Review
BibTex RIS Cite

Atık Lityum İyon Pillerden Kobalt Geri Kazanımı Üzerine Bir Değerlendirme

Year 2024, Issue: Erken Görünüm, 1 - 1

Abstract

Enerji depolama alanında kullanılan lityum iyon pillerin (LIB) kullanım oranlarının artmasıyla birlikte, ortaya çıkan atıkların yönetimi de giderek daha önemli hale gelmiştir. Lityum iyon pillerin kısa ömürlü olmaları ve içerdikleri değerli metaller, bu atıkların, teknik, çevresel ve ekonomik açıdan dikkatli bir şekilde yönetilmesini gerektirmektedir. Dolayısıyla, atık lityum iyon pillerden kobalt gibi değerli metallerin geri kazanımı ve bu konuda yapılan çalışmalar bağlamında bu makalede, lityum iyon pillerin yaygın olarak kullanılan Nikel Manganez Kobalt (NMC) ve Lityum Kobalt Oksit (LCO) formundaki tiplerinden kobaltın geri kazanımıyla ilgili literatür çalışmaları değerlendirilmiştir. Yapılan literatür taramasında en çok başvurulan yöntemlerin, hidrometalurjik, pirometalurjik ve doğrudan geri kazanım yöntemleri olduğu görülmüştür. Önümüzdeki yıllarda LIB talebi arttıkça, kobalt geri kazanımı için inovatif yöntemlerin geliştirilmesi ve optimize edilmesi ihtiyacının, enerji depolama sistemleri içerisinde sürdürülebilirlik hedeflerine ulaşabilmek açısından daha da önemli hale geleceği düşünülmektedir.

Thanks

Bu çalışma, Eskişehir Teknik Üniversitesi Bilimsel Araştırma Projeleri Komisyonu 23LÖT177 No’lu proje ve TÜBİTAK 2210-C Yurt İçi Öncelikli Alanlar Yüksek Lisans Burs Programı 1649B022314782 No’lu proje kapsamında desteklenmektedir.

