. Wang, C. Luan, G. Liao, X. Yao and J. Fu, “Mechanical and self-monitoring behaviors of 3D printing smart continuous carbon fiber-thermoplastic lattice truss sandwich structure,” Compos. Part B Eng., vol. 176, pp. 107215, Nov. 2019. doi:10.1016/j.compositesb.2019.107215
  • [33] E. A. Franco-Urquiza, Y. R. Escamilla and P. I. Alcántara Llanas, “Characterization of 3D Printing on Jute Fabrics,” Polymers (Basel)., vol. 13, no. 19, pp. 3202, Sep. 2021. doi:10.3390/polym13193202
  • [34] Y. Song, Y. Li, W. Song, K. Yee, K.-Y. Lee and V. L. Tagarielli, “Measurements of the mechanical response of unidirectional 3D-printed PLA,” Mater. Des., vol. 123, pp. 154–164, Jun. 2017. doi:10.1016/j.matdes.2017.03.051 __________________________________________________ This is an open access article under the CC-BY license
There are 34 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering
Journal Section Research Articles
Authors

Erman Zurnacı 0000-0003-1298-4054

Haydar Kadir Özdemir 0000-0001-7080-4029

Publication Date April 30, 2023
Submission Date December 21, 2022
Acceptance Date March 12, 2023
Published in Issue Year 2023 Volume: 9 Issue: 1

Cite

IEEE E. Zurnacı and H. K. Özdemir, “Investigation of the Compressive Strength, Energy Absorption Properties and Deformation Modes of the Reinforced Core Cell Produced by the FDM Method”, GJES, vol. 9, no. 1, pp. 1–11, 2023.

Gazi Journal of Engineering Sciences (GJES) publishes open access articles under a Creative Commons Attribution 4.0 International License (CC BY). 1366_2000-copia-2.jpg