Research Article
BibTex RIS Cite

Improving the Soil Physical and Hydraulic Properties by Irrigation with Wastewater under Different Soil Tillage Management

Year 2024, , 72 - 85, 31.08.2024
https://doi.org/10.55507/gopzfd.1480116

Abstract

Irrigation with recycled wastewater increases the organic substance of the soil. Thus, the effect of the increased organic substance on the physical and hydraulic properties of the soil can be developed with different irrigation water quantities and soil tillage treatments. In this study, the effect of increased organic matter was determined after a two-year study carried out on a silage maize field irrigated at varying irrigation water levels of recycled wastewater (RWW) (100%, 67%, and 33% irrigation levels with RWW) and freshwater (FW) (100% irrigation level with FW) under direct sowing (DS) and conventional tillage (CT). RWW is compared to FW, the bulk density at 100% irrigation level was 1.5% lower, while porosity, aggregate stability, field capacity, wilting point, and available water were significantly higher by 1.9%, 12.0%, 2.8%, 2.2%, and 3.6%, respectively. Bulk density, aggregate stability, field capacity, wilting point, and available water were 1.5%, 4.3%, 3.3%, 2.2%, and 4.2% were significantly higher in DS according to CT, respectively, while porosity was 1.5% lower. These effects can be attributed to the RWW irrigation under DS due to the organic matter content in DS which was 1.1% higher than with CT, while RWW increased the organic matter content by 17% according to FW between full irrigations. As a result of the study, it was concluded that 100% irrigation levels using RWW directly within the scope of DS may be a practical approach to improve the physical and hydraulic properties of the silage maize field.

Ethical Statement

All authors confirm that they accept the ethical statement.

Supporting Institution

The Scientific and Technological Research Council of Turkey (TUBITAK)

Project Number

TUBITAK with project number 119O528.

Thanks

The study was financially supported by the Scientific and Technological Research Council of Turkey (TUBITAK) with project number 119O528.

