Research Article
BibTex RIS Cite

Eklemeli İmalat ile Üretilen PLA Parçaların Yorulma Ömründe Test Frekansının Etkileri Üzerine Bir Çalışma

Year 2024, Volume: 10 Issue: 1, 60 - 71, 30.04.2024

Abstract

Malzemelerin yorulma testleri, tüm süreç dikkate alındığında diğer birçok mekanik teste göre daha uzun süre gerektirmektedir. Test süresini etkileyen en önemli faktörlerden biri yorulma test frekansıdır. Bu çalışmada Eİ tekniğiyle üretilen PLA parçalara farklı test frekanslarında yorulma testi uygulanmış ve test frekansının etkileri araştırılmıştır. Yorulma testlerinde dört farklı gerilme seviyesi uygulanmış ve testler 2 Hz, 4 Hz, 6 Hz ve 8 Hz olmak üzere dört farklı frekansta gerçekleştirilmiştir. Uygulanan gerilme seviyelerine göre değişen test frekanslarında farklı yorulma ömürleri bulunmuştur. 1. Gerilme seviyesinde artan test frekansıyla bulunan yorulma ömründe yaklaşık %44 azalma görülmüştür. 3. Gerilme seviyesi ve sonrası yorulma ömrü artan trend göstermiştir. 4. Gerilme seviyesinde test frekansı 2 Hz’den 8 Hz’e değiştirildiğinde yorulma ömrü %45 artmıştır. Genel olarak, belirli yorulma ömür değerinden sonra artan test frekansının yorulma ömrünü arttırma eğiliminde olduğu görülmüştür.

