Review
BibTex RIS Cite

Quantum Computing in 6G Networks: Opportunities and Challenges

Year 2025, Volume: 11 Issue: 2, 254 - 273, 31.08.2025

Abstract

Quantum computing is a technology that utilizes quantum mechanics principles such as superposition and entanglement to offer significant advantages over classical computing. With the development of 6G technology, quantum computing's high data processing capacity, efficiency in optimization processes, and contribution to secure communication systems are becoming increasingly important. This paper examines the role of quantum computing in 6G networks. It discusses its potential contributions in areas such as network optimization, quantum machine learning, secure communication protocols, and fault-tolerant computing. The ultra-low latency, high data rate, and dynamic spectrum management requirements of 6G can be significantly improved by integrating quantum algorithms and hybrid quantum-classical systems. However, obstacles such as current limitations in quantum hardware, error correction requirements, and implementation challenges are also considered in detail. The paper outlines the potential solutions that quantum computing can provide to meet the performance demands of 6G, and discusses future research directions to further explore this promising technology intersection.

Project Number

5249902

Thanks

This work is supported by The Scientific and Technological Research Council of Türkiye (TÜBİTAK) 1515 Frontier R&D Laboratories Support Program for Turk Telekom neXt Generation Technologies Lab (XGeNTT) under project number 5249902.

