Review
BibTex RIS Cite

A Review on the Impact of Polylactic Acid (PLA) Material on Products Manufactured Using Fused Deposition Modeling (FDM) Additive Manufacturing Method

Year 2023, Volume: 9 Issue: 4, 158 - 173, 31.12.2023

Abstract

This compilation article extensively examines the role and impact of Polylactic Acid (PLA) material in products manufactured using the Fused Deposition Modeling (FDM) additive manufacturing method. PLA, due to its biological compatibility, biodegradability, and excellent printing characteristics, is frequently favored as a material for three-dimensional (3D) printing via FDM. Presently, 3D printing technologies are rapidly proliferating across numerous industries and applications, with PLA playing a significant role in this technological advancement. PLA is a bioplastic, derived from corn starch or sugarcane, and serves as a renewable polymer. These attributes render PLA ideal for sustainable production and environmentally friendly applications. The utilization of PLA in FDM 3D printing offers advantages such as high resolution, strong adhesion, and ease of processing. Additionally, PLA's low thermal expansion coefficient ensures consistent printing of products. These properties of PLA enable its utilization across a wide array of applications, ranging from industrial prototypes to medical implants, packaging materials, and toys. However, PLA's performance and impact in the FDM 3D printing process can vary based on factors like printing parameters, infill patterns, and printing orientation. Printing parameters encompass factors such as PLA's melting temperature, feed rate, and layer thickness. Infill patterns and printing orientation significantly affect the mechanical durability, surface quality, and printing duration of the product. Hence, the identification and optimization of suitable parameters are crucial for the effective utilization of PLA in 3D printing. This compilation gathers research from the existing literature regarding PLA's role and performance in the FDM 3D printing process, encompassing PLA's structural and mechanical attributes, the influence of printing parameters and infill patterns, and the industrial applications of products manufactured using PLA. Specifically, the physical and chemical characteristics of PLA, optimization of printing parameters, geometry of infill patterns, printing orientation, and layer structure are examined. Furthermore, the focus is on the mechanical durability, surface quality, thermal behavior, and biological compatibility of products manufactured using PLA. This study aims to provide a comprehensive reference regarding the characteristics and performance of PLA to enhance the effective use of FDM 3D printing technology. It is intended to be a valuable resource for researchers, industry professionals, and academics engaged in the fields of design and engineering. Additionally, it offers significant information for those interested in exploring PLA's potential for future development and new application domains.

