Research Article
BibTex RIS Cite

Investigation of Thermomechanical Material Properties of Functionally Graded Sandwich Composite Plates with Metamaterial Honeycomb Core Layer

Year 2024, Volume: 10 Issue: 3, 645 - 656, 31.12.2024

Abstract

In this article, the thermomechanical properties of a composite sandwich plate with functionally graded (FG) surface layers and a metamaterial honeycomb core layer are investigated under temperature loading. The hexagonal honeycomb core plate is sandwiched between two surface plates with FG stainless steel (SUS304) and zirconia (ZrO2) metal-ceramic matrix. The mechanical and thermal behavior of the core and surface layers changes depending on the temperature. The change in temperature across the plate thickness is regarded as non-linear. Power law functions and Gibson's equations are employed to specify the equivalent effective material properties of the sandwich plate. Numerical analyses are carried out to investigate the effect of variables such as geometrical parameters of the honeycomb structure, temperature rise and power law parameter on the variation of the thermomechanical material behavior of the sandwich plate. According to the simulation results, it is concluded that the desired thermal and mechanical properties can be tuned by adjusting the honeycomb cell geometric configurations and the material compositions of the FG plates. It is also emphasized that the combination of mechanical and thermal properties in honeycomb structures enables them to perform effectively in demanding environments, where both strength and thermal resistance are required.