References

  • [1] R. Zhang, X. Shi, O. C. Esan, and L. An “Organic Electrolytes Recycling From Spent Lithium-Ion Batteries,” John Wiley and Sons Inc. in Global Challenges vol. 6, issue 12, June 2022. doi:10.1002/gch2.202200050
  • [2] S. Windisch-Kern, E. Gerold, T. Nigl, A. Jandric, M. Altendorfer, B. Rutrecht, S. Scherhaufer, H. Raupenstrauch, R. Pomberger, H. Antrekowitsch, and F. Part “Recycling chains for lithium-ion batteries: A critical examination of current challenges, opportunities and process dependencies,” Waste Management vol. 138, pp. 125–139, February 2022. doi:10.1016/j.wasman.2021.11.038
  • [3] V. Henze, “China’s Battery Supply Chain Tops BNEF Ranking for Third Consecutive Time, with Canada a Close Second,” BloombergNEF, Nov. 12, 2022. [Online]. Available: https://about.bnef.com/blog/chinas-battery-supply-chain-tops-bnef-ranking-for-thirdconsecutive-time-with-canada-a-close-second/ [Accessed: Sept. 10, 2023].
  • [4] M. Kaya, “State-of-the-art lithium-ion battery recycling Technologies,” Circular Economy, vol. 1, issue 2, pp. 100015, December 2022. doi:10.1016/j.cec.2022.100015
  • [5] G. Mishra, R. Jha , A. Meshram and K. K. Singh “A review on recycling of lithium-ion batteries to recover critical metalsi,” Journal of Environmental Chemical Engineering vol. 10, issue 6, pp. 108354, December 2022. doi:10.1016/j.jece.2022.108534
  • [6] O. Velázquez-Martínez, J. Valio, A. Santasalo-Aarnio, M. Reuter and R. Serna-Guerrero, “A critical review of lithium-ion battery recycling processes from a circular economy perspective,” MDPI In Batteries vol. 5, issue 4, pp. 60-93, November 2019. doi:10.3390/batteries5040068
  • [7] Y. Shen, “Recycling cathode materials of spent lithium-ion batteries for advanced catalysts production,” Journal of Power Sources vol. 528, April 2022. doi:10.1016/j.jpowsour.2022.231220
  • [8] A. B. Botelho Junior, S. Stopic, B. Friedrich, J. A. Soares Tenório and D. C. R. Espinosa, “Cobalt recovery from li‐ion battery recycling: A critical review,” MDPI In Metals, vol. 11, issue 12, December 2021. doi:10.3390/met11121999
  • [9] B. Chapman “How Does a Lithium-Ion Battery Work?” Let's Talk Science,” Sept. 23, 2019 [Online]. Available: https://letstalkscience.ca/educational-resources/stem-incontext/how-does-a-lithium-ion-battery-work [Accessed: Mar. 29,2023].
  • [10] A. W. Golubkov, D. Fuchs, J. Wagner, H. Wiltsche, C. Stangl, G. Fauler, G. Voitic, A. Thaler and V. Hacker “Thermal-runaway experiments on consumer Li-ion batteries with metaloxide and olivin-type cathodes,” RSC Advances, vol. 4, issue 7, pp. 3633–3642, November 2013. doi:10.1039/c3ra45748f
  • [11] J. J. Roy, B. Cao and S. Madhavi “A review on the recycling of spent lithium-ion batteries (LIBs) by the bioleaching approach,” Chemosphere, vol. 282, November 2021. doi:10.1016/j.chemosphere.2021.130944
  • [12] R. Tao, P. Xing, H. Li, Y. Wu, S. Li and Z. Sun “Full-component pyrolysis coupled with reduction of cathode material for recovery of spent LiNixCoyMnzO2 lithium-ion batteries,” ACS Sustainable Chemistry and Engineering, vol. 9, issue 18, pp. 6318–6328, April 2021. doi:10.1021/acssuschemeng.1c00210
  • [13] F. Arıkan, “Dünyada ve Türkiye’de Kobalt,” Maden Tetkik Arama Enstitüsü (MTA), 2022. [Online]. Available: https://www.mta.gov.tr/v3.0/sayfalar/bilgi-merkezi/madenserisi/kobalt.pdf [Accessed: Mar. 24, 2023].
  • [14] S. Ndlovu, “The wear properties of tungsten carbide-cobalt hardmetals from the nanoscale up to the macroscopic scale,” Ph.D. dissertation, Erlangen-Nürnberg Univ., Erlangen, Deutschland, 2009.
  • [15] İstanbul Maden İhracatçıları Birliği “Kobalt Yataklarının Durumu, İşletmeciliği ve Geleceği,” 2023. [Online] Available: https://imib.org.tr/maden/kobalt/ [Accessed: Feb. 20, 2024]
  • [16] S. H. Farjana, N. Huda and M. A. P. Mahmud, “Life cycle assessment of cobalt extraction process,” Journal of Sustainable Mining, vol. 18, issue 3, pp. 150-161, August 2019. doi:10.1016/j.jsm.2019.03.002
  • [17] J. C. Y. Jung, P. C. Sui, and J. Zhang “A review of recycling spent lithium-ion battery cathode materials using hydrometallurgical treatments,” Journal of Energy Storage, vol. 35, March 2021. doi:10.1016/j.est.2020.102217
  • [18] U.S. Department of Interior, “Mineral Commodity Summaries,” U.S. Geological Survey, January 2022. doi:10.3133/mcs2022
  • [19] U.S. Department of Interior, “Mineral Commodity Summaries,” U.S. Geological Survey, January 2023. doi:10.3133/mcs2023
  • [20] E Asadi Dalini, Gh. Karimi, S. Zandevakili and M. Goodarzi “A review on environmental, economic and hydrometallurgical processes of recycling spent lithium-ion batteries,” Mineral Processing and Extractive Metallurgy Review, vol. 42, issue 7, pp. 451-472, July 2020. doi:10.1080/08827508.2020.1781628