References

  • [1] B. M. M. Tymrak, M. Kreiger, and J. M. Pearce, “Mechanical properties of components fabricated with open-source 3-D printers under realistic environmental conditions,” Mater. Des., vol. 58, 2014, doi: 10.1016/j.matdes.2014.02.038ï.
  • [2] M. Sugavaneswaran and G. Arumaikkannu, “Analytical and experimental investigation on elastic modulus of reinforced additive manufactured structure,” Mater. Des., vol. 66, no. PA, pp. 29–36, Feb. 2015, doi: 10.1016/J.MATDES.2014.10.029.
  • [3] M. Domingo-Espin, J. M. Puigoriol-Forcada, A. A. Garcia-Granada, J. Llumà, S. Borros, and G. Reyes, “Mechanical property characterization and simulation of fused deposition modeling Polycarbonate parts,” Mater. Des., vol. 83, pp. 670–677, 2015, doi: 10.1016/j.matdes.2015.06.074.
  • [4] B. Rankouhi, S. Javadpour, F. Delfanian, and T. Letcher, “Failure Analysis and Mechanical Characterization of 3D Printed ABS With Respect to Layer Thickness and Orientation,” J. Fail. Anal. Prev., vol. 16, no. 3, pp. 467–481, 2016, doi: 10.1007/s11668-016-0113-2.
  • [5] J. M. Chacón, M. A. Caminero, E. García-Plaza, and P. J. Núñez, “Additive manufacturing of PLA structures using fused deposition modelling: Effect of process parameters on mechanical properties and their optimal selection,” Mater. Des., vol. 124, pp. 143–157, 2017, doi: 10.1016/j.matdes.2017.03.065.
  • [6] D. Arup and Y. Nita, “A systematic survey of RUM process parameter optimization and their influence on part characteristics of nickel 718,” Sci. Rep., vol. 13, no. 1, 2023, doi: 10.1038/s41598-023-28674-1.
  • [7] A. Jaisingh Sheoran and H. Kumar, “Fused Deposition modeling process parameters optimization and effect on mechanical properties and part quality: Review and reflection on present research,” Mater. Today Proc., vol. 21, pp. 1659–1672, 2020, doi: 10.1016/j.matpr.2019.11.296.
  • [8] A. P. Valerga, M. Batista, J. Salguero, and F. Girot, “Influence of PLA filament conditions on characteristics of FDM parts,” Materials (Basel)., vol. 11, no. 8, 2018, doi: 10.3390/ma11081322.
  • [9] A. Lanzotti, M. Grasso, G. Staiano, and M. Martorelli, “The impact of process parameters on mechanical properties of parts fabricated in PLA with an open-source 3-D printer,” Rapid Prototyp. J., vol. 21, no. 5, pp. 604–617, 2015, doi: 10.1108/RPJ-09-2014-0135.
  • [10] J. Kotlinski, “Mechanical properties of commercial rapid prototyping materials,” Rapid Prototyp. J., vol. 20, no. 6, pp. 499–510, 2014, doi: 10.1108/RPJ-06-2012-0052.
  • [11] O. A. Mohamed, S. H. Masood, and J. L. Bhowmik, “Optimization of fused deposition modeling process parameters: a review of current research and future prospects,” Adv. Manuf., vol. 3, no. 1, pp. 42–53, 2015, doi: 10.1007/s40436-014-0097-7.
  • [12] K. Thrimurthulu, P. M. Pandey, and N. V. Reddy, “Optimum part deposition orientation in fused deposition modeling,” Int. J. Mach. Tools Manuf., vol. 44, no. 6, pp. 585–594, 2004, doi: 10.1016/j.ijmachtools.2003.12.004.
  • [13] A. Boschetto and L. Bottini, “Accuracy prediction in fused deposition modeling,” Int. J. Adv. Manuf. Technol., vol. 73, no. 5–8, pp. 913–928, 2014, doi: 10.1007/s00170-014-5886-4.
  • [14] K. Rajan, M. Samykano, K. Kadirgama, W. S. W. Harun, and M. M. Rahman, Fused deposition modeling: process, materials, parameters, properties, and applications, vol. 120, no. 3–4. Springer London, 2022. doi: 10.1007/s00170-022-08860-7.
  • [15] T. Grimm, “17. Fused deposition modeling: a technology evaluation,” Time-Compression Technol., vol. 11, no. 2, pp. 1–6, 2003, [Online]. Available: http://www.trosol.com/fortus/downloads/WPGrimm.pdf
  • [16] O. S. Carneiro, A. F. Silva, and R. Gomes, “Fused deposition modeling with polypropylene,” Mater. Des., vol. 83, pp. 768–776, 2015, doi: 10.1016/j.matdes.2015.06.053.
  • [17] A. Bellini and S. Güçeri, “Mechanical characterization of parts fabricated using fused deposition modeling,” Rapid Prototyp. J., vol. 9, no. 4, pp. 252–264, 2003, doi: 10.1108/13552540310489631.
  • [18] D. K. Ahn, S. M. Kwon, and S. H. Lee, “Representation for surface roughness distribution of FDM processed parts,” ICSMA 2008 - Int. Conf. Smart Manuf. Appl., no. May 2008, pp. 490–493, 2008, doi: 10.1109/ICSMA.2008.4505572.
  • [19] J. R. C. Dizon, A. H. Espera, Q. Chen, and R. C. Advincula, “Mechanical characterization of 3D-printed polymers,” Addit. Manuf., vol. 20, pp. 44–67, 2018, doi: 10.1016/j.addma.2017.12.002.
  • [20] V. Shanmugam, M. V. Pavan, K. Babu, and B. Karnan, “Fused deposition modeling based polymeric materials and their performance: A review,” Polym. Compos., vol. 42, no. 11, pp. 5656–5677, 2021, doi: 10.1002/pc.26275.
  • [21] K. G. J. Christiyan, U. Chandrasekhar, and K. Venkateswarlu, “A study on the influence of process parameters on the Mechanical Properties of 3D printed ABS composite,” IOP Conf. Ser. Mater. Sci. Eng., vol. 114, no. 1, 2016, doi: 10.1088/1757-899X/114/1/012109.
  • [22] J. J. Laureto and J. M. Pearce, “Anisotropic mechanical property variance between ASTM D638-14 type i and type iv fused filament fabricated specimens,” Polym. Test., vol. 68, no. March, pp. 294–301, 2018, doi: 10.1016/j.polymertesting.2018.04.029.
  • [23] O. Lužanin, D. Movrin, and M. Plan, “Effect of Layer Thickness, Deposition Angle, and Infill on Maximum Flexural Force in Fdm-Built Specimens,” vol. 39, no. 1, 2014, [Online]. Available: http://www.dpm.ftn.uns.ac.rs/jtp/download/2014/1/Article6.pdf
  • [24] W. Wu, P. Geng, G. Li, D. Zhao, H. Zhang, and J. Zhao, “Influence of layer thickness and raster angle on the mechanical properties of 3D-printed PEEK and a comparative mechanical study between PEEK and ABS,” Materials (Basel)., vol. 8, no. 9, pp. 5834–5846, 2015, doi: 10.3390/ma8095271.
  • [25] S. Farashi and F. Vafaee, “Effect of printing parameters on the tensile strength of FDM 3D samples: a meta-analysis focusing on layer thickness and sample orientation,” Prog. Addit. Manuf., vol. 7, no. 4, pp. 565–582, 2022, doi: 10.1007/s40964-021-00247-6.
  • [26] M. F. Afrose, S. H. Masood, P. Iovenitti, M. Nikzad, and I. Sbarski, “Effects of part build orientations on fatigue behaviour of FDM-processed PLA material,” Prog. Addit. Manuf., vol. 1, no. 1–2, pp. 21–28, 2016, doi: 10.1007/s40964-015-0002-3.
  • [27] M. F. Afrose, S. H. Masood, M. Nikzad, and P. Iovenitti, “Effects of Build Orientations on Tensile Properties of PLA Material Processed by FDM,” Adv. Mater. Res., vol. 1044–1045, pp. 31–34, 2014, doi: 10.4028/www.scientific.net/AMR.1044-1045.31.
  • [28] S. Raut, V. S. Jatti, N. K. Khedkar, and T. P. Singh, “Investigation of the Effect of Built Orientation on Mechanical Properties and Total Cost of FDM Parts,” Procedia Mater. Sci., vol. 6, no. Icmpc, pp. 1625–1630, 2014, doi: 10.1016/j.mspro.2014.07.146.
