Research Article
BibTex RIS Cite

The Design Process Model with Deep Learning Support for Unmanned Ground Vehicles

Year 2024, Volume: 10 Issue: 3, 632 - 644, 31.12.2024

Abstract

The study focuses on the challenges associated with the design of unmanned ground vehicles (UGVs), which are among the most critical elements of modern defense technologies. These vehicles are prominent for their high performance in critical military operations and provide tactical superiority for countries in various areas, from ground operations to safe withdrawal at the international level. The study emphasizes the necessity of using modern design techniques instead of traditional methods and, in this context, introduces a new design process model. The model consists of three fundamental stages. The first stage involves defining the problem, detailing the specifications, and identifying the requirements and constraints. The second stage focuses on evaluating alternative proposals and selecting a solution compatible with artificial intelligence. In this stage, the most suitable UGV was identified using deep learning techniques, particularly through a three-layer artificial neural network architecture, achieving successful predictions with a %99.7 accuracy rate. The final stage includes presenting the proposed solution for user feedback and approval. The findings demonstrate that deep learning methods can be effectively used in UGV design, providing strategic advantages with high accuracy rates.

References

  • [1] C. Demir and M. Bozdemir “İnsansız kara aracı tasarımında ağırlık oranı metodu kullanımı,” Gazi Mühendislik Bilimleri Dergisi, vol. 5, no 1, pp. 32-45, April 2019. doi: 10.30855/gmbd.2019.01.04
  • [2] B. M. Yamauchi, “PackBot: a versatile platform for military robotics,” Proceedings of SPIE – The International Society for Optical Engineering, Unmanned Ground Vehicle Technology VI, Florida, USA, 12-16 April 2004, vol. 5422, G. R. Gerhart, C. M. Shoemaker, D. W. Gage, Eds. USA: SPIE Digital Library, pp. 228-237. doi: 10.1117/12.538328
  • [3] T. S. Hussain, D. Cerys, D. Montana, G. Vidaver and J. E. Berliner, “Tactical UGV navigation and logistics planning,” In Proceedings of the 7th annual workshop on Genetic and evolutionary computation, 25-26 June 2005, F. Rothlauf, Eds. USA: Association for Computing Machinery, pp. 184-186. doi: 10.1145/1102256.1102300
  • [4] M. Trentini and B. Beckman, “Semi-autonomous UAV/UGV for dismounted urban operations,” Proceedings of SPIE – The International Society for Optical Engineering, In Unmanned Systems Technology XII, Florida, USA, 5-9 April 2010, vol. 7692, G. R. Gerhart, C. M. Shoemaker, D. W. Gage, Eds. USA: SPIE Digital Library, pp. 436-444. doi: 10.1117/12.852704
  • [5] R. G. Arrshith, K. S. Suhas, C. Tejas and G. Subramaniyam, “Unmanned ground vehicle (UGV) – Defense bot,” The 2nd International Conference on Inventive Systems and Control (ICISC), Coimbatore, India, 19-20 January 2018, pp. 1201-1205. doi:10.1109/ICISC.2018.8398995
  • [6] J. E. Naranjo, F. Jimenez, M. Anguita and J. L. Rivera, “Automation kit for dual-mode military unmanned ground vehicle for surveillance missions,” IEEE Intelligent Transportation Systems Magazine, vol. 12, no. 4, pp. 125-137, November 2018. doi:10.1109/MITS.2018.2880274
  • [7] J. Nohel, P. Stodola and Z. Flasar, “Combat UGV support of company task force operations,” In International Conference on Modelling and Simulation for Autonomous Systems, Prague, Czech Republic, 21 October 2020, J. Mazal, A. Fagiolini, P. Vasik, M. Turi, Eds. Czech Republic: MESAS, pp. 29-42. doi:10.1007/978-3-030-70740-8_3
  • [8] A. Chothani, A. Desai, H. Kaleand and P. Gupta, “Prototype Design of A UGV for Military Purpose,” International Research Journal of Engineering and Technology (IRJET), vol. 7, no. 7, pp 3175-3178, July 2020.
  • [9] J. Ni, J. Hu and C. Xiang, “A review for design and dynamics control of unmanned ground vehicle,” Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, vol. 235, no. 4, pp. 1084-1100, April 2020. doi:10.1177/0954407020912097