References

  • [1] L. Ai and X. Gao, “Metamaterials with negative Poisson’s ratio and non-positive thermal expansion,” Composite Structures, vol. 162, pp. 70–84, 2017. doi:10.1016/j.compstruct.2016.11.056
  • [2] W. Zhang, S. Zhao, F. Scarpa, J. Wang, and R. Sun, “In-plane mechanical behavior of novel auxetic hybrid metamaterials,” Thin-Walled Structures, vol. 159, pp. 107191, 2021. doi:10.1016/j.tws.2020.107191
  • [3] K. G. Aktaş, “Three-dimensional thermomechanical wave propagation analysis of sandwich nanoplate with graphene-reinforced foam core and magneto-electro-elastic face layers using nonlocal strain gradient elasticity theory,” Acta Mechanica, vol. 235, no. 9, pp. 5587–5619, 2024. doi:10.1007/s00707-024-04001-1
  • [4] W. Zhang, Z. Li, J. Wang, F. Scarpa, and X. Wang, “Mechanics of novel asymmetrical re-entrant metamaterials and metastructures,” Composite Structures, vol. 291, pp. 115604, 2022. doi:10.1016/j.compstruct.2022.115604
  • [5] Y. Chen, Z. Jia, and L. Wang, “Hierarchical honeycomb lattice metamaterials with improved thermal resistance and mechanical properties,” Composite Structures, vol. 152, pp. 395–402, 2016. doi:10.1016/j.compstruct.2016.05.048
  • [6] K. Billon et al., “Mechanics and band gaps in hierarchical auxetic rectangular perforated composite metamaterials,” Composite Structures, vol. 160, pp. 1042–1050, 2017. doi:10.1016/j.compstruct.2016.10.121
  • [7] M. Eroğlu, İ. Esen, and M. A. Koç, “Managing the surface piezoelectricity effect of the smart ZnO sandwich nanoplates using metal foam core layer and GPRL reinforced rim layers,” Microsystem Technologies, 2024. doi:10.1007/s00542-024-05772-2
  • [8] M. Eroğlu, İ. Esen, and M. A. Koç, “Effect of the magnetic field on the thermomechanical flexural wave propagation of embedded sandwich nanobeams,” Mechanics Based Design of Structures and Machines, vol. 52, no. 10, pp. 7795–7827, Oct. 2024. doi:10.1080/15397734.2024.2308659
  • [9] A. H. Abdulaziz, M. Hedaya, A. Elsabbagh, K. M. Holford, and J. McCrory, “Acoustic emission wave propagation in honeycomb sandwich panel structures,” Composite Structures, vol. 277, pp. 114580, 2021. doi:10.1016/j.compstruct.2021.114580
  • [10] E. Zurnacı and H. K. Özdemir, “Investigation of the compressive strength, energy absorption properties and deformation modes of the reinforced core cell produced by the FDM method,” Gazi Journal of Engineering Sciences, vol. 9, no. 1, pp. 1–11, 2023. doi:10.30855/gmbd.0705047
  • [11] Y. Tao, M. Chen, H. Chen, Y. Pei, and D. Fang, “Strain rate effect on the out-of-plane dynamic compressive behavior of metallic honeycombs: Experiment and theory,” Composite Structures, vol. 132, pp. 644–651, 2015. doi:10.1016/j.compstruct.2015.06.015
  • [12] J. Zhang, Z. Yan, and L. Xia, “Vibration and flutter of a honeycomb sandwich plate with zero Poisson’s ratio,” Mathematics, vol. 19, no. 9, pp. 2528, 2021. doi:10.3390/math9192528
  • [13] M. F. Sarıbaş and S. Karadeniz, “Bir uçak kanadının hücum kenarına kuş çarpmasının düzgün parçacık hidrodinamiği yöntemiyle sayısal incelenmesi,” Gazi Journal of Engineering Sciences, vol. 8, no. 3, pp. 547–566, 2021. doi:10.30855/gmbd.0705042
  • [14] H. L. Tan, Z. C. He, K. X. Li, E. Li, A. G. Cheng, and B. Xu, “In-plane crashworthiness of re-entrant hierarchical honeycombs with negative Poisson’s ratio,” Composite Structures, vol. 229, p. 111415, 2019. doi:10.1016/j.compstruct.2019.111415
  • [15] N. V Nguyen, H. Nguyen‐Xuan, T. N. Nguyen, J. Kang, and J. H. Lee, “A comprehensive analysis of auxetic honeycomb sandwich plates with graphene nanoplatelets reinforcement,” Composite Structures, vol. 259, pp. 113213, 2021. doi:10.1016/j.compstruct.2020.113213
  • [16] O. A. Ganilova, M. P. Cartmell, and A. Kiley, “Experimental Investigation of the thermoelastic performance of an aerospace aluminium honeycomb composite panel,” Composite Structures, vol. 257, pp. 113159, 2021. doi:10.1016/j.compstruct.2020.113159
  • [17] Y. Zhou, A. Liu, Y. Xu, Y. Guo, X. Yi, and Y. Jia, “Frequency-dependent orthotropic damping properties of nomex honeycomb composites,” Thin-Walled Structures, vol. 160, pp. 107372, 2021. doi:10.1016/j.tws.2020.107372
  • [18] H. Liu, E. T. Zhang, and B. F. Ng, “In-plane dynamic crushing of a novel honeycomb with functionally graded fractal self-similarity,” Composite Structures, vol. 270, pp. 114106, 2021. doi:10.1016/j.compstruct.2021.114106
  • [19] A. F. Ozalp and I. Esen, “Thermal buckling response of foam core smart sandwich nanoplates with electro-elastic and magneto-strictive layers,” Acta Mechanica, 2024. doi:10.1007/s00707-024-04155-y
