Review
BibTex RIS Cite

Topoloji Optimizasyonu Yöntemlerinin Döner Kanatlı İnsansız Hava Aracı Tasarımına Etkilerinin İncelenmesi

Year 2024, Volume: 10 Issue: 3, 496 - 521, 31.12.2024

Abstract

Topoloji optimizasyonu kullanılarak gerçekleştirilen hafif yapı tasarımları kütle özelliklerinden dolayı havacılık sektöründe ilgi görmektedir. Bu konuyla ilgili olarak yapılan çalışmalar incelendiğinde dayanım özellikleri değiştirilmeden yapı kütlesinin azaltılmasının hedeflendiği görülmektedir. Hava aracı çeşitlerinden biri olan ve kendine özgü uçuş özelliklerine sahip olmasından ötürü havacılık sektöründe kullanım alanı giderek artan döner kanatlı insansız hava araçlarının tasarımında yapı kütlesini azaltmak amacıyla topoloji optimizasyonu yöntemleri kullanılmaktadır. Bu yöntemlerin uygulanması sayesinde döner kanatlı insansız hava araçlarının dayanım-ağırlık oranı ve verimi artmaktadır. Bu çalışmada, döner kanatlı insansız hava araçlarının topoloji optimizasyonu konusunda literatürde bulunan çalışmalar araştırılmış ve elde edilen sonuçlar sunulmuştur. Yapılan araştırma sonucunda topoloji optimizasyonu yöntemlerinin hava aracı tasarımında yapı ağırlığını, yapı gerilimini ve kuvvete maruz kalan yapıdaki yer değiştirme değerini etkilediği tespit edilmiştir. Literatürdeki çalışmalarda araştırmacılar tarafından birim hücre yapısı içeren optimizasyon teknikleri ve birim hücre yapısı içermeyen optimizasyon teknikleri olmak üzere iki farklı strateji kullanıldığı görülmüştür.

