Research Article
BibTex RIS Cite

Akı Konsantransyonlu Halbach Dizilimli Bir Eşeksenli Manyetik Dişli Tasarımı ve Analizi

Year 2024, Volume: 10 Issue: 3, 457 - 471, 31.12.2024

Abstract

Yağsız ve sürtünmesiz koşullarda çalışabilen ve Akı Konsantrasyonlu Halbach Dizilim (AKHD)’ine sahip mıknatıslar ile beraber güç iletme oranı 5.33 olarak tasarlanmış, bir eşeksenli Manyetik Dişli (MD)’nin sonlu elemanlar methodu ile elektromanyetik nümerik analizleri gerçekleştirilerek özellikle Kanatçık Tahrik Sistemi (KTS)’nde uygulanabilecek bir güç aktarma mekanizması geliştirilmiştir. Çalışma kapsamında, öncelikle AKHD ile farklı dizilimli tasarımların performansları karşılaştırılıp bu yaklaşımın etkinliği gösterilmiş; sonrasında ise AKHD’li tasarımda farklı geometrik parametreler değişken olarak belirlenip tanımlanmış bir boyutsal alanda çeşitli mekanik modeller geliştirilerek performans iyileştirme çalışması gerçekleştirilmiştir. Bu bağlamda, tasarım parametrelerinin, MD performansına olan etkisi karşılaştırılarak Hacimsel Tork Yoğunluğu (HTY)’nun en yüksek değere ulaştığı geometrik model belirlenmiştir. Nümerik analiz sonuçları en iyilenmiş AKHD’nin, halbach dizilime göre HTY’yi %32 oranında arttırdığını göstermiş ve parametrik analiz çalışmalarının sonucu olarak ideal tasarım ölçütlerini sağlayan 225.7 Nm/L HTY değerine sahip bir MD sistemi elde edilmiştir. Modellenen iyilenmiş MD ile performans kriterlerinden tork salınımı ve akı yoğunluğu sayısal olarak incelenmiş ve farklı mıknatıs seviyeleri değişken olarak belirlenip analizler gerçekleştirilerek etkisi incelenmiştir. MD çalışma prensibine göre katı modelleme çalışması gerçekleştirilerek nümerik analizden elde edilen kuvvetler dikkate alınarak kritik olarak görülen orta rotorun yapısal durumu incelenmiştir. MD’nin elektromanyetik analiz bulguları ve yapısal performansı, KTS gibi bir güç aktarım elemanında kullanılabileceğini göstermiştir.

