Research Article
BibTex RIS Cite

Investigation of Flight Path Tracking Performance in Linear Control of Thrust Vector

Year 2023, Volume: 9 Issue: 2, 334 - 346, 31.08.2023

Abstract

Missiles and rockets, which are launchable systems with nozzle-based guidance, have a wide range of applications in controlling the flight path of flying systems, utilizing aerodynamic control methods. Currently, thrust vector control systems are used in conjunction with aerodynamic control methods to achieve high manoeuvrability for these systems. Thrust vector control systems are implemented using various techniques and prove to be highly effective in providing high manoeuvrability to short-range missile systems, particularly in military domains. This study focuses on the method of jet vanes with mechanical deflectors, which belongs to the fixed-nozzle family. Within the scope of this study, a prototype that allows the investigation of the jet vanes method has been developed, and a test setup has been constructed to control the movements of this prototype. A microcontroller-based architecture was used in the designed and produced system, the jet vanes was controlled by PI and PID control techniques in MATLAB/Simulink environment, and the real-time results were examined. Based on the experimental studies, it has been determined that in the thrust vector control system where thrust is provided by an electric device and guidance is achieved through jet vanes, the performance with PID control is superior to that with PI control.

References

  • [1] A. B. Facciano, K. G. Sybold, T. L. Westberry-Kutz, and D. O. Widmer, “Jet Vane Control System Prototype Hardware Development for the Evolved Seasparrow Missile,” J. Spacecr. Rockets, vol. 39, no. 4, 2002. doi:10.2514/2.3865
  • [2] J. A. Angelo, Encyclopedia Of Space And Astronomy (Science Encyclopedia). Facts on File, 2006.
  • [3] P. Giragosian, “Aerodynamic Considerations in The Design A Vertically Launched Advanced Interdiction Missile,” in AIAA 9th Atmospheric Flight Mechanics Conference, 1982, pp. 1–10.
  • [4] Y. Li, H. Lu, S. Tian, Z. Jiao, and J.-T. Chen, “Posture Control of Electromechanical-Actuator-Based Thrust Vector System for Aircraft Engine,” IEEE Trans. Ind. Electron., vol. 59, no. 9, pp. 3561–3571, 2012.
  • [5] A. Sebastian, P. Thomas, and S. Alex, “Servo design and analysis of thrust vector control of launch vehicle,” in 2017 Innovations in Power and Advanced Computing Technologies (i-PACT), 2017, pp. 1–5.
  • [6] K. Z. Y. Ang et al., “Development of an unmanned tail-sitter with reconfigurable wings: U-Lion,” in 11th IEEE International Conference on Control & Automation (ICCA), 2014, pp. 750–755.
  • [7] H. Gao, Z. Liu, B. Wang, and C. Pang, “Flight Dynamics and Control of a New VTOL Aircraft in Fixed-wing Mode,” in 2020 International Conference on Unmanned Aircraft Systems (ICUAS), 2020, pp. 1650–1657.
  • [8] T. Guo, H. Wang, and W. Gai, “Transition flight control for Canard Rotor/Wing rotorcraft,” in 2011 2nd International Conference on Artificial Intelligence, Management Science and Electronic Commerce (AIMSEC), 2011, pp. 875–880.
  • [9] L. M. Wang and B. Mo, “The Design of Jet Vane of Thrust Vector Control System,” Adv. Mater. Res., vol. 591–593, pp. 1743–1747, 2012.
  • [10] M. F. Ahmed and H. T. Dorrah, “Design of gain schedule fractional PID control for nonlinear thrust vector control missile with uncertainty,” J. Control. Meas. Electron. Comput. Commun., vol. 59, no. 3,4, pp. 357–372, 2018.
  • [11] H.-G. Sung and Y.-S. Hwang, “Thrust-Vector Characteristics of Jet Vanes Arranged in X-Formation Within a Shroud,” J. Propuls. Power, vol. 20, no. 3, pp. 501–508, 2012.
  • [12] R. Tekin, Ö. Atesoglu, and K. Leblebicioglu, “Modeling and Vertical Launch Analysis of an Aero- and Thrust Vector Controlled Surface to Air Missile,” in AIAA Atmospheric Flight Mechanics Conference 2010, 2010, pp. 1–17.
  • [13] A. DeChamplain, V. Harrisson, D. Kretschmer, R. Farinaccio, and R. Stowe, “Optical Technique to Quantify Erosion on Jet Vanes for Thrust Vector Control,” in 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 2022, pp. 1–4.
  • [14] J.-H. Yang and H.-K. Xu, “Robust Controller Design for Non-Minimum Phase UAV System and System Analysis,” IEEE Access, vol. 6, pp. 70734–70769, 2018. doi:10.1109/ACCESS.2018.2879649