References

  • [1] S. Glisic and B. Lorenzo, "Quantum computing and neuroscience for 6G/7G networks: Survey," Intelligent Systems with Applications, p. 200346, September 2024.doi:10.1016/j.iswa.2024.200346
  • [2] M. Belkhir, H. Benkaouha, and E. Benkhelifa, "Quantum vs Classical Computing: A Comparative Analysis," in Proc. 7th Int. Conf. on Fog and Mobile Edge Computing (FMEC), 12-15 December 2022, Paris ,France. Available: https://ieeexplore.ieee.org/document/10062753. [Accessed: 14 March 2023].
  • [3] P. D. Banik and A. Nath, "Past, Present and Future of Quantum Computing: A Systematic Study," Int. J. of Scientific Research in Computer Science, Engineering and Information Technology, vol. 7, no. 2, pp. 56-63, December 2021.doi: 0.32628/CSEIT217694
  • [4] Sachi Nandan Mohanty, Rajanikanth Aluvalu and Sarita Mohanty, Quantum Computing: Evolution and Applications, John Wiley and Sons 2023.
  • [5] C. Kaur, V. Mahamuni, and S. Jha, "Emerging Applications and Challenges in Quantum Computing: A Literature Survey," in Proc. IEEE Int. Conf. on Artificial Intelligence, Big Data, Computing and Data Communication Systems (icABCD), 1-2 August 2024, Port Louis, Mauritius. Available: https://ieeexplore.ieee.org/document/10645271. [Accessed: 29 August 2024].
  • [6] Z. Yang, M. Zolanvari, and R. Jain, "A Survey of Important Issues in Quantum Computing and Communications," IEEE Communications Surveys & Tutorials, vol. 25, no. 2, pp. 1059–1094, March 2023. doi: 10.1109/comst.2023.3259874
  • [7] V. Padmavathi, B. Vishnu Vardhan, and A. V. N. Krishna, "Quantum Cryptography and Quantum Key Distribution Protocols: A Survey," in Proc. 6th Int. Advanced Computing Conf. (IACC), 27-28 Feburary 2016, Bhimavaram, India. Available: https://ieeexplore.ieee.org/document/7544898. [Accessed: 18 August 2016].
  • [8] A. Sharma, and A. Kumar, "A survey on quantum key distribution," International Conference on Issues and Challenges in Intelligent Computing Techniques, ICICT, 27-28 September, Ghaziabad, India. Available: https://ieeexplore.ieee.org/abstract/document/8977649. [Accessed: 03 February 2024].
  • [9] A. Haldorai, A. Ramu, S. Murugan, “Cognitive Radio Communication and Applications for Urban Spaces”. In: Computing and Communication Systems in Urban Development. Urban Computing. Springer, Cham 2019. doi: 10.1007/978-3-030-26013-2_8
  • [10] M. Aboussalah, C. Chi, and C. G. Lee, "Quantum computing reduces systemic risk in financial networks," Sci Rep, 3990, March 2023. doi: 10.1038/s41598-023-30710-z
  • [11] S. Gupta and V. Sharma, "Effects of Quantum computing on Businesses," in 2023 4th International Conference on Intelligent Engineering and Management (ICIEM), 9-11 May 2023, London, United Kingdom. Available: https://ieeexplore.ieee.org/document/10166880. [Accessed: 4 July 2023].
  • [12] J. Li, F. Gao, S. Lin, M. Guo, Y. Li, H. Liu, ... and Q. Wen, "Quantum k-fold cross-validation for nearest neighbor classification algorithm," Physica A: Statistical Mechanics and its Applications, vol. 611, p. 128435, February 2023. doi: 10.1016/j.physa.2022.128435
  • [13] A. Saxena, J. Mancilla, I. Montalban and C. Pere, Financial Modeling Using Quantum Computing: Design and manage quantum machine learning solutions for financial analysis and decision making, Birmingham Packt Publishing, 2023.
  • [14] R. Sotelo, D. Corbelletto, E. Dri, E. Giusto, and B. Montrucchio, "Quantum Computing in Finance: the Intesa Sanpaolo Experience," IEEE Engineering Management Review, vol. 52, no. 1, pp. 9–15, Mar. 2024. doi: 10.1109/EMR.2024.3385518
  • [15] S. Naik, E. Yeniaras, G. Hellstern, G. Prasad, and S. K. L. P. Vishwakarma, "From portfolio optimization to quantum blockchain and security: A systematic review of quantum computing in finance," Financial Innovation, vol. 11, no. 1, pp. 1–67, Feb. 2025. doi:10.1186/s40854-025-00751-6
  • [16] G. Mazzola, "Quantum computing for chemistry and physics applications from a Monte Carlo perspective," The Journal of Chemical Physics, vol. 160, no. 1, pp. 010902, Jan. 2024. doi:10.1063/5.0173591
  • [17] S. Guo, J. Sun, H. Qian, M. Gong, Y. Zhang, F. Chen, ... and J. W. Pan, "Experimental quantum computational chemistry with optimized unitary coupled cluster ansatz," Nature Physics, vol. 20, no. 8, pp. 1240–1246, August 2024. doi: 10.1038/s41567-024-02530-z
  • [18] R. Izsák, C. Riplinger, N. S. Blunt, B. de Souza, N. Holzmann, O. Crawford, ... and P. Schopf, "Quantum computing in pharma: A multilayer embedding approach for near future applications," Journal of Computational Chemistry, vol. 44, no. 3, pp. 406–421, Jun 2022. doi: 10.48550/arXiv.2202.04460