  • [10] H. Vichore, J. Gurumurthi, A. Nair, M. Choudhary and L. Ladge, “Self-driven UGV for military requirements,” In Innovations in Computer Science and Engineering: Proceedings of 8th ICICSE, Singapore, 24 April 2021, H. S. Saini, R. Sayal, A. Govardhan, R. Buyya, Eds. Singapore: Springer, pp. 87-98. doi:10.1007/978-981-33-4543-0_11
  • [11] A. Hajdu, R. Krecht, A. Suta, Á. Tóth and F. Friedler, “The Resilience Barriers of Automated Ground Vehicles from Military Perspectives,” Chemical Engineering Transactions, vol. 94, no. 1, pp. 1195-1200, September 2022. doi:10.3303/CET2294199
  • [12] A. bin Rashid, M. M. Khan, M. M. Naquib, A. A. M. Anik, A. Rifat and A. A. Tomal, “Remotely Operated Unmanned Ground Vehicle (UGV) with Firing Mechanism for Diverse and Challenging Environments inherent to Military Operation,” The 2nd International Conference on Mechanical Engineering and Applied Science (ICMEAS- 2022), Mırpur Cantonment, Dhaka, 8-10 December 2022.
  • [13] R. Krecht, A. Suta, Á. Tóth and Á. Ballagi, “Towards the resilience quantification of (military) unmanned ground vehicles,” Cleaner Engineering and Technology, vol. 14, no. 1, pp. 1-7, June 2023. doi:10.1016/j.clet.2023.100644
  • [14] M. Z. U. Rahman, U. Raza, M. A. Akbar, M. T. Riaz, A. H. Gumaei and N. Ahmad, “Radio-Controlled Intelligent UGV as a Spy Robot with Laser Targeting for Military Purposes,” Axioms, vol. 12, no. 176, pp. 1-19, February 2023. doi:10.3390/axioms12020176
  • [15] S. Wu, S. Li, J. Gong, and Z. Yan, “Modeling and quantitative evaluation method of environmental complexity for measuring autonomous capabilities of military unmanned ground vehicles,” Unmanned Systems, vol. 11, no. 04, pp. 367-382, October 2023. doi:10.1142/S2301385023500176
  • [16] L. Pan, C. Song, X. Gan, K. Xu and Y. Xie, “Military Image Captioning for Low-Altitude UAV or UGV Perspectives,” Drones, vol. 8, no. 421, pp. 1-20, August 2024. doi:10.3390/drones8090421
  • [17] N. Allahverdi, Uzman sistemler bir yapay zeka uygulaması. İstanbul: Atlas Yayın Dağıtım, 2002. pp. 1-13, 15-23, 71-93.
  • [18] R. C. Shank, “What is anyway?” A Magasine, vol. 8, no. 4, pp. 12-18, 1987.
  • [19] M. A. Kutlugün, “Gözetimli makine öğrenmesi yoluyla türe göre metinden ses sentezleme,” Ms.C. dissertation, İstanbul Sabahattin Zaim Üniversitesi, İstanbul, Türkiye, 2017.
  • [20] E. Alpaydın, Introduction to Machine Learning (Fourth edition). Cambridge, ABD: MIT Press, 2006. pp. 537.
  • [21] J. VanderPlas, Python data science handbook: Essential tools for working with data. USA: O'Reilly Media, Inc., 2016.
  • [22] V. Raju, J. Mohd, I. HaleemKhan and H. Abid, “Artificial Intelligence (AI) applications for COVID-19 pandemic,” Diabetes & Metabolic Syndrome: Clinical Research & Reviews, vol. 14, no. 4, pp. 337–339, August 2020. doi:10.1016/j.dsx.2020.04.012.
  • [23] A. Uğur and A. C. Kınacı, “Yapay zeka teknikleri ve yapay sinir ağları kullanılarak web sayfalarının sınıflandırılması,” XI. Türkiye'de İnternet Konferansı, Ankara, Türkiye, 21-23 December 2006, M. Akgül, E. Derman, U. Çağlayan, A. Özgit, Eds. Türkiye: TOBB, pp. 345-349.
  • [24] M. Karanfiloğlu and N. Kara, “İletişimin dijitalleşmesi: Pandemi (Covıd-19) ve enformasyon teknolojileri,” Ajıt-E: Bilişim Teknolojileri Online Dergisi, vol. 11, no. 42, pp. 87-99, October 2020. doi:10.5824/ajite.2020.03.003.x
  • [25] Ö. İnik and E. Ülker, “Derin öğrenme ve görüntü analizinde kullanılan derin öğrenme modelleri,” Gazi Osmanpaşa Bilimsel Araştırma Dergisi, vol. 6, no. 3, pp. 85-105, December 2017. ISSN: 2146-8168
  • [26] Y. LeCun, Y. Bengio and G. Hinton, “Deep learning,” Nature, vol. 521, pp. 436-444, May 2015. Doi: 10.1038/nature14539
  • [27] A. M. Kızrak, and B. Bolat, “Derin öğrenme ile kalabalık analizi üzerine detaylı bir araştırma,” Bilişim Teknolojileri Dergisi, vol. 11 no. 3, pp. 263-286, June 2018. doi:10.17671/gazibtd.419205

