Veri Tabanlı Tasarım Tekniği ile Voronoi Kafesli Bisiklet Selesi Tasarım Optimizasyonu
Year 2024,
Volume: 10 Issue: 3, 547 - 557, 31.12.2024
Ahmet Dayanç
,
Melih Canlıdinç
,
Feridun Karakoç
Abstract
Çalışmada, yarış bisiklet selelerinin tasarımını optimize etmek için ağırlık azaltma ve yapısal bütünlüğü koruma odaklı olarak örtük modelleme kullanılarak yenilikçi bir metodoloji sunulmaktadır. Örtük modelleme, geometrileri matematiksel fonksiyonlar aracılığıyla tanımlayarak, daha küçük dosya boyutları ve karmaşık modeller için daha etkili analizler yapılmasını sağlayarak geleneksel CAD modellemenin sınırlamalarını gidermektedir. Araştırmada, nTopology yazılımı kullanılarak bisiklet selesinin CAD modeli örtük modele dönüştürülmüş, ardından yapısal analiz ve sele içerisindeki Voronoi kafes yapısının optimizasyonu gerçekleştirilmiştir. Bu yaklaşım, sele ağırlığının 130,61 gramdan 64,45 grama düşürülmesiyle %50,65'lik önemli bir ağırlık azalması sağlamıştır. Maksimum elastik yer değiştirme 1,65 mm olarak ölçülmüş, maksimum Von Mises gerilme değeri yaklaşık 15 MPa olarak gözlemlenmiş ve bu tasarımın dinamik yüklere dayanma yeteneğini göstermiştir. Çalışma, örtük modellemenin özellikle havacılık ve otomotiv gibi ağırlık azaltmanın kritik olduğu sektörlerde endüstriyel tasarımda önemli avantajlar sunduğunu sonucuna varmaktadır. Gelecekteki araştırmalar, örtük modelleme tekniklerinin daha da geliştirilmesine ve çeşitli endüstriyel bağlamlarda uygulamalarının araştırılmasına odaklanmalıdır.
Supporting Institution
DPU BAP
Thanks
Bu araştırma, DPU BAP 2023-27 Bilimsel Araştırma Projesi kapsamında sağlanan iş istasyonu kullanılarak gerçekleştirilmiştir. Lisansları ve destekleri için nTopology ekibine en içten şükranlarımızı sunuyoruz.
References
- [1] B. Courter, "How implicits succeed where B-reps fail," ntopology.com, 2019. [Online]. Available: https://ntopology.com/blog/how-implicits-succeed-where-b-reps-fail/. [Accessed: Jan. 30, 2023].
- [2] R. Yeşiloğlu, R. Özmen, and M. Günay, “The Effects of Infill Geometry and Porosity Ratio on Mechanical Properties of PLA Structures Produced by Additive Manufacturing,” Gazi Mühendislik Bilimleri Dergisi, vol. 9, no. 2, pp. 291–303, 2023. doi:10.30855/gmbd.0705071
- [3] G. Akıncıoğlu and E. Aslan, “Investigation of tribological properties of amorphous thermoplastic samples with different filling densities produced by an additive manufacturing method,” Gazi Mühendislik Bilimleri Dergisi, vol. 8, no. 3, pp. 540–546, 2022. doi:10.30855/gmbd.0705041
- [4] nTopology, "8 Benefits of Lightweighting in Manufacturing & Engineering," ntopology.com, 2022. [Online]. Available: https://ntopology.com/blog/8-lightweighting-benefits-in-manufacturing-engineering/. [Accessed: Jan. 30, 2023].
- [5] nTopology, "Lightweighting Applications through Smart Engineering Design," ntopology.com, 2022. [Online]. Available: https://ntopology.com/blog/lightweighting-applications/. [Accessed: Jan. 30, 2023].
- [6] N. Top, İ. Şahin, and H. Gökçe, "The Mechanical Properties of Functionally Graded Lattice Structures Derived Using Computer-Aided Design for Additive Manufacturing," Applied Sciences, vol. 13, no. 21, pp. 11667, 2023. doi:10.3390/app132111667
- [7] Y. Tang, G. Dong, Q. Zhou, and Y. F. Zhao, "Lattice structure design and optimization with additive manufacturing constraints," IEEE Transactions on Automation Science and Engineering, vol. 15, no. 4, pp. 1546-1562, 2017. doi:10.1109/TASE.2017.2685643
- [8] N. Top, I. Sahin, S. K. Mangla, M. D. Sezer, and Y. Kazancoglu, "Towards sustainable production for transition to additive manufacturing: a case study in the manufacturing industry," International Journal of Production Research, vol. 61, no. 13, pp. 4450-4471, 2023. doi:10.1080/00207543.2022.2152895
- [9] Z. Wang, Y. Zhang, and A. Bernard, "A constructive solid geometry-based generative design method for additive manufacturing," Additive Manufacturing, vol. 41, pp. 101952, 2021. doi:10.1016/j.addma.2021.101952
- [10] G. Allen, "nTopology Modeling Technology," nTopology Whitepaper, 2022. [Online]. Available: https://design-with.ntopology.com/rs/341-JSR-605/images/nTopology_Whitepaper-Implicit_modeling_technology-4.pdf. [Accessed: Jan. 30, 2023].