  • [19] A. Pyrkov, A. Aliper, D. Bezrukov, Y.C. Lin, D. Polykovskiy, P. Kamya and A. Zhavoronkov, "Quantum computing for near-term applications in generative chemistry and drug discovery," Drug Discovery Today, vol. 28, no. 8, p. 103675, August 2023. doi: 10.1016/j.drudis.2023.103675
  • [20] A. Baiardi, M. Christandl, and M. Reiher, "Quantum computing for molecular biology," ChemBioChem, vol. 24, no. 13, p. e202300120, Jun. 2023. doi: 10.48550/arXiv.2212.12220
  • [21] D. Deutsch, "Quantum theory, the Church–Turing principle and the universal quantum computer," Proceedings of the Royal Society A, vol. 400, no. 1818, pp. 97–117, Jul. 1985. doi: 10.1098/rspa.1985.0070
  • [22] A. Einstein, B. Podolsky, and N. Rosen, "Can quantum-mechanical description of physical reality be considered complete?," Physical Review, vol. 47, no. 10, p. 777, May 1935. doi: 10.1103/PhysRev.47.777
  • [23] F. Jazaeri, A. Beckers, A. Tajalli, and J. M. Sallese, “A review on quantum computing: From qubits to front-end electronics and cryogenic MOSFET physics.” in 2019 MIXDES- 26th International Conference "Mixed Design of Integrated Circuits and Systems, 27-29 June 2019, Rzeszow, Poland. Available: https://ieeexplore.ieee.org/document/8787164. [Accessed: 05 August. 2019].
  • [24] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, 10th ed. Cambridge, UK: Cambridge University Press, 2010.
  • [25] F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R. Barends, ... and J. M. Martinis, "Quantum supremacy using a programmable superconducting processor," Nature, Oct. 2019, doi:10.1038/s41586-019-1666-5
  • [26] H. S. Zhong, Y. H. Deng, J. Qin, H. Wang, M. C. Chen, L. C. Peng, ... and J. W. Pan, "Phase-programmable gaussian boson sampling using stimulated squeezed light," Physical Review Letters, vol. 127, no. 18, p. 180502, Oct. 2021. doi: 10.1103/PhysRevLett.127.180502
  • [27] J. Preskill, "Quantum computing 40 years later," in Feynman Lectures on Computation, pp. 193–244, CRC Press, 2023.
  • [28] M. U. Khan et al., "Error Mitigation in the NISQ Era: Applying Measurement Error Mitigation Techniques to Enhance Quantum Circuit Performance," Mathematics 2024, vol. 12, no. 14, p. 2235, July 2024. doi: 10.3390/math12142235
  • [29] M. Anthony and C. Yu. , Scaling up superconducting quantum computers, Nature Electronics, vol. 8, doi:10.1038/s41928-025-01381-7
  • [30] S. Bravyi, G. Carleo, D. Gosset, and Y. Liu, "A rapidly mixing Markov chain from any gapped quantum many-body system," Quantum, vol. 7, p. 1173, Nov. 2023. doi: 10.22331/q-2023-11-07-1173
  • [31] A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, ... and H. Weinfurter, "Elementary gates for quantum computation," Physical Review A, vol. 52, no. 5, pp. 3457–3467, March 1995. doi: 10.48550/arXiv.quant-ph/9503016
  • [32] M. Suchara, Y. Alexeev, F. Chong, H. Finkel, H. Hoffmann, J. Larson, J. Osborn, and G. Smith, “Hybrid quantum-classical computing architectures,” in Proceedings of the SC18 Workshops: Post-Moore Era Supercomputing, Nov. 11, 2018, Dallas, TX, USA [Workshop]. Los Alamitos, CA: IEEE, 2018. Available: IEEE Xplore, http://sc18.supercomputing.org/proceedings/workshops/workshop_files/ws_pmes110s1-file1.pdf. [Accessed: Aug. 26, 2025].
  • [33] D. Fan, G. Liu, S. Li, M. Gong, D. Wu, Y. Zhang, C. Zha, F. Chen, S. Cao, Y. Ye, et al., “Calibrating quantum gates up to 52 qubits in a superconducting processor,” npj Quantum Information 11, 33 , Feb. 2025. doi: 10.1038/s41534-025-00983-5
  • [34] Y. Aharonov, D. Z. Albert, and L. Vaidman, "How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100," Physical Review Letters, vol. 60, pp. 1351–1354, April 1988. doi: 10.1103/PhysRevLett.60.1351
  • [35] K. Jacobs, Quantum Measurement Theory and its Applications, 1st ed. Cambridge: Cambridge University Press, 2014.
  • [36] W. H. Zurek, "Decoherence, Einselection, and the Quantum Origins of the Classical," Reviews of Modern Physics, vol. 75, pp. 715–775, June 2003. doi: 10.1103/RevModPhys.75.715 [37] Y. Kitaev, "Fault-Tolerant Quantum Computation by Anyons," Annals of Physics, vol. 303, no. 1, pp. 2–30, Jan. 2003. doi: 10.1016/S0003-4916(02)00018-0
  • [38] S. Haroche, "Nobel Lecture: Controlling Photons in a Box and Exploring the Quantum-to-Classical Boundary," Reviews of Modern Physics, vol. 85, pp. 1083–1102, July 2013. doi: 10.1103/RevModPhys.85.1083
  • [39 F. Marxer et al., “Above 99.9 % fidelity single-qubit gates, two-qubit gates, and readout in a single superconducting quantum device,” Quantum Physics, vol. 2508.16437, Aug. 2025. doi:10.48550/arXiv.2508.16437