  • [21] M. B. Mansur, A. S. Guimaraes and M. Petranikova, “An overview on the recovery of cobalt from end-of-life lithium ion batteries,” Mineral Processing and Extractive Metallurgy Review, vol. 43, issue 4, pp. 489-509, February 2021. doi:10.1080/08827508.2021.1883014
  • [22] L. F. Zhou, D. Yang, T. Du, H. Gong, and W. B. Luo “The Current Process for the Recycling of Spent Lithium Ion Batteries,” Frontiers in Chemistry vol. 8, December 2020. doi:10.3389/fchem.2020.578044
  • [23] G. Santhosh, and G. P. Nayaka “Cobalt recovery from spent Li-ion batteries using lactic acid as dissolution agent,” Cleaner Engineering and Technology, vol. 3, pp. 100122, July 2021. doi:10.1016/j.clet.2021.100122
  • [24] J. Liu, T. Y. Mak, Z. Meng, X. Wang, Y. Cao, Z. Lu, D. W. Suen, X. Lu and Y. Tang “Efficient recovery of lithium as Li2CO3 and cobalt as Co3O4 from spent lithium-ion batteries after leaching with ptoluene sulfonic acid,” Hydrometallurgy, vol. 216, pp. 106012, February 2023. doi:10.1016/hydromet.2022.106012
  • [25] E. Prasetyo, W. A. Muryanta, A. G. Anggraini, S. Sudibyo, M. Amin and M. Al Muttaqii, M. “Tannic acid as a novel and green leaching reagent for cobalt and lithium recycling from spent lithium-ion batteries,” Journal of Material Cycles and Waste Management, vol. 24, issue 3, pp. 927–938, February 2022. doi:10.1007/s10163-022-01368-y
  • [26] N. Vieceli, R. Casasola, G. Lombardo, B. Ebin and M. Petranikova “Hydrometallurgical recycling of EV lithium-ion batteries: Effects of incineration on the leaching efficiency of metals using sulfuric acid,” Waste Management, vol. 125, pp. 192–203, April 2021. doi:10.1016/j.wasman.2021.02.039
  • [27] J.Yang, L. Xing Jiang, F. Yang Liu, M. Jia and Y. Qing Lai “Reductive acid leaching of valuable metals from spent lithium-ion batteries using hydrazine sulfate as reductant,” Transactions of Nonferrous Metals Society of China (English Edition), vol. 30, issue 8, pp. 2256-2264, August 2020. doi:10.1016/S1003-6326(20)65376-6
  • [28] B. Musariri, G. Akdogan, C. Dorfling and S. Bradshaw, S. “Evaluating organic acids as alternative leaching reagents for metal recovery from lithium ion batteries,” Minerals Engineering, vol. 137, pp. 108–117, June 2019. doi:10.1016/j.mineng.2019.03.027
  • [29] X. Chen, C. Guo, H. Ma, J. Li, T. Zhou, L. Cao and D. Kang “Organic reductants based leaching: A sustainable process for the recovery of valuable metals from spent lithium ion batteries,” Waste Management, vol. 75, pp. 459–468, May 2018. doi:10.1016/j.wasman.2018.01.021
  • [30] Y. Zhang, Q. Meng, P. Dong, J. Duan and Y. Lin “Use of grape seed as reductant for leaching of cobalt from spent lithium-ion batteries,” Journal of Industrial and Engineering Chemistry, vol. 66, pp. 86–93, October 2018. doi:10.1016/j.jiec.2018.05.004
  • [31] G.Lombardo, B. Ebin, B. M. Steenari, M. Alemrajabi, I. Karlsson and M. Petranikova “Comparison of the effects of incineration, vacuum pyrolysis and dynamic pyrolysis on the composition of NMC-lithium battery cathode-material production scraps and separation of the current collector,” Resources, Conservation and Recycling, vol. 164, pp. 105142 January 2021. doi:10.1016/j.resconrec.2020.105142
  • [32] C. Liu, J. Lin, H. Cao, Y. Zhang and Z. Sun, “Recycling of spent lithium-ion batteries in view of lithium recovery: A critical review,” Journal of Cleaner Production, vol. 228, pp. 801-813, August 2019. doi:10.1016/j.jclepro.2019.04.304
  • [33] N. Wei, Y. He, G. Zhang, Y. Feng, J. Li, Q. Lu and Y. Fu, “Recycling of valuable metals from spent lithium-ion batteries by self-supplied reductant roasting,” Journal of Environmental Management, vol. 329, pp. 117107, March 2023. doi:10.1016/j.jenvman.2022.117107
  • [34] T. Rostami, B. Khoshandam and S. Maroufi “Recovery of lithium, cobalt, nickel, and manganese from spent lithium-ion batteries through a wet-thermal process,” Materials Research Bulletin, vol. 153, pp. 111897, September 2022. doi:10.1016/j.materresbull.2022.111897
  • [35] M. Sethurajan, M. G. P. Shirodker, E. R. Rene and E. D. van Hullebusch “Hydrometallurgical leaching and recovery of cobalt from lithium ion battery,” Environmental Technology and Innovation, vol. 28, pp. 102915, November 2022. doi:10.1016/j.eti.2022.102915
  • [36] G. Zhang, Z. Du, Y. He, H. Wang, W. Xie and T. Zhang “A sustainable process for the recovery of anode and cathode materials derived from spent lithium-ion batteries,” Sustainability (Switzerland), vol. 11, issue 8, April 2019. doi:10.3390/su11082363