  • [20] R. Özmen and I. Esen, “Thermomechanical flexural wave propagation responses of FG porous nanoplates in thermal and magnetic fields,” Acta Mechanica, vol. 234, no. 11, pp. 5621–5645, 2023. doi:10.1007/s00707-023-03679-z
  • [21] R. Özmen, R. Kılıç, and I. Esen, “Thermomechanical vibration and buckling response of nonlocal strain gradient porous FG nanobeams subjected to magnetic and thermal fields,” Mechanics of Advanced Materials and Structures, vol. 31, no. 4, pp. 834–853, 2024. doi:10.1080/15376494.2022.2124000
  • [22] P. Chen, S. Chen, and Z. Peng, “Thermo-contact mechanics of a rigid cylindrical punch sliding on a finite graded layer,” Acta Mechanica, vol. 223, no. 12, pp. 2647–2665, 2012. doi:10.1007/s00707-012-0732-y
  • [23] Y. Z. Wang, D. Liu, Q. Wang, and J. Zhou, “Asymptotic analysis of thermoelastic response in functionally graded plate subjected to a transient thermal shock,” Composite Structures, vol. 139, pp. 233–242, 2016. doi:10.1016/j.compstruct.2015.12.014
  • [24] W. Zhou, R. Zhang, S. Ai, R. He, Y. Pei, and D. Fang, “Load distribution in threads of porous metal–ceramic functionally graded composite joints subjected to thermomechanical loading,” Composite Structures, vol. 134, pp. 680–688, 2015. doi:10.1016/j.compstruct.2015.08.113
  • [25] N. D. Duc et al., “Mechanical and thermal stability of eccentrically stiffened functionally graded conical shell panels resting on elastic foundations and in thermal environment,” Composite Structures, vol. 132, pp. 597–609, 2015. doi:10.1016/j.compstruct.2015.05.072
  • [26] Y. L. Chung, “Thermoelastic closed-form solutions of FGM plates subjected to temperature change in longitudinal and thickness directions,” Meccanica, vol. 57, pp. 355–369, 2022. doi:10.1007/s11012-021-01431-2
  • [27] A. Hajlaoui, A. Jarraya, K. El Bikri, and F. Dammak, “Buckling analysis of functionally graded materials structures with enhanced solid-shell elements and transverse shear correction,” Composite Structures, vol. 132, pp. 87–97, 2015. doi:10.1016/j.compstruct.2015.04.059
  • [28] L. J. Gibson and M. F. Ashby, Cellular Solids: Structure and Properties, 2nd ed. in Cambridge solid state science series. Cambridge University Press, 1997.
  • [29] M. Sobhy and F. H. H. Al Mukahal, “Wave dispersion analysis of functionally graded GPLs-reinforced sandwich piezoelectromagnetic plates with a honeycomb core,” Mathematics, vol. 10, no. 17, 2022. doi:10.3390/math10173207
  • [30] Y. Amini, H. Emdad, and M. Farid, “Finite element modeling of functionally graded piezoelectric harvesters,” Composite Structures, vol. 129, pp. 165–176, 2015. doi:10.1016/j.compstruct.2015.04.011
  • [31] H. T. Thai and D. H. Choi, “A simple first-order shear deformation theory for the bending and free vibration analysis of functionally graded plates,” Composite Structures, vol. 101, pp. 332–340, 2013. doi:10.1016/j.compstruct.2013.02.019
  • [32] M. Nouraei, V. Zamani and Ö. Civalek, “Vibration of smart sandwich plate with an auxetic core and dual-FG nanocomposite layers integrated with piezoceramic actuators,” Composite Structures, vol. 315, pp. 117014, 2023. doi:10.1016/j.compstruct.2023.117014
  • [33] Y. S. Touloukian, Thermophysical properties of high temperature solid materials. New York: Macmillan, 1967. [34] Y. S. Touloukian, Thermophysical properties of high temperature solid materials: Oxides and their solutions and mixtures. New York: Macmillan, 1966.
  • [35] J. N. Reddy and C. D. Chin, “Thermomechanical analysis of functionally graded cylinders and plates,” Journal of Thermal Stresses, vol. 21, no. 6, pp. 593–626, 1998. doi:10.1080/01495739808956165
  • [36] D. G. Zhang, “Thermal post-buckling and nonlinear vibration analysis of FGM beams based on physical neutral surface and high order shear deformation theory,” Meccanica, vol. 49, no. 2, pp. 283–293, 2014. doi:10.1007/s11012-013-9793-9
  • [37] F. Ebrahimi and M. R. Barati, “Electromechanical buckling behavior of smart piezoelectrically actuated higher-order size-dependent graded nanoscale beams in thermal environment,” International Journal of Smart and Nano Materials, vol. 7, no. 2, pp. 69–90, 2016. doi:10.1080/19475411.2016.1191556
  • [38] M. A. Koç, İ. Esen, and M. Eroğlu, “Thermomechanical vibration response of nanoplates with magneto-electro-elastic face layers and functionally graded porous core using nonlocal strain gradient elasticity,” Mechanics of Advanced Materials and Structures, vol. 31, no. 18, pp. 4477–4509, 2023. doi:10.1080/15376494.2023.2199412