  • [40] J. Preskill, "Quantum computing in the NISQ era and beyond," Quantum, vol. 2, p. 79, July 2018. doi: 10.48550/arXiv.1801.00862
  • [41] S. Ebadi et al., " Quantum Phases of Matter on a 256-Atom Programmable Quantum Simulator," Nature, vol. 595, no. 7865, pp. 227–232, Jul. 2021, doi: 10.48550/arXiv.2012.12281
  • [42] J. Alicea, "New Directions in the Pursuit of Majorana Fermions in Solid State Systems," Reports on Progress in Physics, vol. 75, no. 7, p. 076501, February 2012. doi: 10.1088/0034-4885/75/7/076501
  • [43] P. W. Shor, "Algorithms for quantum computation: discrete logarithms and factoring," in Proceedings 35th Annual Symposium on Foundations of Computer Science, Nov. 20–22 1994, Santa Fe, NM, USA. Los Alamitos. Available: https://ieeexplore.ieee.org/document/365700 [Accessed : 06 August 2002].
  • [44] L. K. Grover, " A fast quantum mechanical algorithm for database search," IEEE Trans. Quantum Eng., vol. 3, p. 3103523, Nov. 1996, doi: 10.48550/arXiv.quant-ph/960504
  • [45] J. Park, S. Samarakoon, H. Shiri, M. K. Abdel-Aziz, T. Nishio, A. Elgabli, and M. Bennis, "Extreme ultra-reliable and low-latency communication," Nature Electronics, vol. 5, no. 3, pp. 133–141, Mar. 2022. doi: 10.1038/s41928-022-00728-8
  • [46] F. Zaman, A. Farooq, M. A. Ullah, H. Jung, H. Shin, and M. Z. Win, "Quantum machine intelligence for 6G URLLC," IEEE Wireless Communications, vol. 30, no. 2, pp. 22–30, Apr. 2023. doi: 10.1109/MWC.003.2200382
  • [47] H. Urgelles, S. Maheshwari, S. S. Nande, R. Bassoli, F. H. Fitzek, and J. F. Monserrat, "In-network quantum computing for future 6G networks," Advanced Quantum Technologies, vol. 8, no. 2, p. 2300334, Mar. 2024. doi: 10.1002/qute.202300334
  • [48] F. Phillipson, "Quantum computing in telecommunication—a survey," Mathematics, vol. 11, no. 15, p. 3423, Aug. 2023. doi: 10.3390/math11153423
  • [49] V. Rishiwal, U. Agarwal, M. Yadav, S. Tanwar, D. Garg, and M. Guizani, "A new alliance of machine learning and quantum computing: Concepts, attacks, and challenges in IoT networks," IEEE Internet of Things Journal, vol. 12, no. 12, pp. 18865–18886, Jun. 2025. doi: 10.1109/JIOT.2025.3535414
  • [50] D. Javeed, M. S. Saeed, I. Ahmad, M. Adil, P. Kumar, and A. N. Islam, "Quantum-empowered federated learning and 6G wireless networks for IoT security: Concept, challenges and future directions," Future Generation Computer Systems, vol. 160, pp. 577–597, Nov. 2024, doi: 10.1016/j.future.2024.06.023
  • [51] G. Barillaro, A. Boella, F. Gandino, M. G. Vakili, E. Giusto, G. Mondo, B. Montrucchio, A. Scarabosio, A. Scionti, O. Terzo, and G. Vitali, "Comparison of heuristic approaches to PCI planning for quantum computers," in Proc. 2023 IEEE Int. Conf. Consumer Electronics (ICCE), Las Vegas, NV, USA, Jan. 6–8, 2023, pp. 1–6. doi: 10.1109/ICCE56470.2023.10043394
  • [52] M. Kim, S. Kasi, P. A. Lott, D. Venturelli, J. Kaewell, and K. Jamieson, "Heuristic quantum optimization for 6G wireless communications," IEEE Network, vol. 35, no. 4, pp. 8–15, Aug. 2021. doi: 10.1109/MNET.012.2000770
  • [53] C. Wang and E. Jonckheere, "Simulated versus reduced noise quantum annealing in maximum independent set solution to wireless network scheduling," Quantum Information Processing, vol. 18, no. 1, Nov. 2018. doi: 10.1007/s11128-018-2117-1
  • [54] J. Choi, S. Oh, and J. Kim, "Quantum approximation for wireless scheduling," Applied Sciences, vol. 10, no. 20, p. 7116, Oct. 2020. doi: 10.3390/app10207116 [55] M. Saravanan and R. P. Sircar, "Quantum evolutionary algorithm for scheduling resources in virtualized 5G RAN environment," in Proc. IEEE 4th 5G World Forum (5GWF), Montreal, QC, Canada, Oct. 13–15, 2021, pp. 111–116. doi: 10.1109/5GWF52925.2021.00027
  • [56] H. Urgelles, P. Picazo-Martinez, D. Garcia-Roger, and J. F. Monserrat, "Multi-objective routing optimization for 6G communication networks using a quantum approximate optimization algorithm," Sensors, vol. 22, no. 19, p. 7570, Oct. 2022. doi: 10.3390/s22197570
  • [57] J. Wurtz, P. L. Lopes, C. Gorgulla, N. Gemelke, A. Keesling, and S. Wang, "Industry applications of neutral-atom quantum computing solving independent set problems," arXiv preprint arXiv:2205.08500, 2022. doi: 10.48550/arXiv.2205.08500
  • [58] M. Zohaib, F. S. Altuwaijri, and S. Hyrynsalmi, "Integrating quantum computing and blockchain: Building the foundations of secure, efficient 6G technology," in Proc. 1st ACM Int. Workshop Quantum Software Engineering: The Next Evolution, Porto de Galinhas, Brazil, Jul. 16, 2024, pp. 27–34. doi: 10.1145/3663531.3664755