İtki Vektörünün Doğrusal Kontrolünde Uçuş Yolu Takip Başarımının İncelenmesi

Year 2023, Volume: 9 Issue: 2, 334 - 346, 31.08.2023

Abstract

Füze ve roket gibi lüle çıkışlı yönelendirmeye sahip uçar sistemlerin uçuş yolu kontrolünde aerodinamik kontrol (kanat, kanard ve kuyruk) yöntemleri geniş bir kullanım alanına sahiptir. Bununla beraber son zamanlarda gerçekleştirilen uluslararası çalışmalarda görüldüğü üzere, bu sistemlerin yüksek manevra yeteneklerinin geliştirilmesi gerekliliği ortadadır. Günümüzde bu sistemlerin yüksek manevra kabiliyetine ulaşmaları maksadıyla aerodinamik kontrol yöntemleriyle birlikte itki vektör kontrol sistemleri de kullanılmaktadır. İtki vektör kontrol sistemleri oldukça farklı tekniklerle uygulanmaktadır. İtki vektör kontrol sistemleri özellikle askeri alanlarda kullanılan kısa mesafeli füze sistemlerine yüksek manevra kabiliyeti kazandırma noktasında oldukça etkilidir. Bu çalışmada sabit lüle ailesinden, mekanik saptırıcılı özellillere sahip jet kanatçıkları yöntemi ele alınmıştır. Çalışma kapsamında; jet kanatçıkları yönteminin incelenebileceği bir prototip geliştirilmiş, bu prototipin hareketlerinin kontrol edilebileceği bir test düzeneği üretilmiştir. Tasarlanarak üretilen sistemde mikrodenetleyici tabanlı bir mimari kullanılmış, jet kanatçıkları yöntemi MATLAB/ Simulink ortamında PI ve PID teknikleri ile denetlenmiş ve gerçek zamanlı sonuçlar le alınmıştır. Benzetim ve deneysel çalışmalar neticesinde itkinin elektrikli bir aygıtla sağlandığı ve yönlendirmenin jet kanatçıkları ile gerçekleştirildiği itki vektör kontrol sisteminde PID kontrol ile başarımın PI kontrole oranla daha iyi olduğu sonucuna ulaşılmıştır.

References

  • [1] A. B. Facciano, K. G. Sybold, T. L. Westberry-Kutz, and D. O. Widmer, “Jet Vane Control System Prototype Hardware Development for the Evolved Seasparrow Missile,” J. Spacecr. Rockets, vol. 39, no. 4, 2002. doi:10.2514/2.3865
  • [2] J. A. Angelo, Encyclopedia Of Space And Astronomy (Science Encyclopedia). Facts on File, 2006.
  • [3] P. Giragosian, “Aerodynamic Considerations in The Design A Vertically Launched Advanced Interdiction Missile,” in AIAA 9th Atmospheric Flight Mechanics Conference, 1982, pp. 1–10.
  • [4] Y. Li, H. Lu, S. Tian, Z. Jiao, and J.-T. Chen, “Posture Control of Electromechanical-Actuator-Based Thrust Vector System for Aircraft Engine,” IEEE Trans. Ind. Electron., vol. 59, no. 9, pp. 3561–3571, 2012.
  • [5] A. Sebastian, P. Thomas, and S. Alex, “Servo design and analysis of thrust vector control of launch vehicle,” in 2017 Innovations in Power and Advanced Computing Technologies (i-PACT), 2017, pp. 1–5.
  • [6] K. Z. Y. Ang et al., “Development of an unmanned tail-sitter with reconfigurable wings: U-Lion,” in 11th IEEE International Conference on Control & Automation (ICCA), 2014, pp. 750–755.
  • [7] H. Gao, Z. Liu, B. Wang, and C. Pang, “Flight Dynamics and Control of a New VTOL Aircraft in Fixed-wing Mode,” in 2020 International Conference on Unmanned Aircraft Systems (ICUAS), 2020, pp. 1650–1657.
  • [8] T. Guo, H. Wang, and W. Gai, “Transition flight control for Canard Rotor/Wing rotorcraft,” in 2011 2nd International Conference on Artificial Intelligence, Management Science and Electronic Commerce (AIMSEC), 2011, pp. 875–880.
  • [9] L. M. Wang and B. Mo, “The Design of Jet Vane of Thrust Vector Control System,” Adv. Mater. Res., vol. 591–593, pp. 1743–1747, 2012.
  • [10] M. F. Ahmed and H. T. Dorrah, “Design of gain schedule fractional PID control for nonlinear thrust vector control missile with uncertainty,” J. Control. Meas. Electron. Comput. Commun., vol. 59, no. 3,4, pp. 357–372, 2018.
  • [11] H.-G. Sung and Y.-S. Hwang, “Thrust-Vector Characteristics of Jet Vanes Arranged in X-Formation Within a Shroud,” J. Propuls. Power, vol. 20, no. 3, pp. 501–508, 2012.
  • [12] R. Tekin, Ö. Atesoglu, and K. Leblebicioglu, “Modeling and Vertical Launch Analysis of an Aero- and Thrust Vector Controlled Surface to Air Missile,” in AIAA Atmospheric Flight Mechanics Conference 2010, 2010, pp. 1–17.
  • [13] A. DeChamplain, V. Harrisson, D. Kretschmer, R. Farinaccio, and R. Stowe, “Optical Technique to Quantify Erosion on Jet Vanes for Thrust Vector Control,” in 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 2022, pp. 1–4.
  • [14] J.-H. Yang and H.-K. Xu, “Robust Controller Design for Non-Minimum Phase UAV System and System Analysis,” IEEE Access, vol. 6, pp. 70734–70769, 2018. doi:10.1109/ACCESS.2018.2879649
There are 14 citations in total.

Details

Primary Language Turkish
Subjects Electrical Engineering, Mechanical Engineering
Journal Section Research Articles
Authors

Nuri Atik 0000-0001-5203-3646

Serkan Gürkan 0000-0003-2229-3361

Publication Date August 31, 2023
Submission Date May 31, 2023
Acceptance Date July 19, 2023
Published in Issue Year 2023 Volume: 9 Issue: 2

Cite

IEEE N. Atik and S. Gürkan, “İtki Vektörünün Doğrusal Kontrolünde Uçuş Yolu Takip Başarımının İncelenmesi”, GJES, vol. 9, no. 2, pp. 334–346, 2023.

Gazi Journal of Engineering Sciences (GJES) publishes open access articles under a Creative Commons Attribution 4.0 International License (CC BY). 1366_2000-copia-2.jpg