Supporting Institution

TÜBİTAK SAGE

Thanks

TÜBİTAK SAGE ve HİTİT ÜNİVERSİTESİ

References

  • [1] M. Keleş and C. Baykasoğlu, “Experimental and Numerical Investigation on the Effect of the Structural Characteristics of a Fin Actuation System on System Performance,” GMBD, vol. 6, no. 1, Apr. 2020. doi: 10.30855/gmbd.2020.01.04
  • [2] S. H. Kim and M.-J. Tahk, “Modeling and Experimental Study on the Dynamic Stiffness of an Electromechanical Actuator,” Journal of Spacecraft and Rockets, vol. 53, no. 4, pp. 708–719, Jul. 2016. doi: 10.2514/1.A33483
  • [3] E. Daş, İ. İ. Delice, and M. Keleş, “Analysis and robust position control of an electromechanical control actuation system,” Transactions of the Institute of Measurement and Control, vol. 42, no. 3, pp. 628–640, Feb. 2020. doi: 10.1177/0142331218813421
  • [4] Ö. Hastürk, “A novel electromechanical actuator for missile jet vane thrust control,” in 2015 IEEE International Conference on Advanced Intelligent Mechatronics (AIM), IEEE, 2015. pp. 1298–1302.
  • [5] C.-H. Yoo, “Active Control of Aeroelastic Vibrations for Electromechanical Missile Fin Actuation Systems,” Journal of Guidance, Control, and Dynamics, vol. 40, no. 12, pp. 3299–3306, Dec. 2017. doi: 10.2514/1.G002821
  • [6] Ö. Hastürk, “Applications of slider chain inversion in control actuation systems,” in 2016 IEEE International Conference on Advanced Intelligent Mechatronics (AIM), IEEE, 2016. pp. 1579–1584.
  • [7] M. Keleş and C. Baykasoğlu, “Manyetik dişli tasarımında orta rotor segment destek parametrelerinin performansa etkilerinin incelenmesi,” in 25. Otomatik Kontrol Ulusal Toplantısı, Konya, 14 Eylül 2024, pp. 371–375.
  • [8] P. M. Tlali, R.-J. Wang, and S. Gerber, “Magnetic gear technologies: A review,” in 2014 International Conference on Electrical Machines (ICEM), Berlin, Germany: IEEE, Sep. 2014. pp. 544–550. doi: 10.1109/ICELMACH.2014.6960233
  • [9] J. J. Scheidler, “NASA’s Magnetic Gearing Research for Electrified Aircraft Propulsion,” in 2018 AIAA/IEEE Electric Aircraft Technologies Symposium, Cincinnati, Ohio: American Institute of Aeronautics and Astronautics, Jul. 2018. doi: 10.2514/6.2018-4988
  • [10] Y. Wang, M. Filippini, N. Bianchi, and P. Alotto, “A Review on Magnetic Gears: Topologies, Computational Models, and Design Aspects,” IEEE Trans. on Ind. Applicat., vol. 55, no. 5, pp. 4557–4566, Sep. 2019. doi: 10.1109/TIA.2019.2916765
  • [11] C. G. C. Neves and A. F. F. Filho, “Magnetic Gearing Electromagnetic Concepts,” J. Microw. Optoelectron. Electromagn. Appl., vol. 16, no. 1, pp. 108–119, Mar. 2017. doi: 10.1590/2179-10742017v16i1874
  • [12] K. Li, S. Modaresahmadi, W. B. Williams, J. D. Wright, D. Som, and J. Z. Bird, “Designing and Experimentally Testing a Magnetic Gearbox for a Wind Turbine Demonstrator,” IEEE Trans. on Ind. Applicat., vol. 55, no. 4, pp. 3522–3533, Jul. 2019. doi: 10.1109/TIA.2019.2905838
  • [13] K. K. Uppalapati, J. Z. Bird, J. Wright, J. Pritchard, M. Calvin, and W. Williams, “A Magnetic Gearbox with an Active Region Torque Density of 239Nm/L,” IEEE Transactions on Industry Applications vol. 54, no. 2, pp. 1331-1338, 2017. doi: 10.1109/TIA.2017.2779418
  • [14] K. Atallah and D. Howe, “A novel high-performance magnetic gear,” IEEE Trans. Magn., vol. 37, no. 4, pp. 2844–2846, Jul. 2001. doi: 10.1109/20.951324