  • [59] M. Cerezo, G. Verdon, H. Y. Huang, L. Cincio, and P. J. Coles, "Challenges and opportunities in quantum machine learning," Nature Computational Science, vol. 2, no. 9, pp. 567–576, Sep. 2022. doi: 10.1038/s43588-022-00311-3
  • [60] A. Jenber Belay, Y. M. Walle, and M. B. Haile, "Deep ensemble learning and quantum machine learning approach for Alzheimer's disease detection," Scientific Reports, vol. 14, no. 1, p. 14196, Jun. 2024. doi: 10.1038/s41598-024-61452-1
  • [61] M. C. Caro, H. Y. Huang, M. Cerezo, K. Sharma, A. Sornborger, L. Cincio, and P. J. Coles, "Generalization in quantum machine learning from few training data," Nature Communications, vol. 13, no. 1, p. 4919, Aug. 2022. doi: 10.1038/s41467-022-32550-3
  • [62] B. Zhang, P. Xu, X. Chen, and Q. Zhuang, "Generative quantum machine learning via denoising diffusion probabilistic models," Physical Review Letters, vol. 132, no. 10, p. 100602, Mar. 2024. doi: 10.1103/PhysRevLett.132.100602
  • [63] J. R. McClean, S. Boixo, V. N. Smelyanskiy, R. Babbush, and H. Neven, "Barren plateaus in quantum neural network training landscapes," Nature Communications, vol. 9, no. 1, p. 4812, Nov. 2018. doi: 10.1038/s41467-018-07090-4
  • [64] M. Larocca, F. Sauvage, F. M. Sbahi, G. Verdon, P. J. Coles, and M. Cerezo, "Group-invariant quantum machine learning," PRX Quantum, vol. 3, no. 3, p. 030341, Sep. 2022. doi: 10.1103/PRXQuantum.3.030341
  • [65] R. Sweke, E. Recio-Armengol, S. Jerbi, E. Gil-Fuster, B. Fuller, J. Eisert, and J. J. Meyer, "Potential and limitations of random Fourier features for dequantizing quantum machine learning," Quantum, vol. 9, p. 1640, Feb. 2025. doi: 10.22331/q-2025-02-20-1640
  • [66] H. Y. Huang, M. Broughton, M. Mohseni, R. Babbush, S. Boixo, H. Neven, and J. R. McClean, "Power of data in quantum machine learning," Nature Communications, vol. 12, no. 1, p. 2631, May 2021. doi: 10.1038/s41467-021-22539-9
  • [67] M. T. West, J. Heredge, M. Sevior, and M. Usman, "Provably trainable rotationally equivariant quantum machine learning," PRX Quantum, vol. 5, no. 3, p. 030320, Jul. 2024. doi: 10.1103/PRXQuantum.5.030320
  • [68] S. Jerbi, L. J. Fiderer, H. Poulsen Nautrup, J. M. Kübler, H. J. Briegel, and V. Dunjko, "Quantum machine learning beyond kernel methods," Nature Communications, vol. 14, no. 1, p. 517, Jan. 2023. doi:10.1038/s41467-023-36159-y
  • [69] A. Senokosov, A. Sedykh, A. Sagingalieva, B. Kyriacou, and A. Melnikov, "Quantum machine learning for image classification," Machine Learning: Science and Technology, vol. 5, no. 1, p. 015040, Mar. 2024. doi: 10.1088/2632-2153/ad2aef
  • [70] S. Jerbi, C. Gyurik, S. C. Marshall, R. Molteni, and V. Dunjko, "Shadows of quantum machine learning," Nature Communications, vol. 15, no. 1, p. 5676, Jul. 2024. doi: 10.1038/s41467-024-49877-8
  • [71] Y. Liu, E. J. Kuo, C. H. A. Lin, S. Chen, J. G. Young, Y. J. Chang, and M. H. Hsieh, "Training classical neural networks by quantum machine learning," in Proc. 2024 IEEE Int. Conf. Quantum Computing and Engineering (QCE), Montreal, QC, Canada, 2024, pp. 34–38. doi: 10.1109/QCE60285.2024.10248
  • [72] M. Akrom, "Quantum support vector machine for classification task: A review," Journal of Multiscale Materials Informatics, vol. 1, no. 2, pp. 1–8, Aug. 2024. doi: 10.62411/jimat.v1i2.10965
  • [73] L. Li, X. Zhang, Z. Cui, W. Xu, X. Xu, J. Wang, and R. Shu, "An overview of quantum machine learning research in China," Applied Sciences, vol. 15, no. 5, p. 2555, Mar. 2025. doi: 10.3390/app15052555
  • [74] T. M. Khan and A. Robles-Kelly, "Machine learning: Quantum vs classical," IEEE Access, vol. 8, pp. 219275–219294, Dec. 2020. doi: 10.1109/ACCESS.2020.3041719
  • [75] P. O. Dral, "Quantum chemistry in the age of machine learning," The Journal of Physical Chemistry Letters, vol. 11, no. 6, pp. 2336–2347, Mar. 2020. doi: 10.1021/acs.jpclett.9b03664
  • [76] M. Y. Melnikov, A. A. Shashkin, V. T. Dolgopolov, A. Y. Zhu, S. V. Kravchenko, S. H. Huang, and C. W. Liu, "Quantum phase transition in ultrahigh mobility SiGe/Si/SiGe two-dimensional electron system," Physical Review B, vol. 99, no. 8, p. 081106, Feb. 2019. doi: 10.1103/PhysRevB.99.081106
  • [77] A. Vijay, H. Bhargava, A. Pareek, P. Suravajhala, and A. Sharma, "Quantum machine learning for biological applications," in Bioinformatics and Computational Biology. Boca Raton, FL, USA: Chapman and Hall/CRC, 2023, pp. 75–86. doi: 10.1201/9781003331247-8