References

  • [1] G. Akıncıoğlu and E. Aslan, “Investigation of tribological properties of amorphous thermoplastic samples with different filling densities produced by an additive manufacturing method,” Gazi Journal of Engineering Sciences, vol. 8, no. 3, pp. 540–546, Dec. 2021, doi: 10.30855/gmbd.0705041.
  • [2] M. S. Kamer, Ş. Temi̇z, H. Yaykaşlı, and A. Kaya, “3 Boyutlu yazıcı ile farklı renklerde ve farklı dolgu desenlerinde üretilen çekme test numunelerinin mekanik özelliklerinin incelenmesi,” Uludağ University Journal of The Faculty of Engineering, pp. 829–848, Dec. 2021, doi: 10.17482/uumfd.887786.
  • [3] B. Sağbaş, and B. Gavcar, “Biyomedikal uygulamalar için titanyum alaşımlarının eklemeli imalatı,” Uluborlu Mesleki Bilimler Dergisi, vol. 5, no. 1, pp. 54–74, 2022.
  • [4] I. Jasiuk, D. W. Abueidda, C. Kozuch, S. Pang, F. Y. Su, and J. McKittrick, “An overview on additive manufacturing of polymers,” JOM, vol. 70, no. 3, pp. 275–283, Mar. 2018, doi: 10.1007/s11837-017-2730-y.
  • [5] V. Shanmugam, O. Das, K. Babu, U. Marimuthu, A. Veerasimman, D.J. Johnson, R.E. Neisiany, M.S. Hedenqvist, S. Ramakrishna, and F. Berto, “Fatigue behaviour of FDM-3D printed polymers, polymeric composites and architected cellular materials,” International Journal of Fatigue, vol. 143, p. 106007, Feb. 2021, doi: 10.1016/j.ijfatigue.2020.106007.
  • [6] S. Karabeyoğlu, B. Ergene, and Ç. Bolat, “An experimental study on wear performance of electrolytic multilayer Cu-Ni-Cr coated ABS under different test forces,” El-Cezeri Fen ve Mühendislik Dergisi, Mar. 2021, doi: 10.31202/ecjse.862808.
  • [7] İ. İstif, “Eriyik yığma modelleme ile üretilen PLA parçalarının kuru sürtünmeli aşınma davranışlarının tanılanması,” Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi, Feb. 2021, doi: 10.24012/dumf.855768.
  • [8] O. Doğan and M. S. Kamer, “Farklı üretim parametreleri kullanılarak 3B yazıcı ile üretilen test numunelerinin sürünme davranışlarının deneysel olarak incelenmesi,” Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol. 38, no. 3, pp. 1839–1848, Jan. 2023, doi: 10.17341/gazimmfd.1122973.
  • [9] B. Kaygusuz, and S. Özerinç, “3 boyutlu yazıcı ile üretilen PLA bazlı yapıların mekanik özelliklerinin incelenmesi,” Makine Tasarım ve İmalat Dergisi, vol. 16, no. 1, pp. 1–6, 2018.
  • [10] N.-A.A.B. Taib, M.R. Rahman, D. Huda, K.K. Kuok, S. Hamdan, M.K.B. Bakri, M.R.M.B. Julaihi, and A. Khan, “A review on poly lactic acid (PLA) as a biodegradable polymer,” Polymer Bulletin, vol. 80, no. 2, pp. 1179–1213, Feb. 2023, doi: 10.1007/s00289-022-04160-y.
  • [11] M.-H. Hsueh, C.-J. Lai, S.-H. Wang, Y.-S. Zeng, C.-H. Hsieh, C.-Y. Pan, and W.-C. Huang, “Effect of printing parameters on the thermal and mechanical properties of 3D-printed PLA and PETG, using fused deposition modeling,” Polymers, vol. 13, no. 11, p. 1758, May 2021, doi: 10.3390/polym13111758.
  • [12] M.-H. Hsueh, C.-J. Lai, C.-F. Chung, S.-H. Wang, W.-C. Huang, C.-Y. Pan, Y.-S. Zeng, and C.-H. Hsieh, “Effect of printing parameters on the tensile properties of 3D-printed polylactic acid (PLA) based on fused deposition modeling,” Polymers, vol. 13, no. 14, p. 2387, Jul. 2021, doi: 10.3390/polym13142387.
  • [13] M. S. Kamer, O. Doğan, Ş. Temi̇z, and H. Yaykaşlı, “3 Boyutlu yazıcı ile farklı yazdırma parametreleri kullanılarak üretilen eğme test numunelerinin mekanik özelliklerinin incelenmesi,” Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, vol. 36, no. 3, pp. 835–846, Sep. 2021, doi: 10.21605/cukurovaumfd.1005909.
  • [14] M. Kam, H. Saruhan, and A. İpekçi̇, “Investigation the effect of 3D printer system vibrations on surface roughness of the printed products,” Düzce Üniversitesi Bilim ve Teknoloji Dergisi, vol. 7, no. 2, pp. 147–157, Mar. 2019, doi: 10.29130/dubited.441221.