  • [15] K. Atallah, S. D. Calverley, and D. Howe, “Design, analysis and realisation of a high-performance magnetic gear,” IEE Proc., Electr. Power Appl., vol. 151, no. 2, p. 135, 2004. doi: 10.1049/ip-epa:20040224
  • [16] P. O. Rasmussen, T. O. Andersen, F. T. Jorgensen, and O. Nielsen, “Development of a High-Performance Magnetic Gear,” IEEE Trans. on Ind. Applicat., vol. 41, no. 3, pp. 764–770, May 2005. doi: 10.1109/TIA.2005.847319
  • [17] B. Praslicka, M. C. Gardner, M. Johnson, and H. A. Toliyat, “Review and Analysis of Coaxial Magnetic Gear Pole Pair Count Selection Effects,” IEEE J. Emerg. Sel. Topics Power Electron., pp. 1–1, 2021. doi: 10.1109/JESTPE.2021.3053544
  • [18] K. Li and J. Z. Bird, “A Review of the Volumetric Torque Density of Rotary Magnetic Gear Designs,” in 2018 XIII International Conference on Electrical Machines (ICEM), Alexandroupoli: IEEE, Sep. 2018. pp. 2016–2022. doi: 10.1109/ICELMACH.2018.8507059
  • [19] S. Modaresahmadi, D. Barnett, H. Baninajar, J. Z. Bird, and W. B. Williams, “Structural modeling and validation of laminated stacks in magnetic gearing applications,” International Journal of Mechanical Sciences, vol. 192, p. 106133, Feb. 2021. doi: 10.1016/j.ijmecsci.2020.106133
  • [20] S. Modaresahmadi, C. Nichols, and W. Williams, “Mechanical Design of Magnetic Gearboxes Optimized for Assembly,” in Volume 6A: Energy, Pittsburgh, Pennsylvania, USA: American Society of Mechanical Engineers, Nov. 2018. p. V06AT08A012. doi: 10.1115/IMECE2018-86878 [21] D. Som et al., “Analysis and Testing of a Coaxial Magnetic Gearbox With Flux Concentration Halbach Rotors,” IEEE Trans. Magn., vol. 53, no. 11, pp. 1–6, Nov. 2017. doi: 10.1109/TMAG.2017.2715799
  • [22] M. Keleş and C. Baykasoğlu, “Bir Manyetik Dişli Tasarımının Analizi ve Performans En İyileştirmesi,” in ELECO 2022 Elektrik-Elektronik ve Biyomedikal Mühendisliği Konferansı, Bursa, 26 Kasım 2022.
  • [23] H. Baninajar, S. Modaresahmadi, H. Y. Wong, J. Bird, W. Williams, and B. Dechant, “Designing a Halbach Rotor Magnetic Gear for a Marine Hydrokinetic Generator,” IEEE Trans. on Ind. Applicat., vol. 58, no. 5, pp. 6069–6080, Sep. 2022. doi: 10.1109/TIA.2022.3180705
  • [24] T. Tallerico, Z. A. Cameron, and J. J. Scheidler, “Design of a Magnetic Gear for NASA’s Vertical Lift Quadrotor Concept Vehicle,” in AIAA Propulsion and Energy 2019 Forum, Indianapolis, IN: American Institute of Aeronautics and Astronautics, Aug. 2019. doi: 10.2514/6.2019-4477
  • [25] J.-I. Lee et al., “Design and Analysis of the Coaxial Magnetic Gear Considering the Electromagnetic Performance and Mechanical Stress,” IEEE Trans. Appl. Supercond., vol. 30, no. 4, pp. 1–5, Jun. 2020. doi: 10.1109/TASC.2020.2968267
  • [26] H. Y. Wong, H. Baninajar, B. Dechant, and J. Bird, “Designing a Magnetic Gear for an Electric Aircraft Drivetrain,” in 2020 IEEE Energy Conversion Congress and Exposition (ECCE), Detroit, MI, USA: IEEE, Oct. 2020. pp. 1–6. doi: 10.1109/ECCE44975.2020.9235977
  • [27] Y. Kassab, A. Ghanem, and E. Gouda, “Analysis of a coaxial magnetic gear optimally designed using Particle Swarm Optimization,” Mansoura Engineering Journal, vol. 49, no. 4, Jan. 2024. doi: 10.58491/2735-4202.3206
  • [28] A. Aytaç, M. S. Işık, B. Çanakçi, T. Özdemi̇r, K. Azteki̇n, and H. İpek, “AISI 1008 1040 ve 4140 Çeliklerinde Isıl İşlem, Karbon Oranı ve Alaşım Elementlerinin Mikroyapı ve Mekanik Özelliklere Etkisinin İncelenmesi,” Savunma Bilimleri Dergisi, vol. 17, no. 2, pp. 139–165, Nov. 2018. doi: 10.17134/khosbd.477252