  • [78] A. Cordier, N. P. Sawaya, G. G. Guerreschi, and S. K. McWeeney, "Biology and medicine in the landscape of quantum advantages," Journal of the Royal Society Interface, vol. 19, no. 196, p. 20220541, Nov. 2022. doi: 10.1098/rsif.2022.0541
  • [79] D. Maheshwari, U. Ullah, P. A. O. Marulanda, A. G. O. Jurado, I. D. Gonzalez, J. M. O. Merodio, and B. Garcia-Zapirain, "Quantum machine learning applied to electronic healthcare records for ischemic heart disease classification," Human-Centric Computing and Information Sciences, vol. 13, no. 6, pp. 1–18, Feb. 2023. doi: 10.22967/HCIS.2023.13.006
  • [80] Q. Bai and X. Hu, "Superposition-enhanced quantum neural network for multi-class image classification," Chinese Journal of Physics, vol. 89, pp. 378–389, Jun. 2024. doi: 10.1016/j.cjph.2024.03.026
  • [81] Z. Li, T. Xiao, X. Deng, G. Zeng, and W. Li, "Optimizing variational quantum neural networks based on collective intelligence," Mathematics, vol. 12, no. 11, p. 1627, May 2024. doi: 10.3390/math12111627
  • [82] C. Gong, W. Guan, H. Zhu, A. Gani, and H. Qi, "Network intrusion detection based on variational quantum convolution neural network," The Journal of Supercomputing, vol. 80, no. 9, pp. 12743–12770, Jun. 2024. doi: 10.1007/s11227-024-05919-y
  • [83] Y. Chen and W. Fang, "Multi-scale feature fusion quantum depthwise convolutional neural networks for text classification," arXiv preprint arXiv:2405.13515, 2024. doi: 10.48550/arXiv.2405.13515
  • [84] N. Sachdeva et al., "Quantum optimization using a 127-qubit gate-model IBM quantum computer can outperform quantum annealers for nontrivial binary optimization problems," arXiv preprint arXiv:2405.13515, 2024. doi: 10.48550/arXiv.2406.01743 [85] R. Zhang, J. Wang, N. Jiang, and Z. Wang, "Quantum support vector machine without iteration," Information Sciences, vol. 635, pp. 25–41, Jul. 2023. doi: 10.1016/j.ins.2023.03.106
  • [86] A. Tedyyana, A. A. Ahmad, M. R. Idrus, M. Shabli, A. Hanis, M. A. Abu Seman, and A. H. Abd Razak, "Enhance telecommunication security through the integration of support vector machines," International Journal of Advanced Computer Science & Applications, vol. 15, no. 3, p. 633, 2024. doi: 10.14569/ijacsa.2024.0150364
  • [87] M. Kalinin and V. Krundyshev, "Security intrusion detection using quantum machine learning techniques," Journal of Computer Virology and Hacking Techniques, vol. 19, no. 1, pp. 125–136, Mar. 2023. doi: 10.1007/s11416-022-00435-0
  • [88] N. Innan, B. K. Behera, S. Al-Kuwari, and A. Farouk, "QNN-VRCS: A quantum neural network for vehicle road cooperation systems," IEEE Transactions on Intelligent Transportation Systems, Jan. 2025. doi: 10.1109/TITS.2025.3538786
  • [89] Y. Peng, X. Li, Z. Liang, and Y. Wang, "HyQ2: A Hybrid Quantum Neural Network for NextG Vulnerability Detection," IEEE Transactions on Quantum Engineering, vol. 5, pp.1-19,2024. doi: 10.1109/TQE.2024.3481280
  • [90] B. Narottama and S. Y. Shin, "Federated quantum neural network with quantum teleportation for resource optimization in future wireless communication," IEEE Transactions on Vehicular Technology, vol. 72, no. 11, pp. 14717-14733, 2023. doi: 10.1109/TVT.2023.3280459
  • [91] P. Punnen, The quadratic unconstrained binary optimization problem: Theory, Algorithms, and Applications, , vol. 10, Springer International Publishing, 2022, pp. 978-3.
  • [92] M. O. Butt, N. Waheed, T. Q. Duong, and W. Ejaz, "Quantum-Inspired Resource Optimization for 6G Networks: A Survey," IEEE Communications Surveys & Tutorials, 2024. doi: 10.1109/COMST.2024.3519865
  • [93] T. Albash and D. A. Lidar, "Adiabatic quantum computation," Reviews of Modern Physics, vol. 90, no. 1, pp. 15002-15066, Jan 2018. doi: 10.1103/RevModPhys.90.015002
  • [94] F. Vista, "Quantum-Aided modeling and design techniques for advanced wireless network architectures," Ph.D. dissertation, Politecnico di Bari, Bari, Italy, 2024.
  • [95] E. Farhi, J. Goldstone, and S. Gutmann, "A quantum approximate optimization algorithm," arXiv preprint arXiv:1411.4028, 2014. doi: 10.48550/arXiv.1411.4028
  • [96] O. Bouchmal, B. Cimoli, R. Stabile, J. V. Olmos, and I. T. Monroy, "Quantum Approximate Optimization Algorithm for Routing Optimization in 6G Optical Networks,” in 2024 International Conference on Optical Network Design and Modeling, ONDM, Madrid, Spain, May 2024, IEEE, 2024. doi: 10.23919/ONDM61578.2024.10582687
  • [97] J. Tilly, H. Chen, S. Cao, D. Picozzi, K. Setia, Y. Li, et al., "The variational quantum eigensolver: a review of methods and best practices," Physics Reports, vol. 986, pp. 1-128, 2022. doi: 10.1016/j.physrep.2022.08.003