Metamalzeme Bal Peteği Merkez Katmanlı Fonksiyonel Derecelendirilmiş Sandviç Kompozit Plakaların Termomekanik Malzeme Özelliklerinin İncelenmesi

Year 2024, Volume: 10 Issue: 3, 645 - 656, 31.12.2024

Abstract

Bu makalede, fonksiyonel olarak derecelendirilmiş (FD) yüzey plakalarına ve bir metamalzeme bal peteği merkez plaka katmanına sahip kompozit bir sandviç plakanın termomekanik özellikleri sıcaklık yükü etkisi altında incelenmiştir. Altıgen bal peteği merkez plakası, FG paslanmaz çelik (SUS304) ve zirkonya (ZrO2) metal-seramik matrisli iki yüzey plakası arasına sandviç edilmiştir. Merkez plaka ve yüzey plakaların mekanik ve termal özellikleri sıcaklığa bağlı olarak değişmektedir. Plaka kalınlığı boyunca sıcaklıktaki değişim nonlineer olarak kabul edilmiştir. Sandviç plakanın eşdeğer etkin malzeme özelliklerini belirlemek için güç yasası fonksiyonları ve Gibson denklemleri kullanılmıştır. Petek yapının geometrik parametreleri, sıcaklık artışı ve güç kanunu parametresi gibi değişkenlerin sandviç plakanın termomekanik malzeme davranışının değişimi üzerindeki etkisini araştırmak için sayısal analizler gerçekleştirilmiştir. Analiz sonuçlarına göre, petek hücrelerin geometrik konfigürasyonlarının ve FG plakalarının malzeme bileşimlerinin ayarlanmasıyla istenen termal ve mekanik özelliklerin ayarlanabileceği sonucuna varılmıştır. Ayrıca, bal peteği yapılardaki mekanik ve termal özelliklerin kombinasyonunun hem mukavemet hem de termal direncin gerekli olduğu zorlu ortamlarda etkili bir şekilde performans göstermelerini sağladığı vurgulanmıştır.