  • [29] R. H. Hambali, K. Celik, P. Smith, A. Rennie, and M. Ucar, “Effect of build orientation on FDM parts:a case study for validation of deformation behaviour by FEA,” no. September, pp. 20–21, 2010, [Online]. Available: http://eprints.lancs.ac.uk/50979/
  • [30] I. Durgun and R. Ertan, “Experimental investigation of FDM process for improvement of mechanical properties and production cost,” Rapid Prototyp. J., vol. 20, no. 3, pp. 228–235, 2014, doi: 10.1108/RPJ-10-2012-0091.
  • [31] A. W. Gebisa and H. G. Lemu, “Influence of 3D printing FDM process parameters on tensile property of ultem 9085,” Procedia Manuf., vol. 30, pp. 331–338, 2019, doi: 10.1016/j.promfg.2019.02.047.
  • [32] I. J. Solomon, P. Sevvel, and J. Gunasekaran, “A review on the various processing parameters in FDM,” Mater. Today Proc., vol. 37, no. Part 2, pp. 509–514, 2020, doi: 10.1016/j.matpr.2020.05.484.
  • [33] R. D. Bintara, D. Z. Lubis, and Y. R. Aji Pradana, “The effect of layer height on the surface roughness in 3D Printed Polylactic Acid (PLA) using FDM 3D printing,” IOP Conf. Ser. Mater. Sci. Eng., vol. 1034, no. 1, p. 012096, 2021, doi: 10.1088/1757-899x/1034/1/012096.
  • [34] H. K. Dave et al., “Compressive Strength of PLA based Scaffolds: Effect of layer height, Infill Density and Print Speed,” Int. J. Mod. Manuf. Technol., vol. 11, no. 1, pp. 21–27, 2019.
  • [35] T. Nancharaiah, D. Raju, and V. Raju, “An experimental investigation on surface quality and dimensional accuracy of FDM components,” J. Emerg. Technol., vol. 1, no. 2, pp. 106–111, 2010, [Online]. Available: https://www.researchgate.net/profile/Tata-Nancharaiah-2/publication/267248480_An_experimental_investigation_on_surface_quality_and_dimensional_accuracy_of_FDM_components/links/5c9af7be92851cf0ae9a0180/An-experimental-investigation-on-surface-quality-and-dimensional-accuracy-of-FDM-components.pdf
  • [36] M. F. Afrose, S. H. Masood, M. Nikzad, and P. Iovenitti, “Effects of Build Orientations on Tensile Properties of PLA Material Processed by FDM,” Adv. Mater. Res., vol. 1044–1045, pp. 31–34, 2014, doi: 10.4028/www.scientific.net/AMR.1044-1045.31.
  • [37] J. W. Comb, W. R. Priedeman, and P. W. Turley, “FDM Technology Process Improvements,” Proc. Solid Free. Fabr. Symp., pp. 42–49, 1994.
  • [38] B. Zharylkassyn, A. Perveen, and D. Talamona, “Effect of process parameters and materials on the dimensional accuracy of FDM parts,” Mater. Today Proc., vol. 44, pp. 1307–1311, 2021, doi: 10.1016/j.matpr.2020.11.332.
  • [39] G. Kollamaram, D. M. Croker, G. M. Walker, A. Goyanes, A. W. Basit, and S. Gaisford, “Low temperature fused deposition modeling (FDM) 3D printing of thermolabile drugs,” Int. J. Pharm., vol. 545, no. 1–2, pp. 144–152, 2018, doi: 10.1016/j.ijpharm.2018.04.055.
  • [40] L. Miazio, “Impact of Print Speed on Strength of Samples Printed in FDM Technology,” Agric. Eng., vol. 23, no. 2, pp. 33–38, 2019, doi: 10.1515/agriceng-2019-0014.
  • [41] A. Nabavi-Kivi, M. R. Ayatollahi, P. Rezaeian, and N. Razavi, “Investigating the effect of printing speed and mode mixity on the fracture behavior of FDM-ABS specimens,” Theor. Appl. Fract. Mech., vol. 118, no. December 2021, p. 103223, 2022, doi: 10.1016/j.tafmec.2021.103223.
  • [42] K. M. Agarwal, P. Shubham, D. Bhatia, P. Sharma, H. Vaid, and R. Vajpeyi, “Analyzing the Impact of Print Parameters on Dimensional Variation of ABS specimens printed using Fused Deposition Modelling (FDM),” Sensors Int., vol. 3, no. September 2021, p. 100149, 2022, doi: 10.1016/j.sintl.2021.100149.
  • [43] M. L. Dezaki and M. K. A. Mohd Ariffin, “The effects of combined infill patterns on mechanical properties in fdm process,” Polymers (Basel)., vol. 12, no. 12, pp. 1–20, 2020, doi: 10.3390/polym12122792.
  • [44] A. Pandzic, D. Hodzic, and A. Milovanovic, “Effect of infill type and density on tensile properties of pla material for fdm process,” Ann. DAAAM Proc. Int. DAAAM Symp., vol. 30, no. 1, pp. 545–554, 2019, doi: 10.2507/30th.daaam.proceedings.074.
  • [45] D. Abbas, D. Mohammad Othman, H. Basil Ali, and C. Author, “Effect of infill Parameter on compression property in FDM Process,” Int. J. Eng. Res. andApplication www.ijera.com, vol. 7, no. 10, pp. 16–19, 2017, doi: 10.9790/9622-0710021619.
  • [46] M. T. Birosz, D. Ledenyák, and M. Andó, “Effect of FDM infill patterns on mechanical properties,” Polym. Test., vol. 113, no. March, 2022, doi: 10.1016/j.polymertesting.2022.107654.
  • [47] M. Qamar Tanveer, G. Mishra, S. Mishra, and R. Sharma, “Effect of infill pattern and infill density on mechanical behaviour of FDM 3D printed Parts- a current review,” Mater. Today Proc., vol. 62, pp. 100–108, 2022, doi: 10.1016/j.matpr.2022.02.310.
  • [48] K. S. Kumar, R. Soundararajan, G. Shanthosh, P. Saravanakumar, and M. Ratteesh, “Augmenting effect of infill density and annealing on mechanical properties of PETG and CFPETG composites fabricated by FDM,” Mater. Today Proc., vol. 45, pp. 2186–2191, 2021, doi: 10.1016/j.matpr.2020.10.078.
  • [49] M. Moradi, S. Meiabadi, and A. Kaplan, “3D Printed Parts with Honeycomb Internal Pattern by Fused Deposition Modelling; Experimental Characterization and Production Optimization,” Met. Mater. Int., vol. 25, no. 5, pp. 1312–1325, 2019, doi: 10.1007/s12540-019-00272-9.
  • [50] W. Kiński and P. Pietkiewicz, “Influence of the Printing Nozzle Diameter on Tensile Strength of Produced 3D Models in FDM Technology,” Agric. Eng., vol. 24, no. 3, pp. 31–38, 2020, doi: 10.1515/agriceng-2020-0024.
  • [51] I. Buj-Corral, A. Bagheri, A. Domínguez-Fernández, and R. Casado-López, “Influence of infill and nozzle diameter on porosity of FDM printed parts with rectilinear grid pattern,” Procedia Manuf., vol. 41, pp. 288–295, 2019, doi: 10.1016/j.promfg.2019.09.011.
  • [52] R. Polak, F. Sedlacek, and K. Raz, “Determination of fdmprinter settings with regard to geometrical accuracy,” Ann. DAAAM Proc. Int. DAAAM Symp., no. August 2018, pp. 561–566, 2017, doi: 10.2507/28th.daaam.proceedings.079.
  • [53] D. Syrlybayev, B. Zharylkassyn, A. Seisekulova, M. Akhmetov, A. Perveen, and D. Talamona, “Optimisation of Strength Properties of FDM Printed Parts — A,” Polymers (Basel)., vol. 13, pp. 1–35, 2021.
  • [54] M. Lalegani Dezaki, M. K. A. Mohd Ariffin, and S. Hatami, “An overview of fused deposition modelling (FDM): research, development and process optimisation,” Rapid Prototyp. J., vol. 27, no. 3, pp. 562–582, 2021, doi: 10.1108/RPJ-08-2019-0230.
  • [55] A. Garg and A. Bhattacharya, “An insight to the failure of FDM parts under tensile loading: finite element analysis and experimental study,” Int. J. Mech. Sci., vol. 120, no. June 2016, pp. 225–236, 2017, doi: 10.1016/j.ijmecsci.2016.11.032.