References

  • [1] O. Villi and M. Yakar, “İnsansız Hava Araçlarının Kullanım Alanları ve Sensör Tipleri,” Türkiye İnsansız Hava Araçları Dergisi, vol 4, no 2, pp 73-100, Kasım 2022. doi:10.51534/tiha.1189263
  • [2] T. Şeker, “Düzlemsel Çelik Çerçevelerin Genetik Algoritma ile Optimizasyonu,” Yüksek lisans tezi, Fen Bilimleri Enstitüsü, İstanbul Teknik Üniversitesi, İstanbul, Türkiye, 2008.
  • [3] J. D. Deaton and R. V. Grandhi, “A Survey of Structural and Multidisciplinary Continuum Topology Optimization: Post 2000,” Struct Multidisc Optim, vol. 49, pp. 1–38, July 2014. doi:10.1007/ s00158-013-0956-z
  • [4] D. Ö. Helvacı, “Tiling of Cellular Structures Into the Parts According Tothe Density Values of SIMP Topology Optimization,” MSc dissertation, Middle East Technical Univ, Ankara, Turkey, 2020.
  • [5] M. F. Polat, “Generative Topology Optimization for Additive Manufacturing,” Yüksek lisans tezi, Sabancı Üniversitesi, İstanbul, Türkiye, 2021.
  • [6] V. Kılıç, “Alüminyum Kafes Sistemlerin Meta Sezgisel Optimizasyon Tekniklerine Göre Optimum Tasarımı,” Yüksek lisans tezi, Fen Bilimleri Enstitüsü, Akdeniz Üniversitesi, Antalya, Türkiye, 2018.
  • [7] X. Huang and Y. M. Xie, “A further Review of ESO Type Methods for Topology Optimization,” Struct Multidisc Optim, vol. 41, pp. 671–683, January 2010. doi:10.1007/s00158-010-0487-9
  • [8] F. M. Özkal and H. Uysal, “General Aspects of Evolutionary Structural Optimization: A Review,” Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, cilt 15, sayı 3, sayfa 383-393, July 2009.
  • [9] Q. M. Querin, G. P. Steven and Y. M. Xie, “Evolutionary Structural Optimisation (ESO) Using a Bidirectional Algorithm,” Evolutionary Structural Optimisation, vol. 15, no. 8, pp. 1031-1048, April 1998.
  • [10] A. Nazir, K. M. Abate, A. Kumar and J. Y. Jeng, “A State-of-the-art Review on Types, Design, Optimization, and Additive Manufacturing of Cellular Structures,” The International Journal of Advanced Manufacturing Technology, vol. 104, pp. 3489-3510, June 2019. doi:10.1007/s00170-019-04085-3
  • [11] Y. Sağlam, H. Gökçe, N. Top and İ. Şahin, “Design of an Artificial Femur Scaffold for Bone Tissue Engineering,” Alpha Journal of Engineering and Applied Sciences, vol 1, no 1, pp 1–9, 2023. doi:10.1557/s43578-021-00156-y
  • [12] H. Guo, M. Li, P. Sun, C. Zhao, W. Zuo and X. Li, “Lightweight and Maintainable Rotary-Wing UAV Frame from Configurable Design to Detailed Design,” Advances in Mechanical Engineering, vol. 13, no. 7, July 2021. doi:10.1177/16878140211034999
  • [13] E. M. Rayed, B. Esakki, A. Ponnambalam, S. C. Banik and K. Aly, “Optimization of UAV Structure and Evaluation of Vibrational and Fatique Characteristics Through Simulation Studies,” Int. J. Simul. Multidisci. Des. Optim., vol. 12, no. 17, August 2021. doi:10.1051/smdo/2021020
  • [14] Y. L. Yap, W. Toh, A. Giam, F. R. Yong, K. I. Chan, J. W. Tay, S. S. Teong, R. Lin and T. Y. Ng, “Topology optimization and 3D printing of micro-drone: Numerical design with experimental testing,” International Journal of Mechanical Sciences, 237, September 2023. doi:10.1016/j.ijmecsci.2022.107771
  • [15] F. Gafurzade, “İnsansız Hava Araçlarına Ait Termoplastik Kompozit Yapısal Parçaların Topoloji Optimizasyonu Yöntemi ile Tasarımı ve Eklemeli İmalat Metodu ile Üretim Şartlarının İncelenmesi,” Yüksek lisans tezi, Lisansüstü Eğitim Enstitüsü Makine Mühendisliği Anabilim Dalı, Eskişehir Teknik Üniversitesi, Eskişehir, Türkiye, 2022.
  • [16] H. Klippstein, H. Hassanin. A. D. Sanches, Y. Zweiri. and L. Seneviratne, “Additive Manufacturing of Porous Structures for Unmanned Aerial Vehicles Applications,” Advanced Engineering Materials, vol. 20, no. 9, May 2018. doi:10.1002/adem201800290
  • [17] G. L. Goh, V. Dikshit, R. Koneru, Z. K. Peh, W. Lu, G. D. Goh and W. Y. Yeong, “Fabrication of Design‑optimized Multifunctional Safety Cage with Conformal Circuits for Drone Using Hybrid 3D Printing Technology,” The International Journal of Advanced Manufacturing Technology, no 120, pp. 2573-2586, January 2022. doi:10.1007/s00170-022-08831-y
  • [18] B. S. Yıldız, “Yeni Bir Hibrit Metasezgisel Algoritma ile Drone Kolunun Yapısal Optimizasyonu.” Makina Tasarım ve İmalat Dergisi, vol 21, no 2, pp 74-80, Ağustos 2023. doi: 10.56193/matim.1302774
  • [19] B. Esakki, S. Mathiyazhagan, M. Moses, K. J. Rao and G. Ganesan. “Development of 3D-Printed Floating Quadrotor for Collection of Algae in Remote Water Bodies,” Computers and Electronics in Agriculture, 164, July 2019. doi:10.1016/j.compag.2019.104891