  • [15] G. Acar Yavuz, B. Gören Kıral, S. Katre, and D. Ati̇lla, “Effects of topology and material on mechanical properties of structures produced by the additive manufacturing method,” Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi, vol. 23, no. 69, pp. 755–765, Sep. 2021, doi: 10.21205/deufmd.2021236905.
  • [16] H. Bakhtiari, M. Aamir, and M. Tolouei-Rad, “Effect of 3D printing parameters on the fatigue properties of parts manufactured by fused filament fabrication: a review,” Applied Sciences, vol. 13, no. 2, p. 904, Jan. 2023, doi: 10.3390/app13020904.
  • [17] A. Şık, A. Atak, C. Yavuz, and V. Özdemir, “The design of fatigue strength machine being one of the methods for determining the mechanical properties of the materials used in the industry,” Gazi University Journal of Science Part A: Engineering and Innovation, vol. 5, no. 2, pp. 79–88, 2018.
  • [18] O. H. Ezeh and L. Susmel, “Fatigue strength of additively manufactured polylactide (PLA): effect of raster angle and non-zero mean stresses,” International Journal of Fatigue, vol. 126, pp. 319–326, Sep. 2019, doi: 10.1016/j.ijfatigue.2019.05.014.
  • [19] G. Gomez-Gras, R. Jerez-Mesa, J. A. Travieso-Rodriguez, and J. Lluma-Fuentes, “Fatigue performance of fused filament fabrication PLA specimens,” Materials & Design, vol. 140, pp. 278–285, Feb. 2018, doi: 10.1016/j.matdes.2017.11.072.
  • [20] M. Azadi, A. Dadashi, S. Dezianian, M. Kianifar, S. Torkaman, and M. Chiyani, “High-cycle bending fatigue properties of additive-manufactured ABS and PLA polymers fabricated by fused deposition modeling 3D-printing,” Forces in Mechanics, vol. 3, p. 100016, Sep. 2021, doi: 10.1016/j.finmec.2021.100016.
  • [21] L. Safai, J. S. Cuellar, G. Smit, and A. A. Zadpoor, “A review of the fatigue behavior of 3D printed polymers,” Additive Manufacturing, vol. 28, pp. 87–97, Aug. 2019, doi: 10.1016/j.addma.2019.03.023.
  • [22] C. W. Ziemian, R. D. Ziemian, and K. V. Haile, “Characterization of stiffness degradation caused by fatigue damage of additive manufactured parts,” Materials & Design, vol. 109, pp. 209–218, Nov. 2016, doi: 10.1016/j.matdes.2016.07.080.
  • [23] J. A. Travieso-Rodriguez, M. D. Zandi, R. Jerez-Mesa, and J. Lluma-Fuentes, “Fatigue behavior of PLA-wood composite manufactured by fused filament fabrication,” Journal of Materials Research and Technology, vol. 9, no. 4, pp. 8507–8516, Jul. 2020, doi: 10.1016/j.jmrt.2020.06.003.
  • [24] ASTM D638-14, "Standard test method for tensile properties of plastics", (2014).
  • [25] P. Yadav, A. Sahai, and R. S. Sharma, “Experimental studies on the mechanical behaviour of three-dimensional PLA printed parts by fused filament fabrication,” Journal of The Institution of Engineers (India): Series D, vol. 104, no. 1, pp. 233–245, Jun. 2023, doi: 10.1007/s40033-022-00403-4.
  • [26] M. F. Afrose, S. H. Masood, P. Iovenitti, M. Nikzad, and I. Sbarski, “Effects of part build orientations on fatigue behaviour of FDM-processed PLA material,” Progress in Additive Manufacturing, vol. 1, no. 1–2, pp. 21–28, Jun. 2016, doi: 10.1007/s40964-015-0002-3.
  • [27] A. El Magri, S. Vanaei, M. Shirinbayan, S. Vaudreuil, and A. Tcharkhtchi, “An investigation to study the effect of process parameters on the strength and fatigue behavior of 3D-printed PLA-graphene,” Polymers, vol. 13, no. 19, p. 3218, Sep. 2021, doi: 10.3390/polym13193218.
  • [28] Y. Ueki, “High-speed bending-fatigue testing of composite materials,” IOP Conference Series: Materials Science and Engineering, vol. 388, p. 012008, Jul. 2018, doi: 10.1088/1757-899X/388/1/012008.
  • [29] W. Hu, W. Huang, Y. Sun, W. Zhang, L. Tan, S. Zhang, G. Ma, D. Zhang, and Q. Wang, “Influence of load frequency and corrosive environments on fatigue behavior of as-extruded Mg–Zn–Zr–Nd alloy,” Journal of Materials Research and Technology, vol. 22, pp. 2627–2640, Jan. 2023, doi: 10.1016/j.jmrt.2022.12.114.

