Research Article
BibTex RIS Cite

Production of Alumina-Silica Based Composite Aerogel Powder from Perlite, Diatomite, Zeolite and Chamotte Brick Mortar

Year 2024, Volume: 10 Issue: 3, 558 - 573, 31.12.2024

Abstract

In this study, alumina-silica based aerogel powder was produced by the sol-gel method under atmospheric drying conditions using natural raw materials such as perlite, diatomite and zeolite as silica source and chamotte brick mortar as alumina source. Silica aerogels have superior properties such as low density, high porosity and thermal insulation. However, their dimensional stability and mechanical strength are poor at high temperatures. By thermal resistant doping, such as alumina, the properties of these aerogels can be improved and stabilised up to 1200-1400°C; low thermal conductivity values are also maintained. Therefore, alumina-silica based aerogel compositions have the potential to expand their application areas with a significant improvement in material performance. In this study, powders (perlite, diatomite, zeolite and chamotte brick mortar) were used as silica and alumina sources, NaOH, HCl as base and acid sources and ethanol to strengthen the gel structure. The powders were dissolved by boiling in NaOH solutions and neutralised after filtration. The surface modification of the gel aged at room temperature is the most critical stage and the aging stage was supported by ethanol chemistry. The powders dried at 120°C at atmospheric pressure for 2 days were characterized using FTIR, XRD, SEM, and BET devices, and the densities of aerogel powders were calculated. As a result of the experimental studies and analyses, it was determined that alumina-silica aerogel powders with superior properties were synthesised by atmospheric pressure drying technique.