  • [20] A. Yakin, T. Simsek. and A. Akkurt, “Remodeling of the Drone Chassis Designed for Additive Manufacturing Method According to Topology Optimization,” in 5 th International Conference on Applied Engineering and Natural Sciences, All Science Proceedings, 2023, Konya, Turkey, July 10-12, 2023.
  • [21] S. Nvss, B. Esakki, L. J. Yang, C. Udayagiri. and K. S. Vepa, “Design and Development of Unibody Quadcopter Structure Using Optimization and Additive Manufacturing Techniques,” Design, vol. 6, no. 8, January 2022. doi:10.3390/designs6010008
  • [22] J. L. Prado, “Economic Optimization of Drone Structure for Industrial Indoor Use by Additive Manufacturing,” MSc dissertation, Politecnico di Torino, Torino, Italy, December 2022.
  • [23] S. A. Khan, Z. Mehmood. and Z. Afshan, “Design, Analysis and Topology Optimization of a Landing Gear Strut for a Quadcopter Upon Impact,” International Conference on Applied and Engineering Mathematics, ICAEM, 2021, London, United Kingdom, July 2021.
  • [24] G. Xiang, Y. Zhu, X. Cheng. and C. Liu, “Lightweight Design and Analysis of Four-Wing UAV Fuselage Structure Based on Topology Optimization,” In Proceedings of the 2nd International Seminar on Artificial Intelligence, Networking and Information Technology, 110-116, 2023.
  • [25] E. Natarajan, C. T. Ang, W. H. Lim, G. Kosalishkwaran, C. Ang. and S. Parasuraman, “Design Topology Optimization and Kinematics of a Multi-modal Quadcopter and Quadruped,” Student Conference on Research and Development, SCOReD, 2019, Perak, Malaysia, October 15-17, 2019.
  • [26] K. M. Ali, M. A. Tawafik. and A. A. Laber, “Quadcopter Topology Optimization Based on Impact Analysis,” 4th International Scientific Conference of Alkafeel University, ISCKU, 2022, AIP Conference Proceedings, December 22, 2023.
  • [27] Y. Tang, G. Dong, Q. Zhou, and Y. F. Zhao, “Lattice Structure Design and Optimization With Additive Manufacturing Constraints,” IEEE Transactions on Automation Science and Engineering, vol. 15, no. 4, pp. 1546-1562, October 2018, doi:10.1109/TASE.2018.2875650
  • [28] N. S. Sripada, “A Methodology for Topology and Lattice Structure Optimization of a Cargo Drone Motor Mount,” MSc. dissertation, The University of Texas at Arlington, Texas, USA, 2017.
  • [29] G. Palomba, V. Crupi. and G. Epasto, “Additively Manufactured Lightweight Monitoring Drones: Design and Experimental İnvestigation,” Polymer, 242, January 2022, doi:10.1016/j.polimer.2022.124557
  • [30] T. Laporte, “Design, Simulation and Optimisation of Lattice Structures for Remote Control Aeroplane,” Journal of Intelligent Manufacturing and Special Equipment, vol. 3, no. 1, pp. 106-114, February 2021, doi:10.1108/JIMSE-12-2020-0028
  • [31] Z. Wang. and A. Y. Tamijani, “Computational Synthesis of Large-scale Three-dimensional Heterogeneous Lattice Structures,” Aerospace Science and Technology, 120, November 2022, doi:10.1016/j.ast.2021.107258
  • [32] F. Ren, C. Zhang, W. Liao, T. Liu, D. Li, X. Shi, W. Jiang, C. Wang, J. Qi, Y. Chen and Z. Wang, “Transition Boundaries And Stiffness Optimal Design For Multi-TPMS Lattices,” Materials & Design, 210, August 2021. doi:10.1016/j.matdes.2021.110062
  • [33] T. L. Oliveira and J. Carvalho, “Design And Numerical Evaluation Of Quadrotor Drone Frame Suitable For Fabrication Using Fused Flament Fabrication With Consumer Grade ABS,” Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol. 43, no. 436, August 2021. doi:10.1007/s40430-021-03160-9
  • [34] C. Zhang, J. Liu, Z. Yuan, S. Xu, B. Zou, L. Li, and Y. Ma “A Novel Lattice Structure Topology Optimization Method with Extreme Anisotropic Lattice Properties,” Journal of Computational Design and Engineering, vol. 8, no. 5, pp. 1367-1390, 2021, doi:10.1093/jcde/qwab051
  • [35] S. Patel, A. Bhoi, V. Maurya, A. Wanghede and R. Bakshi, “Design and Test 3D Printed Lattice Structure for UAV,” International Research Journal of Engineering and Technology (IRJET), vol. 7, no. 5, pp. 7169-7174, May 2020.
  • [36] D. Li, W. Liao, N. Dai, G. Dong, Y. Tang, and Y. M. Xie, “Optimal Design and Modeling of Gyroid-based Functionally Graded Cellular Structures for Additive Manufacturing,” Computer-Aided Design, vol. 104, pp. 87-99, June 2018. doi:10.1016/j.cad2018.06003 [37] H. Zhou, D. Z. Zhang. N. He. and M. Zhao, “Topology Optimization of Multi-morphology Composite Lattice Structure with Anisotropy Properties,” Composite Structures, 321, June 2023. doi:10.1016/j.compstruct.2023117294