  • [37] G. Zhang, Y. He, H. Wang, Y. Feng, W. Xie and X. Zhu “Application of mechanical crushing combined with pyrolysis-enhanced flotation technology to recover graphite and LiCoO2 from spent lithium-ion batteries,” Journal of Cleaner Production, vol. 231, pp. 1418-1427, September 2019. doi:10.1016/j.jclepro.2019.04.279
  • [38] C. Sun, L. Xu, X. Chen, T. Qiu, & T. Zhou “Sustainable recovery of valuable metals from spent lithium-ion batteries using DL-malic acid: Leaching and kinetics aspec,” Waste Management & Research, vol. 36, issue 2, pp. 113-120, February 2018. doi:10.1177/0734242X1774427
  • [39] L. Li, E. Fan, Y. Guan, X. Zhang, Q. Xue, L. Wei, F. Wu and R. Chen “Sustainable recovery of cathode materials from spent lithium-ion batteries using lactic acid leaching system,” ACS Sustainable Chemistry & Engineering, vol. 5, issue. 6, pp. 5224-5233, May 2017. doi:10.1021/acssuschemeng.7b00571
  • [40] M. Chen, X. Ma, B. Chen, R. Arsenault, P. Karlson, N. Simon and Y. Wang “Recycling endof-life electric vehicle lithium-ion batteries,” Joule, vol. 3, issue 11, pp. 2622-2646, November 2019. doi:10.1016/j.joule.2019.09.014
  • [41] C. P. Makwarimba, M. Tang, Y. Peng, S. Lu, L. Zheng, Z. Zhao and A. G. Zhen “Assessment of recycling methods and processes for lithium-ion batteries,” iScience, vol. 25, issue 5, pp. 104321, May 2022. doi:10.1016/j.isci.2022.104321
  • [42] T. W. Wang, T. Liu and H. Sun “Direct Recycling for Advancing Sustainable Battery Solutions,” Materials Today Energy, vol. 38, pp.101434, December 2023. doi:10.1016/j.mtener.2023.101434
  • [43] S. Sloop, L. Crandon, M. Allen, K. Koetje, L. Reed, L. Gaines, W. Sirisaksoontorn and M. Lerner “A direct recycling case study from a lithium-ion battery recall,” Sustainable Materials and Technologies, vol. 25, pp. e00152, September 2020. doi:10.1016/j.susmat.2020.e00152
  • [44] J. Yang, W. Wang, H. Yang and D. Wang “One-pot compositional and structural regeneration of degraded LiCoO2 for directly reusing it as a high-performance lithium-ion battery cathode,” Green Chemistry, vol. 22, issue 19, pp. 6489-6496, September 2020. doi:10.1039/d0gc02662j
  • [45] Y. Shi, G. Chen and Z. Chen “Effective regeneration of LiCoO2 from spent lithium-ion batteries: a direct approach towards high-performance active particles,” Green Chemistry, vol. 20, issue 4, pp. 851-862, January 2018. doi:10.1039/c7gc02831h
  • [46] X. Yu, S. Yu, Z. Yang, H. Gao, P. Xu, G. Cai, S. Rose, C. Brooks, P. Liu and Z. Chen “Achieving low-temperature hydrothermal relithiation by redox mediation for direct recycling of spent lithium-ion battery cathodes,” Energy Storage, vol. 51, pp. 54-62, October 2022. doi:10.1016/j.ensm.2022.06.017
  • [47] T. Wang, H. Luo, Y. Bai, J. Li, I. Belharouak and S. Dai “Direct recycling of spent NCM cathodes through ionothermal lithiation,” Advanced Energy Materials, vol. 10, issue 30, June 2020. doi:10.1002/aenm.202001204
  • [48] L. Zhang, Z. Xu and Z. He, “Electrochemical relithiation for direct regeneration of LiCoO2 materials from spent lithium-ion battery electrodes,” ACS Sustainable Chemistry & Engineering, vol. 8, issue 31, pp. 11596-11605, July 2020. doi:10.1021/acssuschemeng.0c02854
  • [49] Y. Han, Y. You, C. Hou, X. Xiao, Y. Xing and Y. Zhao “Regeneration of single-crystal LiNi0.5Co0.2Mn0.3O2 cathode materials from spent power lithium-ion batteries,” Journal of The Electrochemical Society, vol. 168, issue 4, April 2021. doi:10.1149/1945-7111/abf4e8
  • [50] Y. Gao, Y. Li, J. Li, H. Xie and Y. Chen “Direct recovery of LiCoO2 from the recycled lithium-ion batteries via structure restoration,” Journal of Alloys and Compounds, vol. 845, pp. 156234, December 2020. doi:10.1016/j.jallcom.2020.156234
  • [51] Y. Shi, G. Chen, F. Liu, , X. Yue and Z. Chen “Resolving the compositional and structural defects of degraded LiNixCoyMnzO2 particles to directly regenerate high-performance lithium-ion battery cathodes,” ACS Energy Letters, vol. 3, issue 7, pp. 1683-1692, June 2018. doi:10.1021/acsenergylett.8b0083
  • [52] S. Chen, T. He, Y. Lu, Y. Su, J. Tian, Li, N. Li, G. Chen, L. Bao and F. Wu “Renovation of LiCoO2 with outstanding cycling stability by thermal treatment with Li2CO3 from spent Liion batteries,” Journal of Energy Storage, vol. 8, pp. 262–273, November 2016. doi:10.1016/j.est.2016.10.008
  • [53] Z. Zhang, W. He, G. Li, J. Xia, H. Hu and J. Huang, “Ultrasound-assisted hydrothermal renovation of LiCoO2 from the cathode of spent lithium-ion batteries,” International Journal of Electrochemical Science, vol. 9, issue 7, pp. 3691-3700, July 2014. doi:10.1016/S14523981(23)08042-2