Design and Analysis of a Coaxial Magnetic Gear with Flux Concentrate Halbach Array

Year 2024, Volume: 10 Issue: 3, 457 - 471, 31.12.2024

Abstract

A coaxial Magnetic Gear (MG) with a power transmission ratio of 5.33 has been designed with Flux Concentrate Halbach Array (FCHA) magnet that can operate in antifriction and unlubricated conditions. By performing electromagnetic numerical analysis with the finite element method, a power transmission mechanism that can be applied especially in Fin Actuation System (FAS) has been improved. Within the scope of the study, firstly, the performances of FCHA and different array designs were compared and the effectiveness of this approach was demonstrated. Subsequently, different geometric parameters were determined as variables in the FCHA design and a performance improvement study was carried out by developing various mechanical models in a defined dimensional area. In this context, by comparing the effects of design parameters on MG performance, the geometric model in which the Volumetric Torque Density (VTD) reached the highest value was decided. Numerical analysis results showed that the optimized FCHA increased VTD by 32% compared to the halbach array. As a result of parametric analysis studies, MG system with VTD value of 225.7 Nm/L, which satisfies ideal design criteria, was obtained. With the modeled improved MG, torque ripple and flux density, which are among the performance criteria, were examined numerically and the effects of different magnet grades were determined as variables and analyzes were carried out. Solid modeling was carried out according to MG working principle, and the structural state of the middle rotor, which was considered critical, was examined with the forces obtained from the numerical analysis. Electromagnetic analysis findings and structural performance of MG have shown that it can be used in a power transmission element such as FAS.