  • [98] Z. Yan, H. Zhou, J. Pei, A. Kaushik, H. Tabassum, and P. Wang, "CVaR-Based Variational Quantum Optimization for User Association in Handoff-Aware Vehicular Networks," arXiv preprint arXiv:2501.08418, 2025. doi: 10.48550/arXiv.2501.08418
  • [99] A. Das and B. K. Chakrabarti, Eds., Quantum annealing and related optimization methods, vol. 679, Springer Science & Business Media, 2005.
  • [100] T. Q. Dinh, S. H. Dau, E. Lagunas, S. Chatzinotas, D. N. Nguyen, and D. T. Hoang, "Quantum Annealing for Complex Optimization in Satellite Communication Systems," IEEE Internet of Things Journal, vol. 12, no. 4, pp.3771-3784, 2024. doi: 10.1109/JIOT.2024.3481373
  • [101] J. Son, M. Gluza, R. Takagi, and N. H. Ng, "Quantum dynamic programming," Physical Review Letters, vol. 134, pp. 180602-180610, May 2025. doi: 10.1103/PhysRevLett.134.180602
  • [102] D. Alanis, P. Botsinis, Z. Babar, H. V. Nguyen, D. Chandra, S. X. Ng, and L. Hanzo, "A quantum-search-aided dynamic programming framework for pareto optimal routing in wireless multihop networks," IEEE Transactions on Communications, vol. 66, no. 8, pp. 3485-3500, 2018. doi: 10.1109/TCOMM.2018.2803068
  • [103] P. Ronagh, "Quantum algorithms for solving dynamic programming problems," arXiv preprint arXiv:1906.02229, vol. 187, 2019.
  • [104] C. Li, Z. Liu, Y. Song, H. Liu, H. Liu, and X. Liu, "Quantum Computing Approaches to Optimize Employee Scheduling in Multi-task Call Centers," in The International Conference on Smart Manufacturing, Industrial & Logistics Engineering (SMILE), Singapore, 2023, pp. 3-9, Springer Nature Singapore, 2024. doi: 10.1007/978-981-97-0194-0_1
  • [105] S. Caleb and S. J. J. Thangaraj, "Quantum-assisted spectrum sharing in cognitive self-organizing networks," in 2023 4th International Conference on Smart Electronics and Communication, ICOSEC, 2023, pp. 579-584, IEEE, 2023. doi: 10.1109/ICOSEC58147.2023.10275948
  • [106] P. Whig, R. Remala, K. R. Mudunuru, and S. J. Quraishi, "Integrating AI and quantum technologies for sustainable supply chain management," Quantum Computing and Supply Chain Management: A New Era of Optimization, pp. 267-283, 2024. doi: 10.4018/979-8-3693-4107-0.ch018
  • [107] M. Ramasamy, B. Jegan, M. Naveenganesh, and S. Raghavendar, "Enhancing Automobile Motion Planning Algorithms using Quantum Computing: A Systematic Review," in 2024 10th International Conference on Communication and Signal Processing, ICCSP, April 2024, India, IEEE, 2024. doi: 10.1109/ICCSP60870.2024.10543893
  • [108] M. S. Moreolo, M. Iqbal, A. Villegas, L. Nadal, R. Casellas, and R. Muñoz, "Continuous-Variable Quantum Key Distribution for Enabling Sustainable Secure 6G Networks," in 2024 International Conference on Optical Network Design and Modeling, ONDM, Madrid, Spain, May 2024, IEEE, 2024. doi: 10.23919/ONDM61578.2024.10582608
  • [109] Y. Zhang, Y. Bian, Z. Li, S. Yu, and H. Guo, "Continuous-variable quantum key distribution system: Past, present, and future," Applied Physics Reviews, vol. 11, no. 1, 2024. doi: 10.1063/5.0179566
  • [110] R. Bavdekar, E. J. Chopde, A. Agrawal, A. Bhatia, and K. Tiwari, "Post quantum cryptography: a review of techniques, challenges and standardizations," in 2023 International Conference on Information Networking, ICOIN, 2023, Bangkok, Kingdom of Thailand, IEEE. doi: 10.1109/ICOIN56518.2023.10048976
  • [111] H. Nejatollahi, N. Dutt, S. Ray, F. Regazzoni, I. Banerjee, and R. Cammarota, "Post-quantum lattice-based cryptography implementations: A survey," ACM Computing Surveys, vol. 51, no. 6, pp. 1-41, 2019. doi: 10.1145/3292548
  • [112] A. Khalid, S. McCarthy, M. O’Neill, and W. Liu, "Lattice-based cryptography for IoT in a quantum world: Are we ready?," in 8th International Workshop on Advances in Sensors and Interfaces, IWASI, June 13-14, 2019, Otranto, Italy, IEEE, 2018. doi: 10.1109/IWASI.2019.8791343
  • [113] X. Wang, G. Xu, and Y. Yu, "Lattice-based cryptography: A survey," Chinese Annals of Mathematics, Series B, vol. 44, no. 6, pp. 945-960, 2023. doi: 10.1007/s11401-023-0053-6
  • [114] R. Kuang, M. Perepechaenko, and M. Barbeau, "A new post-quantum multivariate polynomial public key encapsulation algorithm," Quantum Information Processing, vol. 21, no. 10, p. 360, 2022. doi: 10.1007/s11128-022-03712-5
  • [115] G. Mahajan, S. Tiwari, R. Sharma, and R. K. Gupta, "Discrete mathematics for strengthening multivariate polynomial cryptography by addressing vulnerabilities." Journal of Discrete Mathematical Sciences & Cryptography, vol. 27, no. 7, pp. 2123-2132, 2024. doi: 10.47974/JDMSC-2085