A Review on Cobalt Recovery from Waste Lithium Ion Batteries

Year 2024, Issue: Erken Görünüm, 1 - 1

Abstract

With the increasing usage rates of lithium ion batteries (LIBs) used in energy storage, the management of the resulting waste has also become increasingly important. The short lifespan of lithium-ion batteries and the precious metals they contain require careful management of these wastes from a technical, environmental and economic perspective. Therefore, in the context of the recovery of precious metals such as cobalt from waste lithium ion batteries and studies on this subject, in this article, literature studies on the recovery of cobalt from the commonly sed types of lithium ion batteries in the form of Nickel Manganese Cobalt (NMC) and Lithium Cobalt Oxide (LCO) have been evaluated. The literature review shows that the most commonly used methods are hydrometallurgical, pyrometallurgical and direct recovery methods. As the demand for LIB increases in the coming years, the need to develop and otimize innovative methods for cobalt recovery will become even more important in achieving sustainability goals within energy storage systems.

References

  • [1] R. Zhang, X. Shi, O. C. Esan, and L. An “Organic Electrolytes Recycling From Spent Lithium-Ion Batteries,” John Wiley and Sons Inc. in Global Challenges vol. 6, issue 12, June 2022. doi:10.1002/gch2.202200050
  • [2] S. Windisch-Kern, E. Gerold, T. Nigl, A. Jandric, M. Altendorfer, B. Rutrecht, S. Scherhaufer, H. Raupenstrauch, R. Pomberger, H. Antrekowitsch, and F. Part “Recycling chains for lithium-ion batteries: A critical examination of current challenges, opportunities and process dependencies,” Waste Management vol. 138, pp. 125–139, February 2022. doi:10.1016/j.wasman.2021.11.038
  • [3] V. Henze, “China’s Battery Supply Chain Tops BNEF Ranking for Third Consecutive Time, with Canada a Close Second,” BloombergNEF, Nov. 12, 2022. [Online]. Available: https://about.bnef.com/blog/chinas-battery-supply-chain-tops-bnef-ranking-for-thirdconsecutive-time-with-canada-a-close-second/ [Accessed: Sept. 10, 2023].
  • [4] M. Kaya, “State-of-the-art lithium-ion battery recycling Technologies,” Circular Economy, vol. 1, issue 2, pp. 100015, December 2022. doi:10.1016/j.cec.2022.100015
  • [5] G. Mishra, R. Jha , A. Meshram and K. K. Singh “A review on recycling of lithium-ion batteries to recover critical metalsi,” Journal of Environmental Chemical Engineering vol. 10, issue 6, pp. 108354, December 2022. doi:10.1016/j.jece.2022.108534
  • [6] O. Velázquez-Martínez, J. Valio, A. Santasalo-Aarnio, M. Reuter and R. Serna-Guerrero, “A critical review of lithium-ion battery recycling processes from a circular economy perspective,” MDPI In Batteries vol. 5, issue 4, pp. 60-93, November 2019. doi:10.3390/batteries5040068
  • [7] Y. Shen, “Recycling cathode materials of spent lithium-ion batteries for advanced catalysts production,” Journal of Power Sources vol. 528, April 2022. doi:10.1016/j.jpowsour.2022.231220
  • [8] A. B. Botelho Junior, S. Stopic, B. Friedrich, J. A. Soares Tenório and D. C. R. Espinosa, “Cobalt recovery from li‐ion battery recycling: A critical review,” MDPI In Metals, vol. 11, issue 12, December 2021. doi:10.3390/met11121999
  • [9] B. Chapman “How Does a Lithium-Ion Battery Work?” Let's Talk Science,” Sept. 23, 2019 [Online]. Available: https://letstalkscience.ca/educational-resources/stem-incontext/how-does-a-lithium-ion-battery-work [Accessed: Mar. 29,2023].
  • [10] A. W. Golubkov, D. Fuchs, J. Wagner, H. Wiltsche, C. Stangl, G. Fauler, G. Voitic, A. Thaler and V. Hacker “Thermal-runaway experiments on consumer Li-ion batteries with metaloxide and olivin-type cathodes,” RSC Advances, vol. 4, issue 7, pp. 3633–3642, November 2013. doi:10.1039/c3ra45748f
  • [11] J. J. Roy, B. Cao and S. Madhavi “A review on the recycling of spent lithium-ion batteries (LIBs) by the bioleaching approach,” Chemosphere, vol. 282, November 2021. doi:10.1016/j.chemosphere.2021.130944