  • [56] D. Espalin, J. A. Ramirez, F. Medina, and R. Wicker, “Multi-material, multi-technology FDM: Exploring build process variations,” Rapid Prototyp. J., vol. 20, no. 3, pp. 236–244, 2014, doi: 10.1108/RPJ-12-2012-0112.
  • [57] M. F. Afrose, S. H. Masood, M. Nikzad, and P. Iovenitti, “Effects of Build Orientations on Tensile Properties of PLA Material Processed by FDM,” Adv. Mater. Res., vol. 1044–1045, pp. 31–34, 2014, doi: 10.4028/www.scientific.net/AMR.1044-1045.31.
  • [58] Y.-H. Choi, C.-M. Kim, H.-S. Jeong, and J.-H. Youn, “Influence of Bed Temperature on Heat Shrinkage Shape Error in FDM Additive Manufacturing of the ABS-Engineering Plastic,” World J. Eng. Technol., vol. 04, no. 03, pp. 186–192, 2016, doi: 10.4236/wjet.2016.43d022.
  • [59] A. A. Rosli, R. K. Shuib, K. M. Ishak, Z. A. A. Hamid, M. K. Abdullah, and A. Rusli, “Influence of Bed Temperature on Warpage, Shrinkage and,” no. February 2019, 2020.
  • [60] S. Deswal, R. Narang, and D. Chhabra, “Modeling and parametric optimization of FDM 3D printing process using hybrid techniques for enhancing dimensional preciseness,” Int. J. Interact. Des. Manuf., vol. 13, no. 3, pp. 1197–1214, 2019, doi: 10.1007/s12008-019-00536-z.
  • [61] J. Giri, P. Shahane, S. Jachak, R. Chadge, and P. Giri, “Optimization of fdm process parameters for dual extruder 3d printer using artificial neural network,” Mater. Today Proc., vol. 43, pp. 3242–3249, 2021, doi: 10.1016/j.matpr.2021.01.899.
  • [62] O. A. Mohamed, S. H. Masood, and J. L. Bhowmik, “Mathematical modeling and FDM process parameters optimization using response surface methodology based on Q-optimal design,” Appl. Math. Model., vol. 40, no. 23–24, pp. 10052–10073, 2016, doi: 10.1016/j.apm.2016.06.055.
  • [63] S. B. Mishra, R. Malik, and S. S. Mahapatra, “Effect of External Perimeter on Flexural Strength of FDM Build Parts,” Arab. J. Sci. Eng., vol. 42, no. 11, pp. 4587–4595, 2017, doi: 10.1007/s13369-017-2598-8.
  • [64] P. Pitayachaval and K. Masnok, “Feed rate and volume of material effects in fused deposition modeling nozzle wear,” 2017 4th Int. Conf. Ind. Eng. Appl. ICIEA 2017, pp. 39–44, 2017, doi: 10.1109/IEA.2017.7939175.
  • [65] A. D. Mazurchevici, D. Nedelcu, and R. Popa, “Additive manufacturing of composite materials by FDM technology: A review,” Indian J. Eng. Mater. Sci., vol. 27, no. 2, pp. 179–192, 2020, doi: 10.56042/ijems.v27i2.45920.
  • [66] K. A. Al-Ghamdi, “Sustainable FDM additive manufacturing of ABS components with emphasis on energy minimized and time efficient lightweight construction,” Int. J. Light. Mater. Manuf., vol. 2, no. 4, pp. 338–345, 2019, doi: 10.1016/j.ijlmm.2019.05.004.
  • [67] et al., “Influence of printing speed on production of embossing tools using FDM 3d printing technology,” J. Graph. Eng. Des., vol. 8, no. 1, pp. 19–27, 2017, doi: 10.24867/jged-2017-1-019.
  • [68] T. C. Yang and C. H. Yeh, “Morphology and mechanical properties of 3D printed wood fiber/polylactic acid composite parts using Fused Deposition Modeling (FDM): The effects of printing speed,” Polymers (Basel)., vol. 12, no. 6, p. 1334, 2020, doi: 10.3390/POLYM12061334.
  • [69] A. Makuch, M. Bajkowskl, P. Skoczylas, and L. Majewski, “DSI method in study of elements made by fused deposition modelling (FDM),” Przem. Chem., vol. 95, no. 1, pp. 84–88, 2016, [Online]. Available: https://www.cheric.org/research/tech/periodicals/view.php?seq=1438088
  • [70] M. Demirtaş and E. Avcioglu, “Ambient Relative Humidity Effects on Mechanical Properties of FDM 3D Printed PLA Components,” Phys. Scr., vol. 98, May 2023, doi: 10.1088/1402-4896/accfcf.
  • [71] J. Tyberg and J. H. Bøhn, “FDM systems and local adaptive slicing,” Mater. Des., vol. 20, no. 2–3, pp. 77–82, 1999, doi: 10.1016/s0261-3069(99)00012-6.
  • [72] Ö. ÖZMEN, H. K. SÜRMEN, and A. SEZGİN, “3 Boyutlu Baskida Do Bi̇çi̇mi̇ni̇n Çekme DayaniminEtki̇si̇,” Mühendislik Bilim. ve Tasarım Derg., vol. 11, no. 1, pp. 336–348, 2023, doi: 10.21923/jesd.1095594.
  • [73] S. BACAK, H. VAROL ÖZKAVAK, and M. M. SOFU, “Comparison of Mechanical Properties of 3D-Printed Specimens Manufactured Via FDM with Various Inner Geometries,” Iğdır Üniversitesi Fen Bilim. Enstitüsü Derg., vol. 11, no. 2, pp. 1444–1454, 2021, doi: 10.21597/jist.772977.
  • [74] A. Alafaghani, A. Qattawi, B. Alrawi, and A. Guzman, “Experimental Optimization of Fused Deposition Modelling Processing Parameters: A Design-for-Manufacturing Approach,” Procedia Manuf., vol. 10, pp. 791–803, 2017, doi: 10.1016/j.promfg.2017.07.079.
  • [75] S. Attoye, E. Malekipour, and H. El-Mounayri, “Correlation between process parameters and mechanical properties in parts printed by the fused deposition modeling process,” Conf. Proc. Soc. Exp. Mech. Ser., vol. 8, pp. 35–41, 2019, doi: 10.1007/978-3-319-95083-9_8.
  • [76] A. Chadha, M. I. Ul Haq, A. Raina, R. R. Singh, N. B. Penumarti, and M. S. Bishnoi, “Effect of fused deposition modelling process parameters on mechanical properties of 3D printed parts,” World J. Eng., vol. 16, no. 4, pp. 550–559, 2019, doi: 10.1108/WJE-09-2018-0329.
  • [77] J. Fernandes, A. M. Deus, L. Reis, M. F. Vaz, and M. Leite, “Study of the influence of 3D printing parameters on the mechanical properties of PLA,” Proc. Int. Conf. Prog. Addit. Manuf., vol. 2018-May, pp. 547–552, 2018, doi: 10.25341/D4988C.
  • [78] S. R. Rajpurohit and H. K. Dave, “Analysis of tensile strength of a fused filament fabricated PLA part using an open-source 3D printer,” Int. J. Adv. Manuf. Technol., vol. 101, no. 5–8, pp. 1525–1536, 2019, doi: 10.1007/s00170-018-3047-x.
  • [79] C. Dudescu and L. Racz, “Effects of Raster Orientation, Infill Rate and Infill Pattern on the Mechanical Properties of 3D Printed Materials,” ACTA Univ. Cibiniensis, vol. 69, no. 1, pp. 23–30, 2017, doi: 10.1515/aucts-2017-0004.
  • [80] M. GÜNAY, S. GÜNDÜZ, H. YILMAZ, N. YAŞAR, and R. KAÇAR, “PLA Esaslı Numunelerde Çekme Dayanımı İçin 3D Baskı İşlem Parametrelerinin Optimizasyonu,” Politek. Derg., vol. 23, no. 1, pp. 73–79, 2020, doi: 10.2339/politeknik.422795.
  • [81] M. M. Hanon, R. Marczis, and L. Zsidai, “Influence of the 3D printing process settings on tensile strength of PLA and HT-PLA,” Period. Polytech. Mech. Eng., vol. 65, no. 1, pp. 38–46, 2021, doi: 10.3311/PPme.13683.
  • [82] T. Kozior and C. Kundera, “Evaluation of the Influence of Parameters of FDM Technology on the Selected Mechanical Properties of Models,” Procedia Eng., vol. 192, pp. 463–468, 2017, doi: 10.1016/j.proeng.2017.06.080.
  • [83] M. Rismalia, S. Hidajat, I. Permana, B. Hadisujoto, M. Muslimin, and F. Triawan, “Infill pattern and density effects on the tensile properties of 3D printed PLA material,” J. Phys. Conf. Ser., vol. 1402, p. 44041, Dec. 2019, doi: 10.1088/1742-6596/1402/4/044041.