  • [116] E. Dritsas and M. Trigka, "A Survey on Cybersecurity in IoT," Future Internet, vol. 17, no. 1, 2025. doi: 10.3390/fi17010030
  • [117] B. B. Gupta, D. Kalra, and A. Almomani, Innovations in Modern Cryptography, IGI Global, 2024. doi: 10.4018/979-8-3693-5330-1
  • [118] E. Fathalla and M. Azab, "Beyond Classical Cryptography: A Systematic Review of Post-Quantum Hash-Based Signature Schemes, Security, and Optimizations," IEEE Access, vol. 12, pp. 175969-175987, 2024. doi: 10.1109/ACCESS.2024.3485602
  • [119] Q. Berthet, A. Upegui, L. Gantel, A. Duc, and G. Traverso, "An area-efficient SPHINCS+ post-quantum signature coprocessor," in 2021 IEEE International Parallel and Distributed Processing Symposium Workshops, IPDPSW, Virtually, pp. 180-187, IEEE, 2021. doi: 10.1109/IPDPSW52791.2021.00034 [120] P. Kampanakis, P. Panburana, M. Curcio, C. Shroff, and M. M. Alam, "Post-quantum LMS and SPHINCS+ hash-based signatures for UEFI secure boot," Cryptology ePrint Archive, 2021. Available: Cryptology ePrint Archive, https://eprint.iacr.org/2021/041 [Accessed: 10 Jan. 2025]
  • [121] R. Zhou, H. Guo, F. E. Teo, and S. Bakiras, "A Survey on Post-Quantum Cryptography for 5G/6G Communications," in 2023 IEEE International Conference on Service Operations and Logistics, and Informatics, SOLI, Singapure, Dec. 11-13, IEEE, 2023. doi: 10.1109/SOLI60636.2023.10425346
  • [122] C. Balamurugan, K. Singh, G. Ganesan, and M. Rajarajan, "Post-quantum and code-based cryptography—some prospective research directions," Cryptography, vol. 5, no. 4, pp. 38, 2021. doi: 10.3390/cryptography5040038
  • [123] R. Overbeck and N. Sendrier, Code-based cryptography, in Post-quantum cryptography, Springer, Berlin, Heidelberg, 2009, pp. 95-145. doi: 0.1007/978-3-540-88702-7_4
  • [124] M. R. Maganti, D. Mangamma, V. K. Suri, S. V. Swamy, A. Mohammad, and V. Shariff, "Securing Asymmetric Key Cryptography in 6G Wireless and Mobile Environments: A Comprehensive Review and Proposed Hybrid Cryptosystem," in 2024 IEEE 3rd World Conference on Applied Intelligence and Computing, AIC, 27-28 July, India, IEEE, 2024. doi: 10.1109/AIC61668.2024.10730910
  • [125] R. Azarderakhsh, D. Jao, K. Kalach, B. Koziel, and C. Leonardi, "Key compression for isogeny-based cryptosystems," in Proceedings of the 3rd ACM International Workshop on ASIA Public-Key Cryptography, Association for Computing Machinery, May 2016, New York, NY, USA, pp. 1-10, 2016. doi: 10.1145/2898420.289842
  • [126] M. Naehrig and J. Renes, "Dual isogenies and their application to public-key compression for isogeny-based cryptography," in International Conference on the Theory and Application of Cryptology and Information Security, Cham: Springer, 2019. doi: /10.1007/978-3-030-34621-8_9
  • [127] Y. F. Lai, Advanced Isogeny-based Cryptosystems, doctoral dissertation, University of Auckland, 2023.
  • [128] V. L. S. S. Varnita, K. Subramanyam, T. P. Narasimha, H. Bhandari, and A. SA, "A study on isogeny based cryptography," in 2024 International Conference on Electronics, Computing, Communication and Control Technology, ICECCC, 2-3 May, India , IEEE, 2024. doi: 10.1109/ICECCC61767.2024.10593878
  • [129] M. Chase, D. Derler, S. Goldfeder, C. Orlandi, S. Ramacher, C. Rechberger, et al., "Post-quantum zero-knowledge and signatures from symmetric-key primitives," Association for Computing Machinery, pp. 1825-1842, 2017. doi: 10.1145/3133956.3133997
  • [130] J. Partala, "Post-quantum cryptography in 6G," 6G Mobile Wireless Networks, pp. 431-448, 2021. doi: 10.1007/978-3-030-72777-2_20
  • [131] Y. Qian, X. Wang, Y. Du, X. Wu, and D. Tao, "The dilemma of quantum neural networks," IEEE Transactions on Neural Networks and Learning Systems, vol. 35, no. 4, pp. 5603-5615, 2022. doi: 10.1109/TNNLS.2022.3208313
There are 127 citations in total.

Details

Primary Language English
Subjects Computer Software
Journal Section Review
Authors

Mustafa Serdar Osmanca 0000-0002-6939-2765

Merve Güllü 0000-0001-7442-1332

Deniz Karhan 0009-0002-4769-839X

Sedat Çimen 0009-0006-1608-356X

Project Number 5249902
Publication Date August 31, 2025
Submission Date April 10, 2025
Acceptance Date August 14, 2025
Published in Issue Year 2025 Volume: 11 Issue: 2

Cite

IEEE M. S. Osmanca, M. Güllü, D. Karhan, and S. Çimen, “Quantum Computing in 6G Networks: Opportunities and Challenges”, GJES, vol. 11, no. 2, pp. 254–273, 2025.

GJES is indexed and archived by:

3311333114331153311633117

Gazi Journal of Engineering Sciences (GJES) publishes open access articles under a Creative Commons Attribution 4.0 International License (CC BY) 1366_2000-copia-2.jpg