  • [12] R. Tao, P. Xing, H. Li, Y. Wu, S. Li and Z. Sun “Full-component pyrolysis coupled with reduction of cathode material for recovery of spent LiNixCoyMnzO2 lithium-ion batteries,” ACS Sustainable Chemistry and Engineering, vol. 9, issue 18, pp. 6318–6328, April 2021. doi:10.1021/acssuschemeng.1c00210
  • [13] F. Arıkan, “Dünyada ve Türkiye’de Kobalt,” Maden Tetkik Arama Enstitüsü (MTA), 2022. [Online]. Available: https://www.mta.gov.tr/v3.0/sayfalar/bilgi-merkezi/madenserisi/kobalt.pdf [Accessed: Mar. 24, 2023].
  • [14] S. Ndlovu, “The wear properties of tungsten carbide-cobalt hardmetals from the nanoscale up to the macroscopic scale,” Ph.D. dissertation, Erlangen-Nürnberg Univ., Erlangen, Deutschland, 2009.
  • [15] İstanbul Maden İhracatçıları Birliği “Kobalt Yataklarının Durumu, İşletmeciliği ve Geleceği,” 2023. [Online] Available: https://imib.org.tr/maden/kobalt/ [Accessed: Feb. 20, 2024]
  • [16] S. H. Farjana, N. Huda and M. A. P. Mahmud, “Life cycle assessment of cobalt extraction process,” Journal of Sustainable Mining, vol. 18, issue 3, pp. 150-161, August 2019. doi:10.1016/j.jsm.2019.03.002
  • [17] J. C. Y. Jung, P. C. Sui, and J. Zhang “A review of recycling spent lithium-ion battery cathode materials using hydrometallurgical treatments,” Journal of Energy Storage, vol. 35, March 2021. doi:10.1016/j.est.2020.102217
  • [18] U.S. Department of Interior, “Mineral Commodity Summaries,” U.S. Geological Survey, January 2022. doi:10.3133/mcs2022
  • [19] U.S. Department of Interior, “Mineral Commodity Summaries,” U.S. Geological Survey, January 2023. doi:10.3133/mcs2023
  • [20] E Asadi Dalini, Gh. Karimi, S. Zandevakili and M. Goodarzi “A review on environmental, economic and hydrometallurgical processes of recycling spent lithium-ion batteries,” Mineral Processing and Extractive Metallurgy Review, vol. 42, issue 7, pp. 451-472, July 2020. doi:10.1080/08827508.2020.1781628
  • [21] M. B. Mansur, A. S. Guimaraes and M. Petranikova, “An overview on the recovery of cobalt from end-of-life lithium ion batteries,” Mineral Processing and Extractive Metallurgy Review, vol. 43, issue 4, pp. 489-509, February 2021. doi:10.1080/08827508.2021.1883014
  • [22] L. F. Zhou, D. Yang, T. Du, H. Gong, and W. B. Luo “The Current Process for the Recycling of Spent Lithium Ion Batteries,” Frontiers in Chemistry vol. 8, December 2020. doi:10.3389/fchem.2020.578044
  • [23] G. Santhosh, and G. P. Nayaka “Cobalt recovery from spent Li-ion batteries using lactic acid as dissolution agent,” Cleaner Engineering and Technology, vol. 3, pp. 100122, July 2021. doi:10.1016/j.clet.2021.100122
  • [24] J. Liu, T. Y. Mak, Z. Meng, X. Wang, Y. Cao, Z. Lu, D. W. Suen, X. Lu and Y. Tang “Efficient recovery of lithium as Li2CO3 and cobalt as Co3O4 from spent lithium-ion batteries after leaching with ptoluene sulfonic acid,” Hydrometallurgy, vol. 216, pp. 106012, February 2023. doi:10.1016/hydromet.2022.106012
  • [25] E. Prasetyo, W. A. Muryanta, A. G. Anggraini, S. Sudibyo, M. Amin and M. Al Muttaqii, M. “Tannic acid as a novel and green leaching reagent for cobalt and lithium recycling from spent lithium-ion batteries,” Journal of Material Cycles and Waste Management, vol. 24, issue 3, pp. 927–938, February 2022. doi:10.1007/s10163-022-01368-y
  • [26] N. Vieceli, R. Casasola, G. Lombardo, B. Ebin and M. Petranikova “Hydrometallurgical recycling of EV lithium-ion batteries: Effects of incineration on the leaching efficiency of metals using sulfuric acid,” Waste Management, vol. 125, pp. 192–203, April 2021. doi:10.1016/j.wasman.2021.02.039
  • [27] J.Yang, L. Xing Jiang, F. Yang Liu, M. Jia and Y. Qing Lai “Reductive acid leaching of valuable metals from spent lithium-ion batteries using hydrazine sulfate as reductant,” Transactions of Nonferrous Metals Society of China (English Edition), vol. 30, issue 8, pp. 2256-2264, August 2020. doi:10.1016/S1003-6326(20)65376-6