References

  • [1] M. Keleş and C. Baykasoğlu, “Experimental and Numerical Investigation on the Effect of the Structural Characteristics of a Fin Actuation System on System Performance,” GMBD, vol. 6, no. 1, Apr. 2020. doi: 10.30855/gmbd.2020.01.04
  • [2] S. H. Kim and M.-J. Tahk, “Modeling and Experimental Study on the Dynamic Stiffness of an Electromechanical Actuator,” Journal of Spacecraft and Rockets, vol. 53, no. 4, pp. 708–719, Jul. 2016. doi: 10.2514/1.A33483
  • [3] E. Daş, İ. İ. Delice, and M. Keleş, “Analysis and robust position control of an electromechanical control actuation system,” Transactions of the Institute of Measurement and Control, vol. 42, no. 3, pp. 628–640, Feb. 2020. doi: 10.1177/0142331218813421
  • [4] Ö. Hastürk, “A novel electromechanical actuator for missile jet vane thrust control,” in 2015 IEEE International Conference on Advanced Intelligent Mechatronics (AIM), IEEE, 2015. pp. 1298–1302.
  • [5] C.-H. Yoo, “Active Control of Aeroelastic Vibrations for Electromechanical Missile Fin Actuation Systems,” Journal of Guidance, Control, and Dynamics, vol. 40, no. 12, pp. 3299–3306, Dec. 2017. doi: 10.2514/1.G002821
  • [6] Ö. Hastürk, “Applications of slider chain inversion in control actuation systems,” in 2016 IEEE International Conference on Advanced Intelligent Mechatronics (AIM), IEEE, 2016. pp. 1579–1584.
  • [7] M. Keleş and C. Baykasoğlu, “Manyetik dişli tasarımında orta rotor segment destek parametrelerinin performansa etkilerinin incelenmesi,” in 25. Otomatik Kontrol Ulusal Toplantısı, Konya, 14 Eylül 2024, pp. 371–375.
  • [8] P. M. Tlali, R.-J. Wang, and S. Gerber, “Magnetic gear technologies: A review,” in 2014 International Conference on Electrical Machines (ICEM), Berlin, Germany: IEEE, Sep. 2014. pp. 544–550. doi: 10.1109/ICELMACH.2014.6960233
  • [9] J. J. Scheidler, “NASA’s Magnetic Gearing Research for Electrified Aircraft Propulsion,” in 2018 AIAA/IEEE Electric Aircraft Technologies Symposium, Cincinnati, Ohio: American Institute of Aeronautics and Astronautics, Jul. 2018. doi: 10.2514/6.2018-4988
  • [10] Y. Wang, M. Filippini, N. Bianchi, and P. Alotto, “A Review on Magnetic Gears: Topologies, Computational Models, and Design Aspects,” IEEE Trans. on Ind. Applicat., vol. 55, no. 5, pp. 4557–4566, Sep. 2019. doi: 10.1109/TIA.2019.2916765
  • [11] C. G. C. Neves and A. F. F. Filho, “Magnetic Gearing Electromagnetic Concepts,” J. Microw. Optoelectron. Electromagn. Appl., vol. 16, no. 1, pp. 108–119, Mar. 2017. doi: 10.1590/2179-10742017v16i1874
  • [12] K. Li, S. Modaresahmadi, W. B. Williams, J. D. Wright, D. Som, and J. Z. Bird, “Designing and Experimentally Testing a Magnetic Gearbox for a Wind Turbine Demonstrator,” IEEE Trans. on Ind. Applicat., vol. 55, no. 4, pp. 3522–3533, Jul. 2019. doi: 10.1109/TIA.2019.2905838
  • [13] K. K. Uppalapati, J. Z. Bird, J. Wright, J. Pritchard, M. Calvin, and W. Williams, “A Magnetic Gearbox with an Active Region Torque Density of 239Nm/L,” IEEE Transactions on Industry Applications vol. 54, no. 2, pp. 1331-1338, 2017. doi: 10.1109/TIA.2017.2779418
  • [14] K. Atallah and D. Howe, “A novel high-performance magnetic gear,” IEEE Trans. Magn., vol. 37, no. 4, pp. 2844–2846, Jul. 2001. doi: 10.1109/20.951324
  • [15] K. Atallah, S. D. Calverley, and D. Howe, “Design, analysis and realisation of a high-performance magnetic gear,” IEE Proc., Electr. Power Appl., vol. 151, no. 2, p. 135, 2004. doi: 10.1049/ip-epa:20040224
  • [16] P. O. Rasmussen, T. O. Andersen, F. T. Jorgensen, and O. Nielsen, “Development of a High-Performance Magnetic Gear,” IEEE Trans. on Ind. Applicat., vol. 41, no. 3, pp. 764–770, May 2005. doi: 10.1109/TIA.2005.847319