Investigation of the Effects of Topology Optimization Methods on Rotary Wing Unmanned Aerial Vehicle Design

Year 2024, Volume: 10 Issue: 3, 496 - 521, 31.12.2024

Abstract

Lightweight structure designs using topology optimization attract attention in the aviation industry due to their mass properties. When the studies on this subject are examined, it is seen that the aim is to reduce the building mass without changing the strength properties. Topology optimization methods are used to reduce the structure mass in the design of rotary-wing unmanned aerial vehicles, which are one of the types of aircraft and are increasingly used in the aviation industry due to their unique flight characteristics. Thanks to the application of these methods, the strength-to-weight ratio and efficiency of rotary wing unmanned aerial vehicles increase. In this study, studies in the literature on topology optimization of rotary wing unmanned aerial vehicles were investigated and the results obtained were presented. As a result of the research, it was determined that topology optimization methods affected the structure weight, structure stress and displacement value in the structure exposed to force in aircraft design. In studies in the literature, it has been observed that two different strategies are used by researchers: optimization techniques that include a unit cell structure and optimization techniques that do not include a unit cell structure.

References

  • [1] O. Villi and M. Yakar, “İnsansız Hava Araçlarının Kullanım Alanları ve Sensör Tipleri,” Türkiye İnsansız Hava Araçları Dergisi, vol 4, no 2, pp 73-100, Kasım 2022. doi:10.51534/tiha.1189263
  • [2] T. Şeker, “Düzlemsel Çelik Çerçevelerin Genetik Algoritma ile Optimizasyonu,” Yüksek lisans tezi, Fen Bilimleri Enstitüsü, İstanbul Teknik Üniversitesi, İstanbul, Türkiye, 2008.
  • [3] J. D. Deaton and R. V. Grandhi, “A Survey of Structural and Multidisciplinary Continuum Topology Optimization: Post 2000,” Struct Multidisc Optim, vol. 49, pp. 1–38, July 2014. doi:10.1007/ s00158-013-0956-z
  • [4] D. Ö. Helvacı, “Tiling of Cellular Structures Into the Parts According Tothe Density Values of SIMP Topology Optimization,” MSc dissertation, Middle East Technical Univ, Ankara, Turkey, 2020.
  • [5] M. F. Polat, “Generative Topology Optimization for Additive Manufacturing,” Yüksek lisans tezi, Sabancı Üniversitesi, İstanbul, Türkiye, 2021.
  • [6] V. Kılıç, “Alüminyum Kafes Sistemlerin Meta Sezgisel Optimizasyon Tekniklerine Göre Optimum Tasarımı,” Yüksek lisans tezi, Fen Bilimleri Enstitüsü, Akdeniz Üniversitesi, Antalya, Türkiye, 2018.
  • [7] X. Huang and Y. M. Xie, “A further Review of ESO Type Methods for Topology Optimization,” Struct Multidisc Optim, vol. 41, pp. 671–683, January 2010. doi:10.1007/s00158-010-0487-9
  • [8] F. M. Özkal and H. Uysal, “General Aspects of Evolutionary Structural Optimization: A Review,” Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, cilt 15, sayı 3, sayfa 383-393, July 2009.
  • [9] Q. M. Querin, G. P. Steven and Y. M. Xie, “Evolutionary Structural Optimisation (ESO) Using a Bidirectional Algorithm,” Evolutionary Structural Optimisation, vol. 15, no. 8, pp. 1031-1048, April 1998.
  • [10] A. Nazir, K. M. Abate, A. Kumar and J. Y. Jeng, “A State-of-the-art Review on Types, Design, Optimization, and Additive Manufacturing of Cellular Structures,” The International Journal of Advanced Manufacturing Technology, vol. 104, pp. 3489-3510, June 2019. doi:10.1007/s00170-019-04085-3
  • [11] Y. Sağlam, H. Gökçe, N. Top and İ. Şahin, “Design of an Artificial Femur Scaffold for Bone Tissue Engineering,” Alpha Journal of Engineering and Applied Sciences, vol 1, no 1, pp 1–9, 2023. doi:10.1557/s43578-021-00156-y