Eriyik Yığdırmalı Modelleme (FDM) İmalat Yöntemi Kullanılarak Üretilen Ürünler Üzerinde Polilaktik Asit (PLA) Malzemenin Etkisine Dair Bir İnceleme

Year 2023, Volume: 9 Issue: 4, 158 - 173, 31.12.2023

Abstract

Bu derleme makalesi, Eriyik Yığdırmalı Modelleme (FDM) imalat yöntemi kullanılarak üretilen ürünlerde Polilaktik Asit (PLA) malzemenin rolünü ve etkisini kapsamlı bir şekilde incelemektedir. Biyolojik uyumluluğu, biyobozunur olması ve mükemmel baskı özellikleri nedeniyle PLA, FDM aracılığıyla üç boyutlu (3D) baskı için sıkça tercih edilen bir malzemedir. Şu anda, 3D baskı teknolojileri, PLA'nın bu teknolojik ilerlemede önemli bir rol oynadığı birçok endüstri ve uygulamada hızla yayılmaktadır. PLA, mısır nişastası veya şeker kamışından türetilen bir biyoplastik olup, yenilenebilir bir polimer olarak hizmet eder. Bu özellikler, PLA'yı sürdürülebilir üretim ve çevre dostu uygulamalar için ideal kılar. FDM 3D baskıda PLA kullanımı, yüksek çözünürlük, güçlü yapışma ve işleme kolaylığı gibi avantajlar sunar. Ayrıca, PLA'nın düşük termal genleşme katsayısı, ürünlerin tutarlı bir şekilde basılmasını sağlar. PLA'nın bu özellikleri, endüstriyel prototiplerden tıbbi implantlara, ambalaj malzemelerinden oyuncaklara kadar geniş bir uygulama yelpazesinde kullanılmasını sağlar. Ancak, PLA'nın FDM 3D baskı sürecindeki performansı ve etkisi, baskı parametreleri, dolgu desenleri ve baskı yönü gibi faktörlere bağlı olarak değişebilir. Baskı parametreleri, PLA'nın erime sıcaklığı, besleme hızı ve katman kalınlığı gibi faktörleri kapsar. Dolgu desenleri ve baskı yönü, ürünün mekanik dayanıklılığını, yüzey kalitesini ve baskı süresini önemli ölçüde etkiler. Dolayısıyla, PLA'nın 3D baskıda etkin kullanımı için uygun parametrelerin belirlenmesi ve optimizasyonu hayati önem taşır. Bu derleme, FDM 3D baskı sürecinde PLA'nın rolü ve performansı hakkındaki mevcut literatürden araştırmaları toplar ve PLA'nın yapısal ve mekanik özelliklerini, baskı parametrelerinin ve dolgu desenlerinin etkisini, PLA kullanılarak üretilen ürünlerin endüstriyel uygulamalarını kapsar. Özellikle, PLA'nın fiziksel ve kimyasal özellikleri, baskı parametrelerinin optimizasyonu, dolgu desenlerinin geometrisi, baskı yönü ve katman yapısı incelenmektedir. Ayrıca, PLA kullanılarak üretilen ürünlerin mekanik dayanıklılığı, yüzey kalitesi, termal davranışı ve biyolojik uyumluluğuna odaklanılıyor. Bu çalışma, FDM 3D baskı teknolojisinin etkin kullanımını artırmak amacıyla PLA'nın özellikleri ve performansı hakkında kapsamlı bir referans sağlamayı amaçlamaktadır. Tasarım ve mühendislik alanlarında çalışan araştırmacılar, endüstri profesyonelleri ve akademisyenler için değerli bir kaynak olmayı hedeflemektedir. Ayrıca, PLA'nın gelecekteki gelişim ve yeni uygulama alanları için potansiyelini keşfetmekle ilgilenenler için önemli bilgiler sunar.