References

  • [1] L. Ai and X. Gao, “Metamaterials with negative Poisson’s ratio and non-positive thermal expansion,” Composite Structures, vol. 162, pp. 70–84, 2017. doi:10.1016/j.compstruct.2016.11.056
  • [2] W. Zhang, S. Zhao, F. Scarpa, J. Wang, and R. Sun, “In-plane mechanical behavior of novel auxetic hybrid metamaterials,” Thin-Walled Structures, vol. 159, pp. 107191, 2021. doi:10.1016/j.tws.2020.107191
  • [3] K. G. Aktaş, “Three-dimensional thermomechanical wave propagation analysis of sandwich nanoplate with graphene-reinforced foam core and magneto-electro-elastic face layers using nonlocal strain gradient elasticity theory,” Acta Mechanica, vol. 235, no. 9, pp. 5587–5619, 2024. doi:10.1007/s00707-024-04001-1
  • [4] W. Zhang, Z. Li, J. Wang, F. Scarpa, and X. Wang, “Mechanics of novel asymmetrical re-entrant metamaterials and metastructures,” Composite Structures, vol. 291, pp. 115604, 2022. doi:10.1016/j.compstruct.2022.115604
  • [5] Y. Chen, Z. Jia, and L. Wang, “Hierarchical honeycomb lattice metamaterials with improved thermal resistance and mechanical properties,” Composite Structures, vol. 152, pp. 395–402, 2016. doi:10.1016/j.compstruct.2016.05.048
  • [6] K. Billon et al., “Mechanics and band gaps in hierarchical auxetic rectangular perforated composite metamaterials,” Composite Structures, vol. 160, pp. 1042–1050, 2017. doi:10.1016/j.compstruct.2016.10.121
  • [7] M. Eroğlu, İ. Esen, and M. A. Koç, “Managing the surface piezoelectricity effect of the smart ZnO sandwich nanoplates using metal foam core layer and GPRL reinforced rim layers,” Microsystem Technologies, 2024. doi:10.1007/s00542-024-05772-2
  • [8] M. Eroğlu, İ. Esen, and M. A. Koç, “Effect of the magnetic field on the thermomechanical flexural wave propagation of embedded sandwich nanobeams,” Mechanics Based Design of Structures and Machines, vol. 52, no. 10, pp. 7795–7827, Oct. 2024. doi:10.1080/15397734.2024.2308659
  • [9] A. H. Abdulaziz, M. Hedaya, A. Elsabbagh, K. M. Holford, and J. McCrory, “Acoustic emission wave propagation in honeycomb sandwich panel structures,” Composite Structures, vol. 277, pp. 114580, 2021. doi:10.1016/j.compstruct.2021.114580
  • [10] E. Zurnacı and H. K. Özdemir, “Investigation of the compressive strength, energy absorption properties and deformation modes of the reinforced core cell produced by the FDM method,” Gazi Journal of Engineering Sciences, vol. 9, no. 1, pp. 1–11, 2023. doi:10.30855/gmbd.0705047
  • [11] Y. Tao, M. Chen, H. Chen, Y. Pei, and D. Fang, “Strain rate effect on the out-of-plane dynamic compressive behavior of metallic honeycombs: Experiment and theory,” Composite Structures, vol. 132, pp. 644–651, 2015. doi:10.1016/j.compstruct.2015.06.015
  • [12] J. Zhang, Z. Yan, and L. Xia, “Vibration and flutter of a honeycomb sandwich plate with zero Poisson’s ratio,” Mathematics, vol. 19, no. 9, pp. 2528, 2021. doi:10.3390/math9192528
  • [13] M. F. Sarıbaş and S. Karadeniz, “Bir uçak kanadının hücum kenarına kuş çarpmasının düzgün parçacık hidrodinamiği yöntemiyle sayısal incelenmesi,” Gazi Journal of Engineering Sciences, vol. 8, no. 3, pp. 547–566, 2021. doi:10.30855/gmbd.0705042
  • [14] H. L. Tan, Z. C. He, K. X. Li, E. Li, A. G. Cheng, and B. Xu, “In-plane crashworthiness of re-entrant hierarchical honeycombs with negative Poisson’s ratio,” Composite Structures, vol. 229, p. 111415, 2019. doi:10.1016/j.compstruct.2019.111415
  • [15] N. V Nguyen, H. Nguyen‐Xuan, T. N. Nguyen, J. Kang, and J. H. Lee, “A comprehensive analysis of auxetic honeycomb sandwich plates with graphene nanoplatelets reinforcement,” Composite Structures, vol. 259, pp. 113213, 2021. doi:10.1016/j.compstruct.2020.113213
  • [16] O. A. Ganilova, M. P. Cartmell, and A. Kiley, “Experimental Investigation of the thermoelastic performance of an aerospace aluminium honeycomb composite panel,” Composite Structures, vol. 257, pp. 113159, 2021. doi:10.1016/j.compstruct.2020.113159
  • [17] Y. Zhou, A. Liu, Y. Xu, Y. Guo, X. Yi, and Y. Jia, “Frequency-dependent orthotropic damping properties of nomex honeycomb composites,” Thin-Walled Structures, vol. 160, pp. 107372, 2021. doi:10.1016/j.tws.2020.107372
  • [18] H. Liu, E. T. Zhang, and B. F. Ng, “In-plane dynamic crushing of a novel honeycomb with functionally graded fractal self-similarity,” Composite Structures, vol. 270, pp. 114106, 2021. doi:10.1016/j.compstruct.2021.114106
  • [19] A. F. Ozalp and I. Esen, “Thermal buckling response of foam core smart sandwich nanoplates with electro-elastic and magneto-strictive layers,” Acta Mechanica, 2024. doi:10.1007/s00707-024-04155-y
  • [20] R. Özmen and I. Esen, “Thermomechanical flexural wave propagation responses of FG porous nanoplates in thermal and magnetic fields,” Acta Mechanica, vol. 234, no. 11, pp. 5621–5645, 2023. doi:10.1007/s00707-023-03679-z