- [11] B. Courter, "Product Data Models for Rapid Development," ntopology.com, 2019. [Online]. Available: https://ntopology.com/blog/field-driven-design-product-data-models-for-rapid-collaborative-development/. [Accessed: Jan. 30, 2023].
- [12] N. Top, İ. Şahin, H. Gökçe, and H. Gökçe, "Computer-aided design and additive manufacturing of bone scaffolds for tissue engineering: state of the art," Journal of Materials Research, pp. 1-21, 2021. doi:10.1557/s43578-021-00156-y
- [13] L. Onita, "NASA invests in ultra-lightweight tech for space missions," eandt.theiet.org, E&T Magazine, 2015. [Online]. Available: https://eandt.theiet.org/content/articles/2015/04/nasa-invests-in-ultra-lightweight-tech-for-space-missions/. [Accessed: Jan. 30, 2023].
- [14] B. Becergen, M. Çakmak, M. F. Maral, A. Dayanç, and F. Karakoç, "Design Approaches on Inner Bodies of Gears with Methods Topology Optimization and Lattice Structures," European Journal of Science and Technology, vol. 39, pp. 85-90, Jul. 2022. doi:10.31590/ejosat.1144818
- [15] U. Es, O. Maviş, A. Dayanç, and F. Karakoç, "Multi-Axis Robot Arm Design and Topology Optimization," in Proc. of the 6th Engineers of Future International Student Symposium, Zonguldak, Turkiye, Jul. 1-2, 2022.
- [16] A. Yenigün, H. A. Genç, A. Dayanç, and F. Karakoç, "Creating CAD Model of A Damaged Propeller Using Optical Scanning And Reverse Engineering Methods," in Proc. of the EFIS 2021, Zonguldak, Turkiye, Jul. 9-11, 2021, pp. 386-393.
- [17] B. Köse, M. E. Akçay, A. Dayanç, and F. Karakoç, "Structural Analysis and Topology Optimization of Crane Hook," in Proc. of the 6th Engineers of Future International Student Symposium, Zonguldak, Turkiye, Jul. 1-2, 2022, pp. 139-145.
- [18] A. Dayanç, M. Canlıdinç, and F. Karakoç, “An Innovative Methodology to Design Gyroid Heat Exchangers For Metal Additive Manufacturing,” International Journal of 3D Printing Technologies and Digital Industry, vol. 7, no. 3, pp. 478–484, 2023. doi:10.46519/ij3dptdi.1365189
Voronoi Latticed Bike Saddle Design Optimization with Data-Driven Design Technique
Year 2024,
Volume: 10 Issue: 3, 547 - 557, 31.12.2024
Ahmet Dayanç
,
Melih Canlıdinç
,
Feridun Karakoç
Abstract
The study presents an innovative methodology using implicit modeling to optimize the design of racing bicycle saddles, focusing on weight reduction while maintaining structural integrity. Implicit modeling addresses the limitations of traditional CAD modeling by defining geometries through mathematical functions, enabling smaller file sizes and more effective analyses for complex models. The research utilized nTopology software to convert a CAD model of a bicycle seat into an implicit model, followed by structural analysis and optimization of a Voronoi lattice structure within the seat. This approach resulted in a significant weight reduction of 50.65%, decreasing the seat's weight from 130.61 grams to 64.45 grams. The maximum elastic displacement measured was 1.65 mm, with the maximum Von Mises stress value observed at approximately 15 MPa, indicating the design's capability to withstand loads. The study concludes that the use of implicit modeling offers substantial advantages in industrial design, particularly in sectors where weight reduction is critical, such as aerospace and automotive. Future research should focus on further developing implicit modeling techniques and exploring their applications in various industrial contexts.
Supporting Institution
DPU BAP
Thanks
This research was conducted utilizing the workstation provided through the DPU BAP 2023-27 Scientific Research Project. We extend our sincerest gratitude to the nTopology team for their license and support.
References
- [1] B. Courter, "How implicits succeed where B-reps fail," ntopology.com, 2019. [Online]. Available: https://ntopology.com/blog/how-implicits-succeed-where-b-reps-fail/. [Accessed: Jan. 30, 2023].