References

  • [1] B. M. M. Tymrak, M. Kreiger, and J. M. Pearce, “Mechanical properties of components fabricated with open-source 3-D printers under realistic environmental conditions,” Mater. Des., vol. 58, 2014, doi: 10.1016/j.matdes.2014.02.038ï.
  • [2] M. Sugavaneswaran and G. Arumaikkannu, “Analytical and experimental investigation on elastic modulus of reinforced additive manufactured structure,” Mater. Des., vol. 66, no. PA, pp. 29–36, Feb. 2015, doi: 10.1016/J.MATDES.2014.10.029.
  • [3] M. Domingo-Espin, J. M. Puigoriol-Forcada, A. A. Garcia-Granada, J. Llumà, S. Borros, and G. Reyes, “Mechanical property characterization and simulation of fused deposition modeling Polycarbonate parts,” Mater. Des., vol. 83, pp. 670–677, 2015, doi: 10.1016/j.matdes.2015.06.074.
  • [4] B. Rankouhi, S. Javadpour, F. Delfanian, and T. Letcher, “Failure Analysis and Mechanical Characterization of 3D Printed ABS With Respect to Layer Thickness and Orientation,” J. Fail. Anal. Prev., vol. 16, no. 3, pp. 467–481, 2016, doi: 10.1007/s11668-016-0113-2.
  • [5] J. M. Chacón, M. A. Caminero, E. García-Plaza, and P. J. Núñez, “Additive manufacturing of PLA structures using fused deposition modelling: Effect of process parameters on mechanical properties and their optimal selection,” Mater. Des., vol. 124, pp. 143–157, 2017, doi: 10.1016/j.matdes.2017.03.065.
  • [6] D. Arup and Y. Nita, “A systematic survey of RUM process parameter optimization and their influence on part characteristics of nickel 718,” Sci. Rep., vol. 13, no. 1, 2023, doi: 10.1038/s41598-023-28674-1.
  • [7] A. Jaisingh Sheoran and H. Kumar, “Fused Deposition modeling process parameters optimization and effect on mechanical properties and part quality: Review and reflection on present research,” Mater. Today Proc., vol. 21, pp. 1659–1672, 2020, doi: 10.1016/j.matpr.2019.11.296.
  • [8] A. P. Valerga, M. Batista, J. Salguero, and F. Girot, “Influence of PLA filament conditions on characteristics of FDM parts,” Materials (Basel)., vol. 11, no. 8, 2018, doi: 10.3390/ma11081322.
  • [9] A. Lanzotti, M. Grasso, G. Staiano, and M. Martorelli, “The impact of process parameters on mechanical properties of parts fabricated in PLA with an open-source 3-D printer,” Rapid Prototyp. J., vol. 21, no. 5, pp. 604–617, 2015, doi: 10.1108/RPJ-09-2014-0135.
  • [10] J. Kotlinski, “Mechanical properties of commercial rapid prototyping materials,” Rapid Prototyp. J., vol. 20, no. 6, pp. 499–510, 2014, doi: 10.1108/RPJ-06-2012-0052.
  • [11] O. A. Mohamed, S. H. Masood, and J. L. Bhowmik, “Optimization of fused deposition modeling process parameters: a review of current research and future prospects,” Adv. Manuf., vol. 3, no. 1, pp. 42–53, 2015, doi: 10.1007/s40436-014-0097-7.
  • [12] K. Thrimurthulu, P. M. Pandey, and N. V. Reddy, “Optimum part deposition orientation in fused deposition modeling,” Int. J. Mach. Tools Manuf., vol. 44, no. 6, pp. 585–594, 2004, doi: 10.1016/j.ijmachtools.2003.12.004.
  • [13] A. Boschetto and L. Bottini, “Accuracy prediction in fused deposition modeling,” Int. J. Adv. Manuf. Technol., vol. 73, no. 5–8, pp. 913–928, 2014, doi: 10.1007/s00170-014-5886-4.
  • [14] K. Rajan, M. Samykano, K. Kadirgama, W. S. W. Harun, and M. M. Rahman, Fused deposition modeling: process, materials, parameters, properties, and applications, vol. 120, no. 3–4. Springer London, 2022. doi: 10.1007/s00170-022-08860-7.
  • [15] T. Grimm, “17. Fused deposition modeling: a technology evaluation,” Time-Compression Technol., vol. 11, no. 2, pp. 1–6, 2003, [Online]. Available: http://www.trosol.com/fortus/downloads/WPGrimm.pdf
  • [16] O. S. Carneiro, A. F. Silva, and R. Gomes, “Fused deposition modeling with polypropylene,” Mater. Des., vol. 83, pp. 768–776, 2015, doi: 10.1016/j.matdes.2015.06.053.
  • [17] A. Bellini and S. Güçeri, “Mechanical characterization of parts fabricated using fused deposition modeling,” Rapid Prototyp. J., vol. 9, no. 4, pp. 252–264, 2003, doi: 10.1108/13552540310489631.
  • [18] D. K. Ahn, S. M. Kwon, and S. H. Lee, “Representation for surface roughness distribution of FDM processed parts,” ICSMA 2008 - Int. Conf. Smart Manuf. Appl., no. May 2008, pp. 490–493, 2008, doi: 10.1109/ICSMA.2008.4505572.
  • [19] J. R. C. Dizon, A. H. Espera, Q. Chen, and R. C. Advincula, “Mechanical characterization of 3D-printed polymers,” Addit. Manuf., vol. 20, pp. 44–67, 2018, doi: 10.1016/j.addma.2017.12.002.
  • [20] V. Shanmugam, M. V. Pavan, K. Babu, and B. Karnan, “Fused deposition modeling based polymeric materials and their performance: A review,” Polym. Compos., vol. 42, no. 11, pp. 5656–5677, 2021, doi: 10.1002/pc.26275.
  • [21] K. G. J. Christiyan, U. Chandrasekhar, and K. Venkateswarlu, “A study on the influence of process parameters on the Mechanical Properties of 3D printed ABS composite,” IOP Conf. Ser. Mater. Sci. Eng., vol. 114, no. 1, 2016, doi: 10.1088/1757-899X/114/1/012109.
  • [22] J. J. Laureto and J. M. Pearce, “Anisotropic mechanical property variance between ASTM D638-14 type i and type iv fused filament fabricated specimens,” Polym. Test., vol. 68, no. March, pp. 294–301, 2018, doi: 10.1016/j.polymertesting.2018.04.029.
  • [23] O. Lužanin, D. Movrin, and M. Plan, “Effect of Layer Thickness, Deposition Angle, and Infill on Maximum Flexural Force in Fdm-Built Specimens,” vol. 39, no. 1, 2014, [Online]. Available: http://www.dpm.ftn.uns.ac.rs/jtp/download/2014/1/Article6.pdf
  • [24] W. Wu, P. Geng, G. Li, D. Zhao, H. Zhang, and J. Zhao, “Influence of layer thickness and raster angle on the mechanical properties of 3D-printed PEEK and a comparative mechanical study between PEEK and ABS,” Materials (Basel)., vol. 8, no. 9, pp. 5834–5846, 2015, doi: 10.3390/ma8095271.
  • [25] S. Farashi and F. Vafaee, “Effect of printing parameters on the tensile strength of FDM 3D samples: a meta-analysis focusing on layer thickness and sample orientation,” Prog. Addit. Manuf., vol. 7, no. 4, pp. 565–582, 2022, doi: 10.1007/s40964-021-00247-6.
  • [26] M. F. Afrose, S. H. Masood, P. Iovenitti, M. Nikzad, and I. Sbarski, “Effects of part build orientations on fatigue behaviour of FDM-processed PLA material,” Prog. Addit. Manuf., vol. 1, no. 1–2, pp. 21–28, 2016, doi: 10.1007/s40964-015-0002-3.
  • [27] M. F. Afrose, S. H. Masood, M. Nikzad, and P. Iovenitti, “Effects of Build Orientations on Tensile Properties of PLA Material Processed by FDM,” Adv. Mater. Res., vol. 1044–1045, pp. 31–34, 2014, doi: 10.4028/www.scientific.net/AMR.1044-1045.31.
  • [28] S. Raut, V. S. Jatti, N. K. Khedkar, and T. P. Singh, “Investigation of the Effect of Built Orientation on Mechanical Properties and Total Cost of FDM Parts,” Procedia Mater. Sci., vol. 6, no. Icmpc, pp. 1625–1630, 2014, doi: 10.1016/j.mspro.2014.07.146.
  • [29] R. H. Hambali, K. Celik, P. Smith, A. Rennie, and M. Ucar, “Effect of build orientation on FDM parts:a case study for validation of deformation behaviour by FEA,” no. September, pp. 20–21, 2010, [Online]. Available: http://eprints.lancs.ac.uk/50979/