A Study on the Effects of Test Frequency on the Fatigue Life of PLA Parts Manufactured by Additive Manufacturing

Year 2024, Volume: 10 Issue: 1, 60 - 71, 30.04.2024

Abstract

Fatigue tests of materials require longer time than most other mechanical tests when the enitre process is considered. One of the most critical factors affecting the test time is the test frequency. In this study, fatigue tests at different test frequencies were applied to the PLA parts produced by the additive manufacturing (AM) technique, and the effects of test frequency were investigated. In the fatigue tests, four different stress levels were applied, and the tests were carried out at four different frequencies: 2 Hz, 4 Hz, 6 Hz, and 8 Hz. The fatigue life of the samples changed according to the applied stress levels at varying test frequencies. There was an approximately 44% decrease in the fatigue life found with increasing test frequency at the 1st stress level Fatigue life showed an increasing trend at and after the 3rd stress level. At the 4th stress level, fatigue life increased by 45% when the test frequency was changed from 2 Hz to 8 Hz. In general, after a specific fatigue life, it was observed that increasing test frequency tended to increase the fatigue life.

References

  • [1] G. Akıncıoğlu and E. Aslan, “Investigation of tribological properties of amorphous thermoplastic samples with different filling densities produced by an additive manufacturing method,” Gazi Journal of Engineering Sciences, vol. 8, no. 3, pp. 540–546, Dec. 2021, doi: 10.30855/gmbd.0705041.
  • [2] M. S. Kamer, Ş. Temi̇z, H. Yaykaşlı, and A. Kaya, “3 Boyutlu yazıcı ile farklı renklerde ve farklı dolgu desenlerinde üretilen çekme test numunelerinin mekanik özelliklerinin incelenmesi,” Uludağ University Journal of The Faculty of Engineering, pp. 829–848, Dec. 2021, doi: 10.17482/uumfd.887786.
  • [3] B. Sağbaş, and B. Gavcar, “Biyomedikal uygulamalar için titanyum alaşımlarının eklemeli imalatı,” Uluborlu Mesleki Bilimler Dergisi, vol. 5, no. 1, pp. 54–74, 2022.
  • [4] I. Jasiuk, D. W. Abueidda, C. Kozuch, S. Pang, F. Y. Su, and J. McKittrick, “An overview on additive manufacturing of polymers,” JOM, vol. 70, no. 3, pp. 275–283, Mar. 2018, doi: 10.1007/s11837-017-2730-y.
  • [5] V. Shanmugam, O. Das, K. Babu, U. Marimuthu, A. Veerasimman, D.J. Johnson, R.E. Neisiany, M.S. Hedenqvist, S. Ramakrishna, and F. Berto, “Fatigue behaviour of FDM-3D printed polymers, polymeric composites and architected cellular materials,” International Journal of Fatigue, vol. 143, p. 106007, Feb. 2021, doi: 10.1016/j.ijfatigue.2020.106007.
  • [6] S. Karabeyoğlu, B. Ergene, and Ç. Bolat, “An experimental study on wear performance of electrolytic multilayer Cu-Ni-Cr coated ABS under different test forces,” El-Cezeri Fen ve Mühendislik Dergisi, Mar. 2021, doi: 10.31202/ecjse.862808.
  • [7] İ. İstif, “Eriyik yığma modelleme ile üretilen PLA parçalarının kuru sürtünmeli aşınma davranışlarının tanılanması,” Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi, Feb. 2021, doi: 10.24012/dumf.855768.