- [2] R. Yeşiloğlu, R. Özmen, and M. Günay, “The Effects of Infill Geometry and Porosity Ratio on Mechanical Properties of PLA Structures Produced by Additive Manufacturing,” Gazi Mühendislik Bilimleri Dergisi, vol. 9, no. 2, pp. 291–303, 2023. doi:10.30855/gmbd.0705071
- [3] G. Akıncıoğlu and E. Aslan, “Investigation of tribological properties of amorphous thermoplastic samples with different filling densities produced by an additive manufacturing method,” Gazi Mühendislik Bilimleri Dergisi, vol. 8, no. 3, pp. 540–546, 2022. doi:10.30855/gmbd.0705041
- [4] nTopology, "8 Benefits of Lightweighting in Manufacturing & Engineering," ntopology.com, 2022. [Online]. Available: https://ntopology.com/blog/8-lightweighting-benefits-in-manufacturing-engineering/. [Accessed: Jan. 30, 2023].
- [5] nTopology, "Lightweighting Applications through Smart Engineering Design," ntopology.com, 2022. [Online]. Available: https://ntopology.com/blog/lightweighting-applications/. [Accessed: Jan. 30, 2023].
- [6] N. Top, İ. Şahin, and H. Gökçe, "The Mechanical Properties of Functionally Graded Lattice Structures Derived Using Computer-Aided Design for Additive Manufacturing," Applied Sciences, vol. 13, no. 21, pp. 11667, 2023. doi:10.3390/app132111667
- [7] Y. Tang, G. Dong, Q. Zhou, and Y. F. Zhao, "Lattice structure design and optimization with additive manufacturing constraints," IEEE Transactions on Automation Science and Engineering, vol. 15, no. 4, pp. 1546-1562, 2017. doi:10.1109/TASE.2017.2685643
- [8] N. Top, I. Sahin, S. K. Mangla, M. D. Sezer, and Y. Kazancoglu, "Towards sustainable production for transition to additive manufacturing: a case study in the manufacturing industry," International Journal of Production Research, vol. 61, no. 13, pp. 4450-4471, 2023. doi:10.1080/00207543.2022.2152895
- [9] Z. Wang, Y. Zhang, and A. Bernard, "A constructive solid geometry-based generative design method for additive manufacturing," Additive Manufacturing, vol. 41, pp. 101952, 2021. doi:10.1016/j.addma.2021.101952
- [10] G. Allen, "nTopology Modeling Technology," nTopology Whitepaper, 2022. [Online]. Available: https://design-with.ntopology.com/rs/341-JSR-605/images/nTopology_Whitepaper-Implicit_modeling_technology-4.pdf. [Accessed: Jan. 30, 2023].
- [11] B. Courter, "Product Data Models for Rapid Development," ntopology.com, 2019. [Online]. Available: https://ntopology.com/blog/field-driven-design-product-data-models-for-rapid-collaborative-development/. [Accessed: Jan. 30, 2023].
- [12] N. Top, İ. Şahin, H. Gökçe, and H. Gökçe, "Computer-aided design and additive manufacturing of bone scaffolds for tissue engineering: state of the art," Journal of Materials Research, pp. 1-21, 2021. doi:10.1557/s43578-021-00156-y
- [13] L. Onita, "NASA invests in ultra-lightweight tech for space missions," eandt.theiet.org, E&T Magazine, 2015. [Online]. Available: https://eandt.theiet.org/content/articles/2015/04/nasa-invests-in-ultra-lightweight-tech-for-space-missions/. [Accessed: Jan. 30, 2023].
- [14] B. Becergen, M. Çakmak, M. F. Maral, A. Dayanç, and F. Karakoç, "Design Approaches on Inner Bodies of Gears with Methods Topology Optimization and Lattice Structures," European Journal of Science and Technology, vol. 39, pp. 85-90, Jul. 2022. doi:10.31590/ejosat.1144818
- [15] U. Es, O. Maviş, A. Dayanç, and F. Karakoç, "Multi-Axis Robot Arm Design and Topology Optimization," in Proc. of the 6th Engineers of Future International Student Symposium, Zonguldak, Turkiye, Jul. 1-2, 2022.
- [16] A. Yenigün, H. A. Genç, A. Dayanç, and F. Karakoç, "Creating CAD Model of A Damaged Propeller Using Optical Scanning And Reverse Engineering Methods," in Proc. of the EFIS 2021, Zonguldak, Turkiye, Jul. 9-11, 2021, pp. 386-393.
- [17] B. Köse, M. E. Akçay, A. Dayanç, and F. Karakoç, "Structural Analysis and Topology Optimization of Crane Hook," in Proc. of the 6th Engineers of Future International Student Symposium, Zonguldak, Turkiye, Jul. 1-2, 2022, pp. 139-145.
- [18] A. Dayanç, M. Canlıdinç, and F. Karakoç, “An Innovative Methodology to Design Gyroid Heat Exchangers For Metal Additive Manufacturing,” International Journal of 3D Printing Technologies and Digital Industry, vol. 7, no. 3, pp. 478–484, 2023. doi:10.46519/ij3dptdi.1365189