  • [28] B. Musariri, G. Akdogan, C. Dorfling and S. Bradshaw, S. “Evaluating organic acids as alternative leaching reagents for metal recovery from lithium ion batteries,” Minerals Engineering, vol. 137, pp. 108–117, June 2019. doi:10.1016/j.mineng.2019.03.027
  • [29] X. Chen, C. Guo, H. Ma, J. Li, T. Zhou, L. Cao and D. Kang “Organic reductants based leaching: A sustainable process for the recovery of valuable metals from spent lithium ion batteries,” Waste Management, vol. 75, pp. 459–468, May 2018. doi:10.1016/j.wasman.2018.01.021
  • [30] Y. Zhang, Q. Meng, P. Dong, J. Duan and Y. Lin “Use of grape seed as reductant for leaching of cobalt from spent lithium-ion batteries,” Journal of Industrial and Engineering Chemistry, vol. 66, pp. 86–93, October 2018. doi:10.1016/j.jiec.2018.05.004
  • [31] G.Lombardo, B. Ebin, B. M. Steenari, M. Alemrajabi, I. Karlsson and M. Petranikova “Comparison of the effects of incineration, vacuum pyrolysis and dynamic pyrolysis on the composition of NMC-lithium battery cathode-material production scraps and separation of the current collector,” Resources, Conservation and Recycling, vol. 164, pp. 105142 January 2021. doi:10.1016/j.resconrec.2020.105142
  • [32] C. Liu, J. Lin, H. Cao, Y. Zhang and Z. Sun, “Recycling of spent lithium-ion batteries in view of lithium recovery: A critical review,” Journal of Cleaner Production, vol. 228, pp. 801-813, August 2019. doi:10.1016/j.jclepro.2019.04.304
  • [33] N. Wei, Y. He, G. Zhang, Y. Feng, J. Li, Q. Lu and Y. Fu, “Recycling of valuable metals from spent lithium-ion batteries by self-supplied reductant roasting,” Journal of Environmental Management, vol. 329, pp. 117107, March 2023. doi:10.1016/j.jenvman.2022.117107
  • [34] T. Rostami, B. Khoshandam and S. Maroufi “Recovery of lithium, cobalt, nickel, and manganese from spent lithium-ion batteries through a wet-thermal process,” Materials Research Bulletin, vol. 153, pp. 111897, September 2022. doi:10.1016/j.materresbull.2022.111897
  • [35] M. Sethurajan, M. G. P. Shirodker, E. R. Rene and E. D. van Hullebusch “Hydrometallurgical leaching and recovery of cobalt from lithium ion battery,” Environmental Technology and Innovation, vol. 28, pp. 102915, November 2022. doi:10.1016/j.eti.2022.102915
  • [36] G. Zhang, Z. Du, Y. He, H. Wang, W. Xie and T. Zhang “A sustainable process for the recovery of anode and cathode materials derived from spent lithium-ion batteries,” Sustainability (Switzerland), vol. 11, issue 8, April 2019. doi:10.3390/su11082363
  • [37] G. Zhang, Y. He, H. Wang, Y. Feng, W. Xie and X. Zhu “Application of mechanical crushing combined with pyrolysis-enhanced flotation technology to recover graphite and LiCoO2 from spent lithium-ion batteries,” Journal of Cleaner Production, vol. 231, pp. 1418-1427, September 2019. doi:10.1016/j.jclepro.2019.04.279
  • [38] C. Sun, L. Xu, X. Chen, T. Qiu, & T. Zhou “Sustainable recovery of valuable metals from spent lithium-ion batteries using DL-malic acid: Leaching and kinetics aspec,” Waste Management & Research, vol. 36, issue 2, pp. 113-120, February 2018. doi:10.1177/0734242X1774427
  • [39] L. Li, E. Fan, Y. Guan, X. Zhang, Q. Xue, L. Wei, F. Wu and R. Chen “Sustainable recovery of cathode materials from spent lithium-ion batteries using lactic acid leaching system,” ACS Sustainable Chemistry & Engineering, vol. 5, issue. 6, pp. 5224-5233, May 2017. doi:10.1021/acssuschemeng.7b00571
  • [40] M. Chen, X. Ma, B. Chen, R. Arsenault, P. Karlson, N. Simon and Y. Wang “Recycling endof-life electric vehicle lithium-ion batteries,” Joule, vol. 3, issue 11, pp. 2622-2646, November 2019. doi:10.1016/j.joule.2019.09.014
  • [41] C. P. Makwarimba, M. Tang, Y. Peng, S. Lu, L. Zheng, Z. Zhao and A. G. Zhen “Assessment of recycling methods and processes for lithium-ion batteries,” iScience, vol. 25, issue 5, pp. 104321, May 2022. doi:10.1016/j.isci.2022.104321