  • [12] H. Guo, M. Li, P. Sun, C. Zhao, W. Zuo and X. Li, “Lightweight and Maintainable Rotary-Wing UAV Frame from Configurable Design to Detailed Design,” Advances in Mechanical Engineering, vol. 13, no. 7, July 2021. doi:10.1177/16878140211034999
  • [13] E. M. Rayed, B. Esakki, A. Ponnambalam, S. C. Banik and K. Aly, “Optimization of UAV Structure and Evaluation of Vibrational and Fatique Characteristics Through Simulation Studies,” Int. J. Simul. Multidisci. Des. Optim., vol. 12, no. 17, August 2021. doi:10.1051/smdo/2021020
  • [14] Y. L. Yap, W. Toh, A. Giam, F. R. Yong, K. I. Chan, J. W. Tay, S. S. Teong, R. Lin and T. Y. Ng, “Topology optimization and 3D printing of micro-drone: Numerical design with experimental testing,” International Journal of Mechanical Sciences, 237, September 2023. doi:10.1016/j.ijmecsci.2022.107771
  • [15] F. Gafurzade, “İnsansız Hava Araçlarına Ait Termoplastik Kompozit Yapısal Parçaların Topoloji Optimizasyonu Yöntemi ile Tasarımı ve Eklemeli İmalat Metodu ile Üretim Şartlarının İncelenmesi,” Yüksek lisans tezi, Lisansüstü Eğitim Enstitüsü Makine Mühendisliği Anabilim Dalı, Eskişehir Teknik Üniversitesi, Eskişehir, Türkiye, 2022.
  • [16] H. Klippstein, H. Hassanin. A. D. Sanches, Y. Zweiri. and L. Seneviratne, “Additive Manufacturing of Porous Structures for Unmanned Aerial Vehicles Applications,” Advanced Engineering Materials, vol. 20, no. 9, May 2018. doi:10.1002/adem201800290
  • [17] G. L. Goh, V. Dikshit, R. Koneru, Z. K. Peh, W. Lu, G. D. Goh and W. Y. Yeong, “Fabrication of Design‑optimized Multifunctional Safety Cage with Conformal Circuits for Drone Using Hybrid 3D Printing Technology,” The International Journal of Advanced Manufacturing Technology, no 120, pp. 2573-2586, January 2022. doi:10.1007/s00170-022-08831-y
  • [18] B. S. Yıldız, “Yeni Bir Hibrit Metasezgisel Algoritma ile Drone Kolunun Yapısal Optimizasyonu.” Makina Tasarım ve İmalat Dergisi, vol 21, no 2, pp 74-80, Ağustos 2023. doi: 10.56193/matim.1302774
  • [19] B. Esakki, S. Mathiyazhagan, M. Moses, K. J. Rao and G. Ganesan. “Development of 3D-Printed Floating Quadrotor for Collection of Algae in Remote Water Bodies,” Computers and Electronics in Agriculture, 164, July 2019. doi:10.1016/j.compag.2019.104891
  • [20] A. Yakin, T. Simsek. and A. Akkurt, “Remodeling of the Drone Chassis Designed for Additive Manufacturing Method According to Topology Optimization,” in 5 th International Conference on Applied Engineering and Natural Sciences, All Science Proceedings, 2023, Konya, Turkey, July 10-12, 2023.
  • [21] S. Nvss, B. Esakki, L. J. Yang, C. Udayagiri. and K. S. Vepa, “Design and Development of Unibody Quadcopter Structure Using Optimization and Additive Manufacturing Techniques,” Design, vol. 6, no. 8, January 2022. doi:10.3390/designs6010008
  • [22] J. L. Prado, “Economic Optimization of Drone Structure for Industrial Indoor Use by Additive Manufacturing,” MSc dissertation, Politecnico di Torino, Torino, Italy, December 2022.
  • [23] S. A. Khan, Z. Mehmood. and Z. Afshan, “Design, Analysis and Topology Optimization of a Landing Gear Strut for a Quadcopter Upon Impact,” International Conference on Applied and Engineering Mathematics, ICAEM, 2021, London, United Kingdom, July 2021.
  • [24] G. Xiang, Y. Zhu, X. Cheng. and C. Liu, “Lightweight Design and Analysis of Four-Wing UAV Fuselage Structure Based on Topology Optimization,” In Proceedings of the 2nd International Seminar on Artificial Intelligence, Networking and Information Technology, 110-116, 2023.
  • [25] E. Natarajan, C. T. Ang, W. H. Lim, G. Kosalishkwaran, C. Ang. and S. Parasuraman, “Design Topology Optimization and Kinematics of a Multi-modal Quadcopter and Quadruped,” Student Conference on Research and Development, SCOReD, 2019, Perak, Malaysia, October 15-17, 2019.