  • [21] R. Özmen, R. Kılıç, and I. Esen, “Thermomechanical vibration and buckling response of nonlocal strain gradient porous FG nanobeams subjected to magnetic and thermal fields,” Mechanics of Advanced Materials and Structures, vol. 31, no. 4, pp. 834–853, 2024. doi:10.1080/15376494.2022.2124000
  • [22] P. Chen, S. Chen, and Z. Peng, “Thermo-contact mechanics of a rigid cylindrical punch sliding on a finite graded layer,” Acta Mechanica, vol. 223, no. 12, pp. 2647–2665, 2012. doi:10.1007/s00707-012-0732-y
  • [23] Y. Z. Wang, D. Liu, Q. Wang, and J. Zhou, “Asymptotic analysis of thermoelastic response in functionally graded plate subjected to a transient thermal shock,” Composite Structures, vol. 139, pp. 233–242, 2016. doi:10.1016/j.compstruct.2015.12.014
  • [24] W. Zhou, R. Zhang, S. Ai, R. He, Y. Pei, and D. Fang, “Load distribution in threads of porous metal–ceramic functionally graded composite joints subjected to thermomechanical loading,” Composite Structures, vol. 134, pp. 680–688, 2015. doi:10.1016/j.compstruct.2015.08.113
  • [25] N. D. Duc et al., “Mechanical and thermal stability of eccentrically stiffened functionally graded conical shell panels resting on elastic foundations and in thermal environment,” Composite Structures, vol. 132, pp. 597–609, 2015. doi:10.1016/j.compstruct.2015.05.072
  • [26] Y. L. Chung, “Thermoelastic closed-form solutions of FGM plates subjected to temperature change in longitudinal and thickness directions,” Meccanica, vol. 57, pp. 355–369, 2022. doi:10.1007/s11012-021-01431-2
  • [27] A. Hajlaoui, A. Jarraya, K. El Bikri, and F. Dammak, “Buckling analysis of functionally graded materials structures with enhanced solid-shell elements and transverse shear correction,” Composite Structures, vol. 132, pp. 87–97, 2015. doi:10.1016/j.compstruct.2015.04.059
  • [28] L. J. Gibson and M. F. Ashby, Cellular Solids: Structure and Properties, 2nd ed. in Cambridge solid state science series. Cambridge University Press, 1997.
  • [29] M. Sobhy and F. H. H. Al Mukahal, “Wave dispersion analysis of functionally graded GPLs-reinforced sandwich piezoelectromagnetic plates with a honeycomb core,” Mathematics, vol. 10, no. 17, 2022. doi:10.3390/math10173207
  • [30] Y. Amini, H. Emdad, and M. Farid, “Finite element modeling of functionally graded piezoelectric harvesters,” Composite Structures, vol. 129, pp. 165–176, 2015. doi:10.1016/j.compstruct.2015.04.011
  • [31] H. T. Thai and D. H. Choi, “A simple first-order shear deformation theory for the bending and free vibration analysis of functionally graded plates,” Composite Structures, vol. 101, pp. 332–340, 2013. doi:10.1016/j.compstruct.2013.02.019
  • [32] M. Nouraei, V. Zamani and Ö. Civalek, “Vibration of smart sandwich plate with an auxetic core and dual-FG nanocomposite layers integrated with piezoceramic actuators,” Composite Structures, vol. 315, pp. 117014, 2023. doi:10.1016/j.compstruct.2023.117014
  • [33] Y. S. Touloukian, Thermophysical properties of high temperature solid materials. New York: Macmillan, 1967. [34] Y. S. Touloukian, Thermophysical properties of high temperature solid materials: Oxides and their solutions and mixtures. New York: Macmillan, 1966.
  • [35] J. N. Reddy and C. D. Chin, “Thermomechanical analysis of functionally graded cylinders and plates,” Journal of Thermal Stresses, vol. 21, no. 6, pp. 593–626, 1998. doi:10.1080/01495739808956165
  • [36] D. G. Zhang, “Thermal post-buckling and nonlinear vibration analysis of FGM beams based on physical neutral surface and high order shear deformation theory,” Meccanica, vol. 49, no. 2, pp. 283–293, 2014. doi:10.1007/s11012-013-9793-9
  • [37] F. Ebrahimi and M. R. Barati, “Electromechanical buckling behavior of smart piezoelectrically actuated higher-order size-dependent graded nanoscale beams in thermal environment,” International Journal of Smart and Nano Materials, vol. 7, no. 2, pp. 69–90, 2016. doi:10.1080/19475411.2016.1191556
  • [38] M. A. Koç, İ. Esen, and M. Eroğlu, “Thermomechanical vibration response of nanoplates with magneto-electro-elastic face layers and functionally graded porous core using nonlocal strain gradient elasticity,” Mechanics of Advanced Materials and Structures, vol. 31, no. 18, pp. 4477–4509, 2023. doi:10.1080/15376494.2023.2199412
There are 37 citations in total.

Details

Primary Language English
Subjects Solid Mechanics, Numerical Methods in Mechanical Engineering, Mechanical Engineering (Other)
Journal Section Research Articles
Authors

Kerim Gökhan Aktaş 0000-0002-8076-6799

Publication Date December 31, 2024
Submission Date November 8, 2024
Acceptance Date December 17, 2024
Published in Issue Year 2024 Volume: 10 Issue: 3

Cite

IEEE K. G. Aktaş, “Investigation of Thermomechanical Material Properties of Functionally Graded Sandwich Composite Plates with Metamaterial Honeycomb Core Layer”, GJES, vol. 10, no. 3, pp. 645–656, 2024.

Gazi Journal of Engineering Sciences (GJES) publishes open access articles under a Creative Commons Attribution 4.0 International License (CC BY). 1366_2000-copia-2.jpg