References

  • [1] N. Saraç ve N. Toplan, “Dünyanın En Hafi̇f Katı Malzemesi̇: Aerojeller,” Metal Dünyası Dergisi, no. 276, pp. 68-72, Haziran 2016.
  • [2] A. E. Çimen ve N. Toplan, “Döküm Kumu ve atık döküm kumundan silika esaslı aerojel toz eldesi,” Metal Dünyası Dergisi, no. 329, pp. 50-56, Kasım 2020.
  • [3] N. Saraç, “Silika esaslı doğal hammadde ve atıklardan aerojel tozu üretimi ve karakterizasyonu,” Doktora tezi, Sakarya Üniversitesi, Fen Bilimleri Enstitüsü, Sakarya, Türkiye, 2018.
  • [4] A. Köken ve M. Kanık, “Aerojellerle Isı Yalıtımı ve Tekstil Uygulamaları,” Tekstil ve Mühendis, vol. 29, no. 128, pp. 249-260, 2022. doi: 10.7216/teksmuh.1222488
  • [5] A. E. Çimen, “Döküm Kumu ve Atık Döküm Kumundan Silika Esaslı Aerojel Üretimi Ve Karakterizasyonu,” Yüksek lisans tezi, Sakarya Üniversitesi, Fen Bilimleri Enstitüsü, Sakarya, Türkiye, 2021.
  • [6] Y. Lei, X. Chen, H. Song, Z. Hu and B. Cao, “Improvement of thermal insulation performance of silica aerogels by Al2O3 powders doping,” Ceramics International, vol. 43, no. 14, pp. 10799-10804, 2017. doi: 10.1016/j.ceramint.2017.05.100 [7] Y. Wu, X. Wang, L. Liu, Z. Zhang and J. Shen, “Alumina-Doped Silica Aerogels for High-Temperature Thermal Insulation,” Gels, vol. 7, no. 3, pp. 1-12, 2021. doi: 10.3390/gels7030122
  • [8] C. M. Almeida, M.E. Ghica and L. Duraes, “An overview on alumina-silica-based aerogels,” Advances in Colloid and Interface Science, vol. 282, pp. 1-25, 2020. doi:10.1016/j.cis.2020.102189
  • [9] D.C. Öz ve N. Kaya, “Sol-jel yöntemiyle üretilen alümina alkojelin fizikokimyasal ve yapısal özellikleri üzerine kurutma türünün etkisi”, Politeknik Dergisi, vol. 23, no. 3, pp. 657-669, 2020. doi:10.2339/politeknik.456871
  • [10] S. Karamikamkar, H. E. Naguib and C. B. Park, “Advances in precursor system for silica-based aerogel production toward improved mechanical properties, customized morphology, and multifunctionality: A review,” Advances in colloid and interface science, vol. 276, pp. 1-29, 2020. doi:10.1016/j.cis.2020.102101
  • [11] D. C. Öz, B. Öz ve N. Kaya, “Alümina aerojellerin fiziksel özellikleri üzerine yaşlandırma ve kurutma süresinin etkisi,” Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 20, no. 1, pp. 198-211, Temmuz 2018. doi:10.25092/baunfbed.348344
  • [12] A. Kochanke, C. Üffing and A. Hartwig, “Interaction of Poly (dimethylsiloxane) and octamethylcyclotetrasiloxane with aluminum oxides comprising different acid-base properties,” Polymer Degradation and Stability, vol. 161, pp. 19-29, 2019. doi:10.1016/j.polymdegradstab.2019.01.01.
  • [13] J. Estella, J. C. Echeverría, M. Laguna and J. J. Garrido, “Effects of aging and drying conditions on the structural and textural properties of silica gels,” Microporous and mesoporous materials, vol. 102, no. 1-3, pp. 274-282, 2007. doi:10.1016/j.micromeso.2007.01.007.
  • [14] A.S. Dorcheh and M. H. Abbasi, “Silica aerogel; synthesis, properties and characterization,” Journal of materials processing technology, vol. 199, no. 1-3, pp. 10-26, 2008. doi:10.1016/j.jmatprotec.2007.10.060.
  • [15] A. Kösematoğlu, “Yurdumuzdaki şamot ateş tuğlası hammadde yatakları,” Scientific Mining Journal, vol. 1, no. 2, pp. 98-109, 1961.
  • [16] Vandersanden, “Malzemelerin yeniden kullanımı ve geri dönüşümü,” vandersanden.com, June 8, 2021. [Online]. Available: https://www.vandersanden.com/tr-tr/malzemelerin-yeniden-kullanimi-ve-geri-donusumu. [Accessed: Jan. 12, 2024].
  • [17] S. É. EIvanov and A. V. Belyakov, “Diatomite and its applications,” Glass & Ceramics, vol. 65, 2008.
  • [18] B. Taş ve M. Çetin, “Biyolojik orijinli tek doğal mineral: diyatomit,” Tübav Bilim Dergisi, vol. 5, no. 2, pp. 28-46, 2012.
  • [19] N. Değirmenci ve A. Yılmaz, “Use of diatomite as partial replacement for Portland cement in cement mortars,” Construction and Building Materials, vol. 23, no. 1, pp. 284-288, 2009.
  • [20] M. V. Gökçe ve İ. Koç, “Diyatomit esaslı hafif yapı elemanı üretiminde üre-formaldehitin bağlayıcı olarak kullanılması,” Doktora tezi, Selçuk Üniversitesi, Fen Bilimleri Enstitüsü, Konya, 2010.
  • [21] Ü. Osman ve T. Uygunoğlu, “Diyatomitin hafif beton üretiminde kullanılması,” Teknik Dergi, vol. 18, no. 86, pp. 4025-4034, 2007.
  • [22] Pertaş, “Perlit madeni,” pertas.net, Apr. 12, 2004. [Online]. Available: http://www.pertas.net/Perlit.html. [Accessed: Dec. 12, 2023]
  • [23] Ł. Kotwica, W. Pichór, E. Kapeluszna and A. Różycka, “ Utilization of waste expanded perlite as new effective supplementary cementitious material,” Journal of Cleaner production, vol. 140, pp. 1344-1352, Jan. 2017. doi: 10.1016/J.JCLEPRO.2016.10.018