  • [30] I. Durgun and R. Ertan, “Experimental investigation of FDM process for improvement of mechanical properties and production cost,” Rapid Prototyp. J., vol. 20, no. 3, pp. 228–235, 2014, doi: 10.1108/RPJ-10-2012-0091.
  • [31] A. W. Gebisa and H. G. Lemu, “Influence of 3D printing FDM process parameters on tensile property of ultem 9085,” Procedia Manuf., vol. 30, pp. 331–338, 2019, doi: 10.1016/j.promfg.2019.02.047.
  • [32] I. J. Solomon, P. Sevvel, and J. Gunasekaran, “A review on the various processing parameters in FDM,” Mater. Today Proc., vol. 37, no. Part 2, pp. 509–514, 2020, doi: 10.1016/j.matpr.2020.05.484.
  • [33] R. D. Bintara, D. Z. Lubis, and Y. R. Aji Pradana, “The effect of layer height on the surface roughness in 3D Printed Polylactic Acid (PLA) using FDM 3D printing,” IOP Conf. Ser. Mater. Sci. Eng., vol. 1034, no. 1, p. 012096, 2021, doi: 10.1088/1757-899x/1034/1/012096.
  • [34] H. K. Dave et al., “Compressive Strength of PLA based Scaffolds: Effect of layer height, Infill Density and Print Speed,” Int. J. Mod. Manuf. Technol., vol. 11, no. 1, pp. 21–27, 2019.
  • [35] T. Nancharaiah, D. Raju, and V. Raju, “An experimental investigation on surface quality and dimensional accuracy of FDM components,” J. Emerg. Technol., vol. 1, no. 2, pp. 106–111, 2010, [Online]. Available: https://www.researchgate.net/profile/Tata-Nancharaiah-2/publication/267248480_An_experimental_investigation_on_surface_quality_and_dimensional_accuracy_of_FDM_components/links/5c9af7be92851cf0ae9a0180/An-experimental-investigation-on-surface-quality-and-dimensional-accuracy-of-FDM-components.pdf
  • [36] M. F. Afrose, S. H. Masood, M. Nikzad, and P. Iovenitti, “Effects of Build Orientations on Tensile Properties of PLA Material Processed by FDM,” Adv. Mater. Res., vol. 1044–1045, pp. 31–34, 2014, doi: 10.4028/www.scientific.net/AMR.1044-1045.31.
  • [37] J. W. Comb, W. R. Priedeman, and P. W. Turley, “FDM Technology Process Improvements,” Proc. Solid Free. Fabr. Symp., pp. 42–49, 1994.
  • [38] B. Zharylkassyn, A. Perveen, and D. Talamona, “Effect of process parameters and materials on the dimensional accuracy of FDM parts,” Mater. Today Proc., vol. 44, pp. 1307–1311, 2021, doi: 10.1016/j.matpr.2020.11.332.
  • [39] G. Kollamaram, D. M. Croker, G. M. Walker, A. Goyanes, A. W. Basit, and S. Gaisford, “Low temperature fused deposition modeling (FDM) 3D printing of thermolabile drugs,” Int. J. Pharm., vol. 545, no. 1–2, pp. 144–152, 2018, doi: 10.1016/j.ijpharm.2018.04.055.
  • [40] L. Miazio, “Impact of Print Speed on Strength of Samples Printed in FDM Technology,” Agric. Eng., vol. 23, no. 2, pp. 33–38, 2019, doi: 10.1515/agriceng-2019-0014.
  • [41] A. Nabavi-Kivi, M. R. Ayatollahi, P. Rezaeian, and N. Razavi, “Investigating the effect of printing speed and mode mixity on the fracture behavior of FDM-ABS specimens,” Theor. Appl. Fract. Mech., vol. 118, no. December 2021, p. 103223, 2022, doi: 10.1016/j.tafmec.2021.103223.
  • [42] K. M. Agarwal, P. Shubham, D. Bhatia, P. Sharma, H. Vaid, and R. Vajpeyi, “Analyzing the Impact of Print Parameters on Dimensional Variation of ABS specimens printed using Fused Deposition Modelling (FDM),” Sensors Int., vol. 3, no. September 2021, p. 100149, 2022, doi: 10.1016/j.sintl.2021.100149.
  • [43] M. L. Dezaki and M. K. A. Mohd Ariffin, “The effects of combined infill patterns on mechanical properties in fdm process,” Polymers (Basel)., vol. 12, no. 12, pp. 1–20, 2020, doi: 10.3390/polym12122792.
  • [44] A. Pandzic, D. Hodzic, and A. Milovanovic, “Effect of infill type and density on tensile properties of pla material for fdm process,” Ann. DAAAM Proc. Int. DAAAM Symp., vol. 30, no. 1, pp. 545–554, 2019, doi: 10.2507/30th.daaam.proceedings.074.
  • [45] D. Abbas, D. Mohammad Othman, H. Basil Ali, and C. Author, “Effect of infill Parameter on compression property in FDM Process,” Int. J. Eng. Res. andApplication www.ijera.com, vol. 7, no. 10, pp. 16–19, 2017, doi: 10.9790/9622-0710021619.
  • [46] M. T. Birosz, D. Ledenyák, and M. Andó, “Effect of FDM infill patterns on mechanical properties,” Polym. Test., vol. 113, no. March, 2022, doi: 10.1016/j.polymertesting.2022.107654.
  • [47] M. Qamar Tanveer, G. Mishra, S. Mishra, and R. Sharma, “Effect of infill pattern and infill density on mechanical behaviour of FDM 3D printed Parts- a current review,” Mater. Today Proc., vol. 62, pp. 100–108, 2022, doi: 10.1016/j.matpr.2022.02.310.
  • [48] K. S. Kumar, R. Soundararajan, G. Shanthosh, P. Saravanakumar, and M. Ratteesh, “Augmenting effect of infill density and annealing on mechanical properties of PETG and CFPETG composites fabricated by FDM,” Mater. Today Proc., vol. 45, pp. 2186–2191, 2021, doi: 10.1016/j.matpr.2020.10.078.
  • [49] M. Moradi, S. Meiabadi, and A. Kaplan, “3D Printed Parts with Honeycomb Internal Pattern by Fused Deposition Modelling; Experimental Characterization and Production Optimization,” Met. Mater. Int., vol. 25, no. 5, pp. 1312–1325, 2019, doi: 10.1007/s12540-019-00272-9.
  • [50] W. Kiński and P. Pietkiewicz, “Influence of the Printing Nozzle Diameter on Tensile Strength of Produced 3D Models in FDM Technology,” Agric. Eng., vol. 24, no. 3, pp. 31–38, 2020, doi: 10.1515/agriceng-2020-0024.
  • [51] I. Buj-Corral, A. Bagheri, A. Domínguez-Fernández, and R. Casado-López, “Influence of infill and nozzle diameter on porosity of FDM printed parts with rectilinear grid pattern,” Procedia Manuf., vol. 41, pp. 288–295, 2019, doi: 10.1016/j.promfg.2019.09.011.
  • [52] R. Polak, F. Sedlacek, and K. Raz, “Determination of fdmprinter settings with regard to geometrical accuracy,” Ann. DAAAM Proc. Int. DAAAM Symp., no. August 2018, pp. 561–566, 2017, doi: 10.2507/28th.daaam.proceedings.079.
  • [53] D. Syrlybayev, B. Zharylkassyn, A. Seisekulova, M. Akhmetov, A. Perveen, and D. Talamona, “Optimisation of Strength Properties of FDM Printed Parts — A,” Polymers (Basel)., vol. 13, pp. 1–35, 2021.
  • [54] M. Lalegani Dezaki, M. K. A. Mohd Ariffin, and S. Hatami, “An overview of fused deposition modelling (FDM): research, development and process optimisation,” Rapid Prototyp. J., vol. 27, no. 3, pp. 562–582, 2021, doi: 10.1108/RPJ-08-2019-0230.
  • [55] A. Garg and A. Bhattacharya, “An insight to the failure of FDM parts under tensile loading: finite element analysis and experimental study,” Int. J. Mech. Sci., vol. 120, no. June 2016, pp. 225–236, 2017, doi: 10.1016/j.ijmecsci.2016.11.032.
  • [56] D. Espalin, J. A. Ramirez, F. Medina, and R. Wicker, “Multi-material, multi-technology FDM: Exploring build process variations,” Rapid Prototyp. J., vol. 20, no. 3, pp. 236–244, 2014, doi: 10.1108/RPJ-12-2012-0112.
  • [57] M. F. Afrose, S. H. Masood, M. Nikzad, and P. Iovenitti, “Effects of Build Orientations on Tensile Properties of PLA Material Processed by FDM,” Adv. Mater. Res., vol. 1044–1045, pp. 31–34, 2014, doi: 10.4028/www.scientific.net/AMR.1044-1045.31.