  • [8] O. Doğan and M. S. Kamer, “Farklı üretim parametreleri kullanılarak 3B yazıcı ile üretilen test numunelerinin sürünme davranışlarının deneysel olarak incelenmesi,” Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol. 38, no. 3, pp. 1839–1848, Jan. 2023, doi: 10.17341/gazimmfd.1122973.
  • [9] B. Kaygusuz, and S. Özerinç, “3 boyutlu yazıcı ile üretilen PLA bazlı yapıların mekanik özelliklerinin incelenmesi,” Makine Tasarım ve İmalat Dergisi, vol. 16, no. 1, pp. 1–6, 2018.
  • [10] N.-A.A.B. Taib, M.R. Rahman, D. Huda, K.K. Kuok, S. Hamdan, M.K.B. Bakri, M.R.M.B. Julaihi, and A. Khan, “A review on poly lactic acid (PLA) as a biodegradable polymer,” Polymer Bulletin, vol. 80, no. 2, pp. 1179–1213, Feb. 2023, doi: 10.1007/s00289-022-04160-y.
  • [11] M.-H. Hsueh, C.-J. Lai, S.-H. Wang, Y.-S. Zeng, C.-H. Hsieh, C.-Y. Pan, and W.-C. Huang, “Effect of printing parameters on the thermal and mechanical properties of 3D-printed PLA and PETG, using fused deposition modeling,” Polymers, vol. 13, no. 11, p. 1758, May 2021, doi: 10.3390/polym13111758.
  • [12] M.-H. Hsueh, C.-J. Lai, C.-F. Chung, S.-H. Wang, W.-C. Huang, C.-Y. Pan, Y.-S. Zeng, and C.-H. Hsieh, “Effect of printing parameters on the tensile properties of 3D-printed polylactic acid (PLA) based on fused deposition modeling,” Polymers, vol. 13, no. 14, p. 2387, Jul. 2021, doi: 10.3390/polym13142387.
  • [13] M. S. Kamer, O. Doğan, Ş. Temi̇z, and H. Yaykaşlı, “3 Boyutlu yazıcı ile farklı yazdırma parametreleri kullanılarak üretilen eğme test numunelerinin mekanik özelliklerinin incelenmesi,” Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, vol. 36, no. 3, pp. 835–846, Sep. 2021, doi: 10.21605/cukurovaumfd.1005909.
  • [14] M. Kam, H. Saruhan, and A. İpekçi̇, “Investigation the effect of 3D printer system vibrations on surface roughness of the printed products,” Düzce Üniversitesi Bilim ve Teknoloji Dergisi, vol. 7, no. 2, pp. 147–157, Mar. 2019, doi: 10.29130/dubited.441221.
  • [15] G. Acar Yavuz, B. Gören Kıral, S. Katre, and D. Ati̇lla, “Effects of topology and material on mechanical properties of structures produced by the additive manufacturing method,” Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi, vol. 23, no. 69, pp. 755–765, Sep. 2021, doi: 10.21205/deufmd.2021236905.
  • [16] H. Bakhtiari, M. Aamir, and M. Tolouei-Rad, “Effect of 3D printing parameters on the fatigue properties of parts manufactured by fused filament fabrication: a review,” Applied Sciences, vol. 13, no. 2, p. 904, Jan. 2023, doi: 10.3390/app13020904.
  • [17] A. Şık, A. Atak, C. Yavuz, and V. Özdemir, “The design of fatigue strength machine being one of the methods for determining the mechanical properties of the materials used in the industry,” Gazi University Journal of Science Part A: Engineering and Innovation, vol. 5, no. 2, pp. 79–88, 2018.
  • [18] O. H. Ezeh and L. Susmel, “Fatigue strength of additively manufactured polylactide (PLA): effect of raster angle and non-zero mean stresses,” International Journal of Fatigue, vol. 126, pp. 319–326, Sep. 2019, doi: 10.1016/j.ijfatigue.2019.05.014.
  • [19] G. Gomez-Gras, R. Jerez-Mesa, J. A. Travieso-Rodriguez, and J. Lluma-Fuentes, “Fatigue performance of fused filament fabrication PLA specimens,” Materials & Design, vol. 140, pp. 278–285, Feb. 2018, doi: 10.1016/j.matdes.2017.11.072.