  • [24] E. Kapeluszna, Ł. Kotwica, G. Malata, P. Murzyn and W. Nocuń-Wczelik, “The effect of highly reactive pozzolanic material on the early hydration of alite–C3A–gypsum synthetic cement systems,” Construction and Building Materials, vol. 251, Aug. 2020. doi:10.1016/j.conbuildmat.2020.118879
  • [25] A. El Mir and S. G. Nehme, “Utilization of industrial waste perlite powder in self-compacting concrete,” Journal of Cleaner Production, vol. 156, pp. 507-517, July 2017. doi:10.1016/j.jclepro.2017.04.103
  • [26] G. Jia, J. Guo and Z. Li, “Controllable preparation of aerogel/expanded perlite composite and its application in thermal insulation mortar,” Construction and Building Materials, vol. 394, Aug. 2023. doi:10.1016/j.conbuildmat.2023.132257
  • [27] M. Harila, “Biobased carbon aerogels incorporated with zeolite nanoplates for carbon dioxide adsorption,” master dissertation, Luleå University of Technology, Luleå, Sweden, 2021.
  • [28] K. A. Sashkina, P. A. Gurikov, A. B. Ayupov, I. Smirnova and E. V. Parkhomchuk, “Zeolite/silica aerogel composite monoliths and microspheres,” Microporous and Mesoporous Materials, vol. 263, pp. 106–112, June 2018. doi:10.1016/j.micromeso.2017.12.010
  • [29] B. Wang, H. Ma and K. Song, “Preparation and characterization of silica aerogels from diatomite via ambient pressure drying,” Russian Journal of Physical Chemistry A, vol. 88, pp. 1196-1201, June 2014. doi:10.1134/S0036024414070036
  • [30] W. Hu, M. Li, W. Chen, N. Zhang, B. Li, M. Wang and Z. Zhao, “Preparation of hydrophobic silica aerogel with kaolin dried at ambient pressure,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 501, pp. 83-91, July 2016. doi:10.1016/j.colsurfa.2016.04.059
  • [31] P. Zhu, M. Zheng, S. Zhao, J. Wu and H. Xu, “Synthesis and thermal insulation performance of silica aerogel from recycled coal gangue by means of ambient pressure drying,” Journal of Wuhan University of Technology-Mater. Sci. Ed., vol. 30, no. 5, ss. 908-913, Oct. 2015. doi:10.1007/s11595-015-1248-9
  • [32] J. Zhu, S. Guo and X. Li, “Facile preparation of a SiO2–Al2O3 aerogel using coal gangue as a raw material via an ambient pressure drying method and its application in organic solvent adsorption,” RSC Advances, vol. 5, no. 125, pp. 103656-103661, Nov. 2015. doi:10.1039/C5RA20392A.
  • [33] F. Peng, Y. Jiang, J. Feng, L. Li, H. Cai and J. Feng, “A facile method to fabricate monolithic alumina–silica aerogels with high surface areas and good mechanical properties,” Journal of the European Ceramic Society, vol. 40, no. 6, pp. 2480-2488, June 2020. doi:10.1016/j.jeurceramsoc.2020.01.058
  • [34] F. Lou, S. Dong, K. Zhu, X. Chen and Y. Ma, “Thermal insulation performance of aerogel nano-porous materials: characterization and test methods,” Gels, vol. 9, no. 3, March 2023. doi:10.3390/gels9030220
  • [35] X. Wu, M. Fan, J. F. Mclaughlin, X. Shen and G. Tan, “A novel low-cost method of silica aerogel fabrication using fly ash and trona ore with ambient pressure drying technique,” Powder Technology, vol. 323, pp. 310-322, Jan. 2018. doi:10.1016/j.powtec.2017.10.022
  • [36] X. Ji, Q. Zhou, G. Qiu, B. Peng, M. Guo and M. Zhang, “Synthesis of an alumina enriched Al2O3-SiO2 aerogel: Reinforcement and ambient pressure drying,” Journal of Non-Crystalline Solids, vol. 471, pp. 160-168, Sept. 2017. doi:10.1016/j.jnoncrysol.2017.05.038
  • [37] F. Lou, S. Dong, K. Zhu, X. Chen, and Y. Ma, “Thermal insulation performance of aerogel nano-porous materials: characterization and test methods,” Gels, vol. 9, no. 3, March 2023. doi:10.3390/gels9030220
  • [38] S. A. Al-Ajlan, “Measurements of thermal properties of insulation materials by using transient plane source technique,” Applied thermal engineering, vol. 26, no. 17-18, pp. 2184-2191, 2006. doi:10.1016/j.applthermaleng.2006.04.006
  • [39] Y. Yu, K. Peng, J. Fang, R. Zhang, G. Wang and X. Peng, “Mechanical and thermal conductive properties of fiber‐reinforced silica‐alumina aerogels,” International Journal of Applied Ceramic Technology, vol. 15, no. 5, pp. 1138-1145, March 2018. doi:10.1111/ijac.12891
  • [40] L. Liu, X. Wang, Z. Zhang, Y. Shi, Y. Zhao, S. Shen and J. Shen, “A facile method for fabricating a monolithic mullite fiber-reinforced alumina aerogel with excellent mechanical and thermal properties.” Gels, vol. 8, no. 6, June 2022. doi:10.3390/gels8060380
  • [41] H. Yu, Y. Jiang, Y. Lu, X. Li, H. Zhao, Y. Ji and M. Wang, “Quartz fiber reinforced Al2O3-SiO2 aerogel composite with highly thermal stability by ambient pressure drying,” Journal of Non-Crystalline Solids, vol. 505, pp. 79-86, Feb. 2019. doi:10.1016/j.jnoncrysol.2018.10.039