  • [58] Y.-H. Choi, C.-M. Kim, H.-S. Jeong, and J.-H. Youn, “Influence of Bed Temperature on Heat Shrinkage Shape Error in FDM Additive Manufacturing of the ABS-Engineering Plastic,” World J. Eng. Technol., vol. 04, no. 03, pp. 186–192, 2016, doi: 10.4236/wjet.2016.43d022.
  • [59] A. A. Rosli, R. K. Shuib, K. M. Ishak, Z. A. A. Hamid, M. K. Abdullah, and A. Rusli, “Influence of Bed Temperature on Warpage, Shrinkage and,” no. February 2019, 2020.
  • [60] S. Deswal, R. Narang, and D. Chhabra, “Modeling and parametric optimization of FDM 3D printing process using hybrid techniques for enhancing dimensional preciseness,” Int. J. Interact. Des. Manuf., vol. 13, no. 3, pp. 1197–1214, 2019, doi: 10.1007/s12008-019-00536-z.
  • [61] J. Giri, P. Shahane, S. Jachak, R. Chadge, and P. Giri, “Optimization of fdm process parameters for dual extruder 3d printer using artificial neural network,” Mater. Today Proc., vol. 43, pp. 3242–3249, 2021, doi: 10.1016/j.matpr.2021.01.899.
  • [62] O. A. Mohamed, S. H. Masood, and J. L. Bhowmik, “Mathematical modeling and FDM process parameters optimization using response surface methodology based on Q-optimal design,” Appl. Math. Model., vol. 40, no. 23–24, pp. 10052–10073, 2016, doi: 10.1016/j.apm.2016.06.055.
  • [63] S. B. Mishra, R. Malik, and S. S. Mahapatra, “Effect of External Perimeter on Flexural Strength of FDM Build Parts,” Arab. J. Sci. Eng., vol. 42, no. 11, pp. 4587–4595, 2017, doi: 10.1007/s13369-017-2598-8.
  • [64] P. Pitayachaval and K. Masnok, “Feed rate and volume of material effects in fused deposition modeling nozzle wear,” 2017 4th Int. Conf. Ind. Eng. Appl. ICIEA 2017, pp. 39–44, 2017, doi: 10.1109/IEA.2017.7939175.
  • [65] A. D. Mazurchevici, D. Nedelcu, and R. Popa, “Additive manufacturing of composite materials by FDM technology: A review,” Indian J. Eng. Mater. Sci., vol. 27, no. 2, pp. 179–192, 2020, doi: 10.56042/ijems.v27i2.45920.
  • [66] K. A. Al-Ghamdi, “Sustainable FDM additive manufacturing of ABS components with emphasis on energy minimized and time efficient lightweight construction,” Int. J. Light. Mater. Manuf., vol. 2, no. 4, pp. 338–345, 2019, doi: 10.1016/j.ijlmm.2019.05.004.
  • [67] et al., “Influence of printing speed on production of embossing tools using FDM 3d printing technology,” J. Graph. Eng. Des., vol. 8, no. 1, pp. 19–27, 2017, doi: 10.24867/jged-2017-1-019.
  • [68] T. C. Yang and C. H. Yeh, “Morphology and mechanical properties of 3D printed wood fiber/polylactic acid composite parts using Fused Deposition Modeling (FDM): The effects of printing speed,” Polymers (Basel)., vol. 12, no. 6, p. 1334, 2020, doi: 10.3390/POLYM12061334.
  • [69] A. Makuch, M. Bajkowskl, P. Skoczylas, and L. Majewski, “DSI method in study of elements made by fused deposition modelling (FDM),” Przem. Chem., vol. 95, no. 1, pp. 84–88, 2016, [Online]. Available: https://www.cheric.org/research/tech/periodicals/view.php?seq=1438088
  • [70] M. Demirtaş and E. Avcioglu, “Ambient Relative Humidity Effects on Mechanical Properties of FDM 3D Printed PLA Components,” Phys. Scr., vol. 98, May 2023, doi: 10.1088/1402-4896/accfcf.
  • [71] J. Tyberg and J. H. Bøhn, “FDM systems and local adaptive slicing,” Mater. Des., vol. 20, no. 2–3, pp. 77–82, 1999, doi: 10.1016/s0261-3069(99)00012-6.
  • [72] Ö. ÖZMEN, H. K. SÜRMEN, and A. SEZGİN, “3 Boyutlu Baskida Do Bi̇çi̇mi̇ni̇n Çekme DayaniminEtki̇si̇,” Mühendislik Bilim. ve Tasarım Derg., vol. 11, no. 1, pp. 336–348, 2023, doi: 10.21923/jesd.1095594.
  • [73] S. BACAK, H. VAROL ÖZKAVAK, and M. M. SOFU, “Comparison of Mechanical Properties of 3D-Printed Specimens Manufactured Via FDM with Various Inner Geometries,” Iğdır Üniversitesi Fen Bilim. Enstitüsü Derg., vol. 11, no. 2, pp. 1444–1454, 2021, doi: 10.21597/jist.772977.
  • [74] A. Alafaghani, A. Qattawi, B. Alrawi, and A. Guzman, “Experimental Optimization of Fused Deposition Modelling Processing Parameters: A Design-for-Manufacturing Approach,” Procedia Manuf., vol. 10, pp. 791–803, 2017, doi: 10.1016/j.promfg.2017.07.079.
  • [75] S. Attoye, E. Malekipour, and H. El-Mounayri, “Correlation between process parameters and mechanical properties in parts printed by the fused deposition modeling process,” Conf. Proc. Soc. Exp. Mech. Ser., vol. 8, pp. 35–41, 2019, doi: 10.1007/978-3-319-95083-9_8.
  • [76] A. Chadha, M. I. Ul Haq, A. Raina, R. R. Singh, N. B. Penumarti, and M. S. Bishnoi, “Effect of fused deposition modelling process parameters on mechanical properties of 3D printed parts,” World J. Eng., vol. 16, no. 4, pp. 550–559, 2019, doi: 10.1108/WJE-09-2018-0329.
  • [77] J. Fernandes, A. M. Deus, L. Reis, M. F. Vaz, and M. Leite, “Study of the influence of 3D printing parameters on the mechanical properties of PLA,” Proc. Int. Conf. Prog. Addit. Manuf., vol. 2018-May, pp. 547–552, 2018, doi: 10.25341/D4988C.
  • [78] S. R. Rajpurohit and H. K. Dave, “Analysis of tensile strength of a fused filament fabricated PLA part using an open-source 3D printer,” Int. J. Adv. Manuf. Technol., vol. 101, no. 5–8, pp. 1525–1536, 2019, doi: 10.1007/s00170-018-3047-x.
  • [79] C. Dudescu and L. Racz, “Effects of Raster Orientation, Infill Rate and Infill Pattern on the Mechanical Properties of 3D Printed Materials,” ACTA Univ. Cibiniensis, vol. 69, no. 1, pp. 23–30, 2017, doi: 10.1515/aucts-2017-0004.
  • [80] M. GÜNAY, S. GÜNDÜZ, H. YILMAZ, N. YAŞAR, and R. KAÇAR, “PLA Esaslı Numunelerde Çekme Dayanımı İçin 3D Baskı İşlem Parametrelerinin Optimizasyonu,” Politek. Derg., vol. 23, no. 1, pp. 73–79, 2020, doi: 10.2339/politeknik.422795.
  • [81] M. M. Hanon, R. Marczis, and L. Zsidai, “Influence of the 3D printing process settings on tensile strength of PLA and HT-PLA,” Period. Polytech. Mech. Eng., vol. 65, no. 1, pp. 38–46, 2021, doi: 10.3311/PPme.13683.
  • [82] T. Kozior and C. Kundera, “Evaluation of the Influence of Parameters of FDM Technology on the Selected Mechanical Properties of Models,” Procedia Eng., vol. 192, pp. 463–468, 2017, doi: 10.1016/j.proeng.2017.06.080.
  • [83] M. Rismalia, S. Hidajat, I. Permana, B. Hadisujoto, M. Muslimin, and F. Triawan, “Infill pattern and density effects on the tensile properties of 3D printed PLA material,” J. Phys. Conf. Ser., vol. 1402, p. 44041, Dec. 2019, doi: 10.1088/1742-6596/1402/4/044041.
There are 83 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering (Other)
Journal Section Review
Authors

Abdullah Burak Keşkekçi 0000-0001-8432-7470

Merdan Özkahraman 0000-0002-3501-6497

Hilmi Cenk Bayrakçı 0000-0001-5064-7310

Publication Date December 31, 2023
Submission Date November 18, 2023
Acceptance Date December 11, 2023
Published in Issue Year 2023 Volume: 9 Issue: 4

Cite

IEEE A. B. Keşkekçi, M. Özkahraman, and H. C. Bayrakçı, “A Review on the Impact of Polylactic Acid (PLA) Material on Products Manufactured Using Fused Deposition Modeling (FDM) Additive Manufacturing Method”, GJES, vol. 9, no. 4, pp. 158–173, 2023.

Gazi Journal of Engineering Sciences (GJES) publishes open access articles under a Creative Commons Attribution 4.0 International License (CC BY). 1366_2000-copia-2.jpg