İnsansız Kara Araçları İçin Derin Öğrenme Destekli Tasarım İşlem Modeli

Year 2024, Volume: 10 Issue: 3, 632 - 644, 31.12.2024

Abstract

Çalışmanın temelinde modern savunma teknolojilerinin en kritik unsurlarından biri olan insansız kara araçlarının (İKA) tasarımına yönelik sorunlar ele alınmıştır. Bu araçlar, kritik askeri operasyonlarda yüksek performans ile ön plana çıkmakta ve uluslararası düzeyde, kara operasyonlarından emniyetli geri çekilmeye kadar birçok alanda ülkeler için taktiksel üstünlük sağlamaktadır. Bu çalışmada, geleneksel tasarım yöntemlerinden ziyade modern tasarım tekniklerinin kullanılması gerektiği vurgulanmış ve bu bağlamda yeni bir tasarım işlem modeli geliştirilmiştir. Tasarım işlem modeli, üç temel aşamadan oluşmaktadır. İlk aşama, problemin tanımlanması, şartname bilgilerinin detaylandırılması ve ihtiyaç-kısıtların belirlenmesi sürecini kapsamaktadır. İkinci aşama ise alternatif önerilerin değerlendirilmesi ve yapay zekâ ile uyumlu bir çözümün seçilmesidir. Bu aşamada, derin öğrenme teknikleri kullanılarak en uygun İKA belirlenmiştir. Özellikle üç katmanlı bir yapay sinir ağı mimarisi kullanılmış ve %99,7 doğruluk oranı ile başarılı tahminler elde edilmiştir. Son aşama, kullanıcı geri bildirimi ve onayı için çözüm önerisinin sunulmasını içermektedir. Elde edilen bulgular, derin öğrenme yöntemlerinin İKA tasarımında etkin bir şekilde kullanılabileceğini ve yüksek doğruluk oranları ile stratejik avantajlar sağlanabileceğini göstermektedir.