Perlit, Diatomit, Zeolit ve Şamot Tuğla Harcından Alümina-Silika Esaslı Kompozit Aerojel Tozu Üretimi

Year 2024, Volume: 10 Issue: 3, 558 - 573, 31.12.2024

Abstract

Bu çalışmada, alümina-silika esaslı aerojel tozu, silika kaynağı olarak perlit, diatomit ve zeolit gibi doğal hammaddeler ve alümina kaynağı olarak şamot tuğla harcı kullanılarak atmosferik kurutma koşulları altında sol-jel yöntemiyle üretilmiştir. Silika aerojeller düşük yoğunluk, yüksek gözeneklilik ve ısı yalıtımı gibi üstün özelliklere sahiptir. Bununla birlikte, boyutsal kararlılıkları ve mekanik mukavemetleri yüksek sıcaklıklarda zayıftır. Alümina gibi termal dirençli katkılama ile bu aerojellerin özellikleri geliştirilebilir ve 1200-1400°C'ye kadar kararlı hale gelebilir; düşük termal iletkenlik değerleri de korunur. Bu nedenle, alümina-silika esaslı aerojel bileşimleri, malzeme performansında önemli bir iyileşme ile uygulama alanlarını genişletme potansiyeline sahiptir. Çalışmada silika ve alümina kaynağı olan tozlar (perlit, diatomit, zeolit ve şamot tuğla harcı), baz ve asit kaynağı olarak NaOH, HCl ve jel yapısını güçlendirmek için etanol kullanılmıştır. NaOH çözeltilerinde kaynatılarak çözündürülen tozlar, filtrasyon işleminin ardından nötralize edilmiştir. Oda sıcaklığında yaşlandırılan jelde yüzey modifikasyonu en kritik aşama olup; etanol kimyasalı ile gerçekleştirilmiştir. Atmosferik basınçta 120°C'de 2 gün boyunca kurutulan aerojel tozları FTIR, XRD, SEM ve BET cihazları kullanılarak karakterize edilmiş ve yoğunlukları hesaplanmıştır. Atmosferik basınçta kurutma tekniği ile üstün özelliklere sahip alümina-silika esaslı aerojel tozlarının sentezlendiği belirlenmiştir.