  • [26] K. M. Ali, M. A. Tawafik. and A. A. Laber, “Quadcopter Topology Optimization Based on Impact Analysis,” 4th International Scientific Conference of Alkafeel University, ISCKU, 2022, AIP Conference Proceedings, December 22, 2023.
  • [27] Y. Tang, G. Dong, Q. Zhou, and Y. F. Zhao, “Lattice Structure Design and Optimization With Additive Manufacturing Constraints,” IEEE Transactions on Automation Science and Engineering, vol. 15, no. 4, pp. 1546-1562, October 2018, doi:10.1109/TASE.2018.2875650
  • [28] N. S. Sripada, “A Methodology for Topology and Lattice Structure Optimization of a Cargo Drone Motor Mount,” MSc. dissertation, The University of Texas at Arlington, Texas, USA, 2017.
  • [29] G. Palomba, V. Crupi. and G. Epasto, “Additively Manufactured Lightweight Monitoring Drones: Design and Experimental İnvestigation,” Polymer, 242, January 2022, doi:10.1016/j.polimer.2022.124557
  • [30] T. Laporte, “Design, Simulation and Optimisation of Lattice Structures for Remote Control Aeroplane,” Journal of Intelligent Manufacturing and Special Equipment, vol. 3, no. 1, pp. 106-114, February 2021, doi:10.1108/JIMSE-12-2020-0028
  • [31] Z. Wang. and A. Y. Tamijani, “Computational Synthesis of Large-scale Three-dimensional Heterogeneous Lattice Structures,” Aerospace Science and Technology, 120, November 2022, doi:10.1016/j.ast.2021.107258
  • [32] F. Ren, C. Zhang, W. Liao, T. Liu, D. Li, X. Shi, W. Jiang, C. Wang, J. Qi, Y. Chen and Z. Wang, “Transition Boundaries And Stiffness Optimal Design For Multi-TPMS Lattices,” Materials & Design, 210, August 2021. doi:10.1016/j.matdes.2021.110062
  • [33] T. L. Oliveira and J. Carvalho, “Design And Numerical Evaluation Of Quadrotor Drone Frame Suitable For Fabrication Using Fused Flament Fabrication With Consumer Grade ABS,” Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol. 43, no. 436, August 2021. doi:10.1007/s40430-021-03160-9
  • [34] C. Zhang, J. Liu, Z. Yuan, S. Xu, B. Zou, L. Li, and Y. Ma “A Novel Lattice Structure Topology Optimization Method with Extreme Anisotropic Lattice Properties,” Journal of Computational Design and Engineering, vol. 8, no. 5, pp. 1367-1390, 2021, doi:10.1093/jcde/qwab051
  • [35] S. Patel, A. Bhoi, V. Maurya, A. Wanghede and R. Bakshi, “Design and Test 3D Printed Lattice Structure for UAV,” International Research Journal of Engineering and Technology (IRJET), vol. 7, no. 5, pp. 7169-7174, May 2020.
  • [36] D. Li, W. Liao, N. Dai, G. Dong, Y. Tang, and Y. M. Xie, “Optimal Design and Modeling of Gyroid-based Functionally Graded Cellular Structures for Additive Manufacturing,” Computer-Aided Design, vol. 104, pp. 87-99, June 2018. doi:10.1016/j.cad2018.06003 [37] H. Zhou, D. Z. Zhang. N. He. and M. Zhao, “Topology Optimization of Multi-morphology Composite Lattice Structure with Anisotropy Properties,” Composite Structures, 321, June 2023. doi:10.1016/j.compstruct.2023117294
There are 36 citations in total.

Details

Primary Language Turkish
Subjects Optimization Techniques in Mechanical Engineering
Journal Section Research Articles
Authors

Erdem Güney 0000-0003-2955-582X

Gültekin Uzun 0000-0002-6820-8209

Publication Date December 31, 2024
Submission Date July 20, 2024
Acceptance Date November 25, 2024
Published in Issue Year 2024 Volume: 10 Issue: 3

Cite

IEEE E. Güney and G. Uzun, “Topoloji Optimizasyonu Yöntemlerinin Döner Kanatlı İnsansız Hava Aracı Tasarımına Etkilerinin İncelenmesi”, GJES, vol. 10, no. 3, pp. 496–521, 2024.

Gazi Journal of Engineering Sciences (GJES) publishes open access articles under a Creative Commons Attribution 4.0 International License (CC BY). 1366_2000-copia-2.jpg