  • [42] T. W. Wang, T. Liu and H. Sun “Direct Recycling for Advancing Sustainable Battery Solutions,” Materials Today Energy, vol. 38, pp.101434, December 2023. doi:10.1016/j.mtener.2023.101434
  • [43] S. Sloop, L. Crandon, M. Allen, K. Koetje, L. Reed, L. Gaines, W. Sirisaksoontorn and M. Lerner “A direct recycling case study from a lithium-ion battery recall,” Sustainable Materials and Technologies, vol. 25, pp. e00152, September 2020. doi:10.1016/j.susmat.2020.e00152
  • [44] J. Yang, W. Wang, H. Yang and D. Wang “One-pot compositional and structural regeneration of degraded LiCoO2 for directly reusing it as a high-performance lithium-ion battery cathode,” Green Chemistry, vol. 22, issue 19, pp. 6489-6496, September 2020. doi:10.1039/d0gc02662j
  • [45] Y. Shi, G. Chen and Z. Chen “Effective regeneration of LiCoO2 from spent lithium-ion batteries: a direct approach towards high-performance active particles,” Green Chemistry, vol. 20, issue 4, pp. 851-862, January 2018. doi:10.1039/c7gc02831h
  • [46] X. Yu, S. Yu, Z. Yang, H. Gao, P. Xu, G. Cai, S. Rose, C. Brooks, P. Liu and Z. Chen “Achieving low-temperature hydrothermal relithiation by redox mediation for direct recycling of spent lithium-ion battery cathodes,” Energy Storage, vol. 51, pp. 54-62, October 2022. doi:10.1016/j.ensm.2022.06.017
  • [47] T. Wang, H. Luo, Y. Bai, J. Li, I. Belharouak and S. Dai “Direct recycling of spent NCM cathodes through ionothermal lithiation,” Advanced Energy Materials, vol. 10, issue 30, June 2020. doi:10.1002/aenm.202001204
  • [48] L. Zhang, Z. Xu and Z. He, “Electrochemical relithiation for direct regeneration of LiCoO2 materials from spent lithium-ion battery electrodes,” ACS Sustainable Chemistry & Engineering, vol. 8, issue 31, pp. 11596-11605, July 2020. doi:10.1021/acssuschemeng.0c02854
  • [49] Y. Han, Y. You, C. Hou, X. Xiao, Y. Xing and Y. Zhao “Regeneration of single-crystal LiNi0.5Co0.2Mn0.3O2 cathode materials from spent power lithium-ion batteries,” Journal of The Electrochemical Society, vol. 168, issue 4, April 2021. doi:10.1149/1945-7111/abf4e8
  • [50] Y. Gao, Y. Li, J. Li, H. Xie and Y. Chen “Direct recovery of LiCoO2 from the recycled lithium-ion batteries via structure restoration,” Journal of Alloys and Compounds, vol. 845, pp. 156234, December 2020. doi:10.1016/j.jallcom.2020.156234
  • [51] Y. Shi, G. Chen, F. Liu, , X. Yue and Z. Chen “Resolving the compositional and structural defects of degraded LiNixCoyMnzO2 particles to directly regenerate high-performance lithium-ion battery cathodes,” ACS Energy Letters, vol. 3, issue 7, pp. 1683-1692, June 2018. doi:10.1021/acsenergylett.8b0083
  • [52] S. Chen, T. He, Y. Lu, Y. Su, J. Tian, Li, N. Li, G. Chen, L. Bao and F. Wu “Renovation of LiCoO2 with outstanding cycling stability by thermal treatment with Li2CO3 from spent Liion batteries,” Journal of Energy Storage, vol. 8, pp. 262–273, November 2016. doi:10.1016/j.est.2016.10.008
  • [53] Z. Zhang, W. He, G. Li, J. Xia, H. Hu and J. Huang, “Ultrasound-assisted hydrothermal renovation of LiCoO2 from the cathode of spent lithium-ion batteries,” International Journal of Electrochemical Science, vol. 9, issue 7, pp. 3691-3700, July 2014. doi:10.1016/S14523981(23)08042-2
There are 53 citations in total.

Details

Primary Language Turkish
Subjects Materials Engineering (Other)
Journal Section Review
Authors

Damla Nur Birlik 0009-0005-3891-9762

Aysun Özkan 0000-0003-1036-7570

Zerrin Günkaya 0000-0002-7553-9129

Mufide Banar 0000-0003-2795-6208

Early Pub Date June 4, 2024
Publication Date
Submission Date February 23, 2024
Acceptance Date June 1, 2024
Published in Issue Year 2024 Issue: Erken Görünüm

Cite

IEEE D. N. Birlik, A. Özkan, Z. Günkaya, and M. Banar, “Atık Lityum İyon Pillerden Kobalt Geri Kazanımı Üzerine Bir Değerlendirme”, GJES, no. Erken Görünüm, pp. 1–1, June 2024.

Gazi Journal of Engineering Sciences (GJES) publishes open access articles under a Creative Commons Attribution 4.0 International License (CC BY). 1366_2000-copia-2.jpg