References

  • [1] N. Saraç ve N. Toplan, “Dünyanın En Hafi̇f Katı Malzemesi̇: Aerojeller,” Metal Dünyası Dergisi, no. 276, pp. 68-72, Haziran 2016.
  • [2] A. E. Çimen ve N. Toplan, “Döküm Kumu ve atık döküm kumundan silika esaslı aerojel toz eldesi,” Metal Dünyası Dergisi, no. 329, pp. 50-56, Kasım 2020.
  • [3] N. Saraç, “Silika esaslı doğal hammadde ve atıklardan aerojel tozu üretimi ve karakterizasyonu,” Doktora tezi, Sakarya Üniversitesi, Fen Bilimleri Enstitüsü, Sakarya, Türkiye, 2018.
  • [4] A. Köken ve M. Kanık, “Aerojellerle Isı Yalıtımı ve Tekstil Uygulamaları,” Tekstil ve Mühendis, vol. 29, no. 128, pp. 249-260, 2022. doi: 10.7216/teksmuh.1222488
  • [5] A. E. Çimen, “Döküm Kumu ve Atık Döküm Kumundan Silika Esaslı Aerojel Üretimi Ve Karakterizasyonu,” Yüksek lisans tezi, Sakarya Üniversitesi, Fen Bilimleri Enstitüsü, Sakarya, Türkiye, 2021.
  • [6] Y. Lei, X. Chen, H. Song, Z. Hu and B. Cao, “Improvement of thermal insulation performance of silica aerogels by Al2O3 powders doping,” Ceramics International, vol. 43, no. 14, pp. 10799-10804, 2017. doi: 10.1016/j.ceramint.2017.05.100 [7] Y. Wu, X. Wang, L. Liu, Z. Zhang and J. Shen, “Alumina-Doped Silica Aerogels for High-Temperature Thermal Insulation,” Gels, vol. 7, no. 3, pp. 1-12, 2021. doi: 10.3390/gels7030122
  • [8] C. M. Almeida, M.E. Ghica and L. Duraes, “An overview on alumina-silica-based aerogels,” Advances in Colloid and Interface Science, vol. 282, pp. 1-25, 2020. doi:10.1016/j.cis.2020.102189
  • [9] D.C. Öz ve N. Kaya, “Sol-jel yöntemiyle üretilen alümina alkojelin fizikokimyasal ve yapısal özellikleri üzerine kurutma türünün etkisi”, Politeknik Dergisi, vol. 23, no. 3, pp. 657-669, 2020. doi:10.2339/politeknik.456871
  • [10] S. Karamikamkar, H. E. Naguib and C. B. Park, “Advances in precursor system for silica-based aerogel production toward improved mechanical properties, customized morphology, and multifunctionality: A review,” Advances in colloid and interface science, vol. 276, pp. 1-29, 2020. doi:10.1016/j.cis.2020.102101
  • [11] D. C. Öz, B. Öz ve N. Kaya, “Alümina aerojellerin fiziksel özellikleri üzerine yaşlandırma ve kurutma süresinin etkisi,” Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 20, no. 1, pp. 198-211, Temmuz 2018. doi:10.25092/baunfbed.348344
  • [12] A. Kochanke, C. Üffing and A. Hartwig, “Interaction of Poly (dimethylsiloxane) and octamethylcyclotetrasiloxane with aluminum oxides comprising different acid-base properties,” Polymer Degradation and Stability, vol. 161, pp. 19-29, 2019. doi:10.1016/j.polymdegradstab.2019.01.01.
  • [13] J. Estella, J. C. Echeverría, M. Laguna and J. J. Garrido, “Effects of aging and drying conditions on the structural and textural properties of silica gels,” Microporous and mesoporous materials, vol. 102, no. 1-3, pp. 274-282, 2007. doi:10.1016/j.micromeso.2007.01.007.
  • [14] A.S. Dorcheh and M. H. Abbasi, “Silica aerogel; synthesis, properties and characterization,” Journal of materials processing technology, vol. 199, no. 1-3, pp. 10-26, 2008. doi:10.1016/j.jmatprotec.2007.10.060.
  • [15] A. Kösematoğlu, “Yurdumuzdaki şamot ateş tuğlası hammadde yatakları,” Scientific Mining Journal, vol. 1, no. 2, pp. 98-109, 1961.
  • [16] Vandersanden, “Malzemelerin yeniden kullanımı ve geri dönüşümü,” vandersanden.com, June 8, 2021. [Online]. Available: https://www.vandersanden.com/tr-tr/malzemelerin-yeniden-kullanimi-ve-geri-donusumu. [Accessed: Jan. 12, 2024].