  • [20] M. Azadi, A. Dadashi, S. Dezianian, M. Kianifar, S. Torkaman, and M. Chiyani, “High-cycle bending fatigue properties of additive-manufactured ABS and PLA polymers fabricated by fused deposition modeling 3D-printing,” Forces in Mechanics, vol. 3, p. 100016, Sep. 2021, doi: 10.1016/j.finmec.2021.100016.
  • [21] L. Safai, J. S. Cuellar, G. Smit, and A. A. Zadpoor, “A review of the fatigue behavior of 3D printed polymers,” Additive Manufacturing, vol. 28, pp. 87–97, Aug. 2019, doi: 10.1016/j.addma.2019.03.023.
  • [22] C. W. Ziemian, R. D. Ziemian, and K. V. Haile, “Characterization of stiffness degradation caused by fatigue damage of additive manufactured parts,” Materials & Design, vol. 109, pp. 209–218, Nov. 2016, doi: 10.1016/j.matdes.2016.07.080.
  • [23] J. A. Travieso-Rodriguez, M. D. Zandi, R. Jerez-Mesa, and J. Lluma-Fuentes, “Fatigue behavior of PLA-wood composite manufactured by fused filament fabrication,” Journal of Materials Research and Technology, vol. 9, no. 4, pp. 8507–8516, Jul. 2020, doi: 10.1016/j.jmrt.2020.06.003.
  • [24] ASTM D638-14, "Standard test method for tensile properties of plastics", (2014).
  • [25] P. Yadav, A. Sahai, and R. S. Sharma, “Experimental studies on the mechanical behaviour of three-dimensional PLA printed parts by fused filament fabrication,” Journal of The Institution of Engineers (India): Series D, vol. 104, no. 1, pp. 233–245, Jun. 2023, doi: 10.1007/s40033-022-00403-4.
  • [26] M. F. Afrose, S. H. Masood, P. Iovenitti, M. Nikzad, and I. Sbarski, “Effects of part build orientations on fatigue behaviour of FDM-processed PLA material,” Progress in Additive Manufacturing, vol. 1, no. 1–2, pp. 21–28, Jun. 2016, doi: 10.1007/s40964-015-0002-3.
  • [27] A. El Magri, S. Vanaei, M. Shirinbayan, S. Vaudreuil, and A. Tcharkhtchi, “An investigation to study the effect of process parameters on the strength and fatigue behavior of 3D-printed PLA-graphene,” Polymers, vol. 13, no. 19, p. 3218, Sep. 2021, doi: 10.3390/polym13193218.
  • [28] Y. Ueki, “High-speed bending-fatigue testing of composite materials,” IOP Conference Series: Materials Science and Engineering, vol. 388, p. 012008, Jul. 2018, doi: 10.1088/1757-899X/388/1/012008.
  • [29] W. Hu, W. Huang, Y. Sun, W. Zhang, L. Tan, S. Zhang, G. Ma, D. Zhang, and Q. Wang, “Influence of load frequency and corrosive environments on fatigue behavior of as-extruded Mg–Zn–Zr–Nd alloy,” Journal of Materials Research and Technology, vol. 22, pp. 2627–2640, Jan. 2023, doi: 10.1016/j.jmrt.2022.12.114.
There are 29 citations in total.

Details

Primary Language English
Subjects Materials Engineering (Other)
Journal Section Research Articles
Authors

Yusuf Ayan 0000-0002-0045-3777

Early Pub Date March 29, 2024
Publication Date April 30, 2024
Submission Date September 8, 2023
Acceptance Date January 31, 2024
Published in Issue Year 2024 Volume: 10 Issue: 1

Cite

IEEE Y. Ayan, “A Study on the Effects of Test Frequency on the Fatigue Life of PLA Parts Manufactured by Additive Manufacturing”, GJES, vol. 10, no. 1, pp. 60–71, 2024.

Gazi Journal of Engineering Sciences (GJES) publishes open access articles under a Creative Commons Attribution 4.0 International License (CC BY). 1366_2000-copia-2.jpg