References

  • [1] C. Demir and M. Bozdemir “İnsansız kara aracı tasarımında ağırlık oranı metodu kullanımı,” Gazi Mühendislik Bilimleri Dergisi, vol. 5, no 1, pp. 32-45, April 2019. doi: 10.30855/gmbd.2019.01.04
  • [2] B. M. Yamauchi, “PackBot: a versatile platform for military robotics,” Proceedings of SPIE – The International Society for Optical Engineering, Unmanned Ground Vehicle Technology VI, Florida, USA, 12-16 April 2004, vol. 5422, G. R. Gerhart, C. M. Shoemaker, D. W. Gage, Eds. USA: SPIE Digital Library, pp. 228-237. doi: 10.1117/12.538328
  • [3] T. S. Hussain, D. Cerys, D. Montana, G. Vidaver and J. E. Berliner, “Tactical UGV navigation and logistics planning,” In Proceedings of the 7th annual workshop on Genetic and evolutionary computation, 25-26 June 2005, F. Rothlauf, Eds. USA: Association for Computing Machinery, pp. 184-186. doi: 10.1145/1102256.1102300
  • [4] M. Trentini and B. Beckman, “Semi-autonomous UAV/UGV for dismounted urban operations,” Proceedings of SPIE – The International Society for Optical Engineering, In Unmanned Systems Technology XII, Florida, USA, 5-9 April 2010, vol. 7692, G. R. Gerhart, C. M. Shoemaker, D. W. Gage, Eds. USA: SPIE Digital Library, pp. 436-444. doi: 10.1117/12.852704
  • [5] R. G. Arrshith, K. S. Suhas, C. Tejas and G. Subramaniyam, “Unmanned ground vehicle (UGV) – Defense bot,” The 2nd International Conference on Inventive Systems and Control (ICISC), Coimbatore, India, 19-20 January 2018, pp. 1201-1205. doi:10.1109/ICISC.2018.8398995
  • [6] J. E. Naranjo, F. Jimenez, M. Anguita and J. L. Rivera, “Automation kit for dual-mode military unmanned ground vehicle for surveillance missions,” IEEE Intelligent Transportation Systems Magazine, vol. 12, no. 4, pp. 125-137, November 2018. doi:10.1109/MITS.2018.2880274
  • [7] J. Nohel, P. Stodola and Z. Flasar, “Combat UGV support of company task force operations,” In International Conference on Modelling and Simulation for Autonomous Systems, Prague, Czech Republic, 21 October 2020, J. Mazal, A. Fagiolini, P. Vasik, M. Turi, Eds. Czech Republic: MESAS, pp. 29-42. doi:10.1007/978-3-030-70740-8_3
  • [8] A. Chothani, A. Desai, H. Kaleand and P. Gupta, “Prototype Design of A UGV for Military Purpose,” International Research Journal of Engineering and Technology (IRJET), vol. 7, no. 7, pp 3175-3178, July 2020.
  • [9] J. Ni, J. Hu and C. Xiang, “A review for design and dynamics control of unmanned ground vehicle,” Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, vol. 235, no. 4, pp. 1084-1100, April 2020. doi:10.1177/0954407020912097
  • [10] H. Vichore, J. Gurumurthi, A. Nair, M. Choudhary and L. Ladge, “Self-driven UGV for military requirements,” In Innovations in Computer Science and Engineering: Proceedings of 8th ICICSE, Singapore, 24 April 2021, H. S. Saini, R. Sayal, A. Govardhan, R. Buyya, Eds. Singapore: Springer, pp. 87-98. doi:10.1007/978-981-33-4543-0_11
  • [11] A. Hajdu, R. Krecht, A. Suta, Á. Tóth and F. Friedler, “The Resilience Barriers of Automated Ground Vehicles from Military Perspectives,” Chemical Engineering Transactions, vol. 94, no. 1, pp. 1195-1200, September 2022. doi:10.3303/CET2294199
  • [12] A. bin Rashid, M. M. Khan, M. M. Naquib, A. A. M. Anik, A. Rifat and A. A. Tomal, “Remotely Operated Unmanned Ground Vehicle (UGV) with Firing Mechanism for Diverse and Challenging Environments inherent to Military Operation,” The 2nd International Conference on Mechanical Engineering and Applied Science (ICMEAS- 2022), Mırpur Cantonment, Dhaka, 8-10 December 2022.