  • [17] S. É. EIvanov and A. V. Belyakov, “Diatomite and its applications,” Glass & Ceramics, vol. 65, 2008.
  • [18] B. Taş ve M. Çetin, “Biyolojik orijinli tek doğal mineral: diyatomit,” Tübav Bilim Dergisi, vol. 5, no. 2, pp. 28-46, 2012.
  • [19] N. Değirmenci ve A. Yılmaz, “Use of diatomite as partial replacement for Portland cement in cement mortars,” Construction and Building Materials, vol. 23, no. 1, pp. 284-288, 2009.
  • [20] M. V. Gökçe ve İ. Koç, “Diyatomit esaslı hafif yapı elemanı üretiminde üre-formaldehitin bağlayıcı olarak kullanılması,” Doktora tezi, Selçuk Üniversitesi, Fen Bilimleri Enstitüsü, Konya, 2010.
  • [21] Ü. Osman ve T. Uygunoğlu, “Diyatomitin hafif beton üretiminde kullanılması,” Teknik Dergi, vol. 18, no. 86, pp. 4025-4034, 2007.
  • [22] Pertaş, “Perlit madeni,” pertas.net, Apr. 12, 2004. [Online]. Available: http://www.pertas.net/Perlit.html. [Accessed: Dec. 12, 2023]
  • [23] Ł. Kotwica, W. Pichór, E. Kapeluszna and A. Różycka, “ Utilization of waste expanded perlite as new effective supplementary cementitious material,” Journal of Cleaner production, vol. 140, pp. 1344-1352, Jan. 2017. doi: 10.1016/J.JCLEPRO.2016.10.018
  • [24] E. Kapeluszna, Ł. Kotwica, G. Malata, P. Murzyn and W. Nocuń-Wczelik, “The effect of highly reactive pozzolanic material on the early hydration of alite–C3A–gypsum synthetic cement systems,” Construction and Building Materials, vol. 251, Aug. 2020. doi:10.1016/j.conbuildmat.2020.118879
  • [25] A. El Mir and S. G. Nehme, “Utilization of industrial waste perlite powder in self-compacting concrete,” Journal of Cleaner Production, vol. 156, pp. 507-517, July 2017. doi:10.1016/j.jclepro.2017.04.103
  • [26] G. Jia, J. Guo and Z. Li, “Controllable preparation of aerogel/expanded perlite composite and its application in thermal insulation mortar,” Construction and Building Materials, vol. 394, Aug. 2023. doi:10.1016/j.conbuildmat.2023.132257
  • [27] M. Harila, “Biobased carbon aerogels incorporated with zeolite nanoplates for carbon dioxide adsorption,” master dissertation, Luleå University of Technology, Luleå, Sweden, 2021.
  • [28] K. A. Sashkina, P. A. Gurikov, A. B. Ayupov, I. Smirnova and E. V. Parkhomchuk, “Zeolite/silica aerogel composite monoliths and microspheres,” Microporous and Mesoporous Materials, vol. 263, pp. 106–112, June 2018. doi:10.1016/j.micromeso.2017.12.010
  • [29] B. Wang, H. Ma and K. Song, “Preparation and characterization of silica aerogels from diatomite via ambient pressure drying,” Russian Journal of Physical Chemistry A, vol. 88, pp. 1196-1201, June 2014. doi:10.1134/S0036024414070036
  • [30] W. Hu, M. Li, W. Chen, N. Zhang, B. Li, M. Wang and Z. Zhao, “Preparation of hydrophobic silica aerogel with kaolin dried at ambient pressure,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 501, pp. 83-91, July 2016. doi:10.1016/j.colsurfa.2016.04.059
  • [31] P. Zhu, M. Zheng, S. Zhao, J. Wu and H. Xu, “Synthesis and thermal insulation performance of silica aerogel from recycled coal gangue by means of ambient pressure drying,” Journal of Wuhan University of Technology-Mater. Sci. Ed., vol. 30, no. 5, ss. 908-913, Oct. 2015. doi:10.1007/s11595-015-1248-9