  • [17] B. Praslicka, M. C. Gardner, M. Johnson, and H. A. Toliyat, “Review and Analysis of Coaxial Magnetic Gear Pole Pair Count Selection Effects,” IEEE J. Emerg. Sel. Topics Power Electron., pp. 1–1, 2021. doi: 10.1109/JESTPE.2021.3053544
  • [18] K. Li and J. Z. Bird, “A Review of the Volumetric Torque Density of Rotary Magnetic Gear Designs,” in 2018 XIII International Conference on Electrical Machines (ICEM), Alexandroupoli: IEEE, Sep. 2018. pp. 2016–2022. doi: 10.1109/ICELMACH.2018.8507059
  • [19] S. Modaresahmadi, D. Barnett, H. Baninajar, J. Z. Bird, and W. B. Williams, “Structural modeling and validation of laminated stacks in magnetic gearing applications,” International Journal of Mechanical Sciences, vol. 192, p. 106133, Feb. 2021. doi: 10.1016/j.ijmecsci.2020.106133
  • [20] S. Modaresahmadi, C. Nichols, and W. Williams, “Mechanical Design of Magnetic Gearboxes Optimized for Assembly,” in Volume 6A: Energy, Pittsburgh, Pennsylvania, USA: American Society of Mechanical Engineers, Nov. 2018. p. V06AT08A012. doi: 10.1115/IMECE2018-86878 [21] D. Som et al., “Analysis and Testing of a Coaxial Magnetic Gearbox With Flux Concentration Halbach Rotors,” IEEE Trans. Magn., vol. 53, no. 11, pp. 1–6, Nov. 2017. doi: 10.1109/TMAG.2017.2715799
  • [22] M. Keleş and C. Baykasoğlu, “Bir Manyetik Dişli Tasarımının Analizi ve Performans En İyileştirmesi,” in ELECO 2022 Elektrik-Elektronik ve Biyomedikal Mühendisliği Konferansı, Bursa, 26 Kasım 2022.
  • [23] H. Baninajar, S. Modaresahmadi, H. Y. Wong, J. Bird, W. Williams, and B. Dechant, “Designing a Halbach Rotor Magnetic Gear for a Marine Hydrokinetic Generator,” IEEE Trans. on Ind. Applicat., vol. 58, no. 5, pp. 6069–6080, Sep. 2022. doi: 10.1109/TIA.2022.3180705
  • [24] T. Tallerico, Z. A. Cameron, and J. J. Scheidler, “Design of a Magnetic Gear for NASA’s Vertical Lift Quadrotor Concept Vehicle,” in AIAA Propulsion and Energy 2019 Forum, Indianapolis, IN: American Institute of Aeronautics and Astronautics, Aug. 2019. doi: 10.2514/6.2019-4477
  • [25] J.-I. Lee et al., “Design and Analysis of the Coaxial Magnetic Gear Considering the Electromagnetic Performance and Mechanical Stress,” IEEE Trans. Appl. Supercond., vol. 30, no. 4, pp. 1–5, Jun. 2020. doi: 10.1109/TASC.2020.2968267
  • [26] H. Y. Wong, H. Baninajar, B. Dechant, and J. Bird, “Designing a Magnetic Gear for an Electric Aircraft Drivetrain,” in 2020 IEEE Energy Conversion Congress and Exposition (ECCE), Detroit, MI, USA: IEEE, Oct. 2020. pp. 1–6. doi: 10.1109/ECCE44975.2020.9235977
  • [27] Y. Kassab, A. Ghanem, and E. Gouda, “Analysis of a coaxial magnetic gear optimally designed using Particle Swarm Optimization,” Mansoura Engineering Journal, vol. 49, no. 4, Jan. 2024. doi: 10.58491/2735-4202.3206
  • [28] A. Aytaç, M. S. Işık, B. Çanakçi, T. Özdemi̇r, K. Azteki̇n, and H. İpek, “AISI 1008 1040 ve 4140 Çeliklerinde Isıl İşlem, Karbon Oranı ve Alaşım Elementlerinin Mikroyapı ve Mekanik Özelliklere Etkisinin İncelenmesi,” Savunma Bilimleri Dergisi, vol. 17, no. 2, pp. 139–165, Nov. 2018. doi: 10.17134/khosbd.477252
There are 27 citations in total.

Details

Primary Language Turkish
Subjects Engineering Electromagnetics, Machine Design and Machine Equipment
Journal Section Research Articles
Authors

Murat Keleş 0000-0001-8453-1287

Cengiz Baykasoglu 0000-0001-7583-7655

Publication Date December 31, 2024
Submission Date July 20, 2024
Acceptance Date November 7, 2024
Published in Issue Year 2024 Volume: 10 Issue: 3

Cite

IEEE M. Keleş and C. Baykasoglu, “Akı Konsantransyonlu Halbach Dizilimli Bir Eşeksenli Manyetik Dişli Tasarımı ve Analizi”, GJES, vol. 10, no. 3, pp. 457–471, 2024.

Gazi Journal of Engineering Sciences (GJES) publishes open access articles under a Creative Commons Attribution 4.0 International License (CC BY). 1366_2000-copia-2.jpg