  • [13] R. Krecht, A. Suta, Á. Tóth and Á. Ballagi, “Towards the resilience quantification of (military) unmanned ground vehicles,” Cleaner Engineering and Technology, vol. 14, no. 1, pp. 1-7, June 2023. doi:10.1016/j.clet.2023.100644
  • [14] M. Z. U. Rahman, U. Raza, M. A. Akbar, M. T. Riaz, A. H. Gumaei and N. Ahmad, “Radio-Controlled Intelligent UGV as a Spy Robot with Laser Targeting for Military Purposes,” Axioms, vol. 12, no. 176, pp. 1-19, February 2023. doi:10.3390/axioms12020176
  • [15] S. Wu, S. Li, J. Gong, and Z. Yan, “Modeling and quantitative evaluation method of environmental complexity for measuring autonomous capabilities of military unmanned ground vehicles,” Unmanned Systems, vol. 11, no. 04, pp. 367-382, October 2023. doi:10.1142/S2301385023500176
  • [16] L. Pan, C. Song, X. Gan, K. Xu and Y. Xie, “Military Image Captioning for Low-Altitude UAV or UGV Perspectives,” Drones, vol. 8, no. 421, pp. 1-20, August 2024. doi:10.3390/drones8090421
  • [17] N. Allahverdi, Uzman sistemler bir yapay zeka uygulaması. İstanbul: Atlas Yayın Dağıtım, 2002. pp. 1-13, 15-23, 71-93.
  • [18] R. C. Shank, “What is anyway?” A Magasine, vol. 8, no. 4, pp. 12-18, 1987.
  • [19] M. A. Kutlugün, “Gözetimli makine öğrenmesi yoluyla türe göre metinden ses sentezleme,” Ms.C. dissertation, İstanbul Sabahattin Zaim Üniversitesi, İstanbul, Türkiye, 2017.
  • [20] E. Alpaydın, Introduction to Machine Learning (Fourth edition). Cambridge, ABD: MIT Press, 2006. pp. 537.
  • [21] J. VanderPlas, Python data science handbook: Essential tools for working with data. USA: O'Reilly Media, Inc., 2016.
  • [22] V. Raju, J. Mohd, I. HaleemKhan and H. Abid, “Artificial Intelligence (AI) applications for COVID-19 pandemic,” Diabetes & Metabolic Syndrome: Clinical Research & Reviews, vol. 14, no. 4, pp. 337–339, August 2020. doi:10.1016/j.dsx.2020.04.012.
  • [23] A. Uğur and A. C. Kınacı, “Yapay zeka teknikleri ve yapay sinir ağları kullanılarak web sayfalarının sınıflandırılması,” XI. Türkiye'de İnternet Konferansı, Ankara, Türkiye, 21-23 December 2006, M. Akgül, E. Derman, U. Çağlayan, A. Özgit, Eds. Türkiye: TOBB, pp. 345-349.
  • [24] M. Karanfiloğlu and N. Kara, “İletişimin dijitalleşmesi: Pandemi (Covıd-19) ve enformasyon teknolojileri,” Ajıt-E: Bilişim Teknolojileri Online Dergisi, vol. 11, no. 42, pp. 87-99, October 2020. doi:10.5824/ajite.2020.03.003.x
  • [25] Ö. İnik and E. Ülker, “Derin öğrenme ve görüntü analizinde kullanılan derin öğrenme modelleri,” Gazi Osmanpaşa Bilimsel Araştırma Dergisi, vol. 6, no. 3, pp. 85-105, December 2017. ISSN: 2146-8168
  • [26] Y. LeCun, Y. Bengio and G. Hinton, “Deep learning,” Nature, vol. 521, pp. 436-444, May 2015. Doi: 10.1038/nature14539
  • [27] A. M. Kızrak, and B. Bolat, “Derin öğrenme ile kalabalık analizi üzerine detaylı bir araştırma,” Bilişim Teknolojileri Dergisi, vol. 11 no. 3, pp. 263-286, June 2018. doi:10.17671/gazibtd.419205
There are 27 citations in total.

Details

Primary Language Turkish
Subjects Optimization Techniques in Mechanical Engineering, Weapon Systems
Journal Section Research Articles
Authors

Cüneyd Demir 0000-0002-4628-7786

Cengiz Eldem 0000-0001-6652-7452

Publication Date December 31, 2024
Submission Date September 3, 2024
Acceptance Date December 28, 2024
Published in Issue Year 2024 Volume: 10 Issue: 3

Cite

IEEE C. Demir and C. Eldem, “İnsansız Kara Araçları İçin Derin Öğrenme Destekli Tasarım İşlem Modeli”, GJES, vol. 10, no. 3, pp. 632–644, 2024.

Gazi Journal of Engineering Sciences (GJES) publishes open access articles under a Creative Commons Attribution 4.0 International License (CC BY). 1366_2000-copia-2.jpg