  • [32] J. Zhu, S. Guo and X. Li, “Facile preparation of a SiO2–Al2O3 aerogel using coal gangue as a raw material via an ambient pressure drying method and its application in organic solvent adsorption,” RSC Advances, vol. 5, no. 125, pp. 103656-103661, Nov. 2015. doi:10.1039/C5RA20392A.
  • [33] F. Peng, Y. Jiang, J. Feng, L. Li, H. Cai and J. Feng, “A facile method to fabricate monolithic alumina–silica aerogels with high surface areas and good mechanical properties,” Journal of the European Ceramic Society, vol. 40, no. 6, pp. 2480-2488, June 2020. doi:10.1016/j.jeurceramsoc.2020.01.058
  • [34] F. Lou, S. Dong, K. Zhu, X. Chen and Y. Ma, “Thermal insulation performance of aerogel nano-porous materials: characterization and test methods,” Gels, vol. 9, no. 3, March 2023. doi:10.3390/gels9030220
  • [35] X. Wu, M. Fan, J. F. Mclaughlin, X. Shen and G. Tan, “A novel low-cost method of silica aerogel fabrication using fly ash and trona ore with ambient pressure drying technique,” Powder Technology, vol. 323, pp. 310-322, Jan. 2018. doi:10.1016/j.powtec.2017.10.022
  • [36] X. Ji, Q. Zhou, G. Qiu, B. Peng, M. Guo and M. Zhang, “Synthesis of an alumina enriched Al2O3-SiO2 aerogel: Reinforcement and ambient pressure drying,” Journal of Non-Crystalline Solids, vol. 471, pp. 160-168, Sept. 2017. doi:10.1016/j.jnoncrysol.2017.05.038
  • [37] F. Lou, S. Dong, K. Zhu, X. Chen, and Y. Ma, “Thermal insulation performance of aerogel nano-porous materials: characterization and test methods,” Gels, vol. 9, no. 3, March 2023. doi:10.3390/gels9030220
  • [38] S. A. Al-Ajlan, “Measurements of thermal properties of insulation materials by using transient plane source technique,” Applied thermal engineering, vol. 26, no. 17-18, pp. 2184-2191, 2006. doi:10.1016/j.applthermaleng.2006.04.006
  • [39] Y. Yu, K. Peng, J. Fang, R. Zhang, G. Wang and X. Peng, “Mechanical and thermal conductive properties of fiber‐reinforced silica‐alumina aerogels,” International Journal of Applied Ceramic Technology, vol. 15, no. 5, pp. 1138-1145, March 2018. doi:10.1111/ijac.12891
  • [40] L. Liu, X. Wang, Z. Zhang, Y. Shi, Y. Zhao, S. Shen and J. Shen, “A facile method for fabricating a monolithic mullite fiber-reinforced alumina aerogel with excellent mechanical and thermal properties.” Gels, vol. 8, no. 6, June 2022. doi:10.3390/gels8060380
  • [41] H. Yu, Y. Jiang, Y. Lu, X. Li, H. Zhao, Y. Ji and M. Wang, “Quartz fiber reinforced Al2O3-SiO2 aerogel composite with highly thermal stability by ambient pressure drying,” Journal of Non-Crystalline Solids, vol. 505, pp. 79-86, Feb. 2019. doi:10.1016/j.jnoncrysol.2018.10.039
There are 40 citations in total.

Details

Primary Language Turkish
Subjects Material Production Technologies, Materials Engineering (Other)
Journal Section Research Articles
Authors

Özge Kılınç 0000-0003-4051-3970

Nil Toplan 0000-0003-4130-0002

Publication Date December 31, 2024
Submission Date April 2, 2024
Acceptance Date October 24, 2024
Published in Issue Year 2024 Volume: 10 Issue: 3

Cite

IEEE Ö. Kılınç and N. Toplan, “Perlit, Diatomit, Zeolit ve Şamot Tuğla Harcından Alümina-Silika Esaslı Kompozit Aerojel Tozu Üretimi”, GJES, vol. 10, no. 3, pp. 558–573, 2024.

Gazi Journal of Engineering Sciences (GJES) publishes open access articles under a Creative Commons Attribution 4.0 International License (CC BY). 1366_2000-copia-2.jpg