References

  • Abdelfattah, M. A. (2013). Pedogenesis, land management and soil classification in hyper-arid environments: results and implications from a case study in the United Arab Emirates. Soil Use Management, 29(2), 279-294. https://doi.org/10.1111/sum.12031
  • Abd-Elwahed, M. S. (2019). Effect of long-term wastewater irrigation on the quality of alluvial soil for agricultural sustainability. Annals of Agricultural Sciences, 64(2), 151-160. https://doi.org/10.1016/j.aoas.2019.10.003
  • Alaboz, P., & Cakmakci, T. (2020). Effect of cocopeat application on field capacity and permanent wilting point in sandy loam-clay loam soil. Mediterranean Agricultural Sciences, 33(2), 285-290. https://doi.org/10.29136/mediterranean.660207
  • Alhassan, I., Gashua, A. G., Dogo, S., & Sani, M. (2018). Physical properties and organic matter content of the soils of Bade in Yobe State, Nigeria. International J. of Agri. Environment and Food Sci., 2(4), 160-163. https://doi.org/10.31015/jaefs.18027
  • Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration. Guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper No: 56.
  • Ayers, R. S., & Westcot, D. W. (1994). Water quality for agriculture. FAO Irrigation and Drainage Paper No: 29.
  • Badaou, A. N. A. D., & Sahin, U. (2021). Effects of sewage sludge amendment and wetting-drying cycles of wastewater irrigation on structural improvement of clay soil. Int. J. Environ. Sci. T. 19, 6453-6466. https://doi.org/10.1007/s13762-021-03585-8
  • Bedbabis, S., Trigui, D., Ahmed, C. B., Clodoveo, M. L., Camposeo, S., Vivaldi, G. A., & Ben Rouina, B. (2015). Long-terms effects of irrigation with treated municipal wastewater on soil, yield, olive oil quality. Agricultural Water Management, 160, 14-21. https://doi.org/10.1016/j.agwat.2015.06.023
  • Biswas, S. K., Mojid, M. A., & Wyseure, G. C. L. (2017). Physicochemical properties of soil under wheat cultivation by irrigation with municipal wastewater in Bangladesh. Communications in Soil Science and Plant Analysis, 48(1), 1-10. https://doi.org/10.1080/00103624.2016.1253713
  • Blake, G. R., & Hartge, K. H. (1986a). Bulk density. In: Page, A. L., Miller, M. H., Keeney, D. R (Eds), Methods of soil analysis, America and Soil Science Society, Madison, p. 363-375.
  • Blake, G. R., & Hartge, K. H. (1986b). Particle density. I In: Page, A. L., Miller, M. H., Keeney, D. R (Eds), Methods of soil analysis, America and Soil Science Society, Madison, p. 377-382.
  • Blanco-Canqui, H., & Ruis, S. J. (2018). No-tillage and soil physical environment. Geoderma, 326, 164-200. https://doi.org/10.1016/j.geoderma.2018.03.011
  • Cakmakci, T., & Sahin, U. (2021). Productivity and heavy metal pollution management in a silage maize field with reduced recycled wastewater applications with different irrigation methods. Journal of Environmental Management, 291, 112602. https://doi.org/10.1016/j.jenvman.2021.112602
  • Danielson, R. E., & Sutherland, P. L. (1986). Porosity. In: Page, A. L., Miller, M. H., Keeney, D. R (Eds), Methods of soil analysis, America and Soil Science Society, Madison, p. 443-461.
  • Denardin, L. G. D. O., Carmona, F. D. C., Veloso, M. G., Martins, A. P., DE Freitas, T. F. S., Carlos, F. S., Marcolin, E., Camargo, F. A., & Anghinoni, I. (2019). No-tillage increases irrigated rice yield through soil quality improvement along time. Soil and Tillage Research, 186, 64-69. https://doi.org/10.1016/j.still.2018.10.006
  • Dogan Demir, A., & Sahin, U. (2019). Changes in physical and hydraulic properties of a clay soil due to the irrigation of tomatoes with recycled wastewater. Eurasian Journal of Forest Science, 7(3), 252-268. https://doi.org/10.31195/ejejfs.585595
  • Dogan Demir, A., & Sahin, U. (2020). Effects of recycled wastewater applications with different irrigation practices on the chemical properties of a Vertisol. Environmental Engineering Science, 37(2), 132-141. https://doi.org/10.1089/ees.2019.0156
  • Drechsel, P., Qadir, M., & Galibourg, D. (2022). The WHO guidelines for safe wastewater use in agriculture: a review of implementation challenges and possible solutions in the global south. Water, 14(6), 864. https://doi.org/10.3390/w14060864
  • Du, Z. L., Ren, T. S., Hu, C. S., Zhang, Q. Z., & Blanco-Canqui, H. (2013). Soil aggregate stability and aggregate-associated carbon under different tillage systems in the North China. Journal of Integrative Agriculture, 12(11), 2114-2123. https://doi.org/10.1016/S2095-3119(13)60428-1
  • EPA, (2012). Guidelines for water reuse, EPA/600/R-12/618. United States Environmental Protection Agency, Washington, USA.
  • Gozubuyuk, Z., Sahin, U., Adiguzel, M. C., & Dasci, E. (2020). Energy use efficiency of deficit-irrigated silage maize in different soil tillage practices on a high plain with a semi-arid climate. Archives of Agronomy and Soil Science, 66(12), 1611-1626. https://doi.org/10.1080/03650340.2019.1683544
  • Gozubuyuk, Z., Sahin, U., Ozturk, I., Celik, A., & Adiguzel, M. C. (2014). Tillage effects on certain physical and hydraulic properties of a loamy soil under crop rotation in semi-arid region with cool climate. Catena, 118, 195-205. https://doi.org/10.1016/j.catena.2014.01.006
  • Hartmann, A., Weiler, M., & Blume, T. (2020). The impact of landscape evolution on soil physics: evolution of soil physical and hydraulic properties along two chronosequences of proglacial moraines. Earth System Science Data, 12, 3189-3204. https://doi.org/10.5194/essd-12-3189-2020
  • Kadioglu, B., & Canbolat, M. Y. (2019). Hydrophysical properties of growing media prepared by addition of organic and inorganic materials to fine textured soil. Ataturk Uni. J. Agric. Faculty, 50(2), 107-114. https://doi.org/10.17097/ataunizfd.453748
  • Kan, Z. R., Virk, A. L., Wu, G., Qi, J. Y., Ma, S. T., Wang, X., Zhao, X., Lal, R., & Zhang, H. L. (2020). Priming effect intensity of soil organic carbon mineralization under no-till and residue retention. Applied Soil Ecology, 147, 103445. https://doi.org/10.1016/j.apsoil.2019.103445
  • Kemper, W. D., & Rosenau, R. C. (1986). Aggregate stability and size distribution. In: Page, A. L., Miller, M. H., Keeney, D. R (Eds), Methods of soil analysis, America and Soil Science Society, Madison, p. 442-462.
  • Klute, A. (1986). Water retention. In: Page, A. L., Miller, M. H., Keeney, D. R (Eds), Methods of soil analysis, America and Soil Science Society, Madison, p. 435-462.
  • Kucukalbay, M., & Akbolat, D. (2015). Investigation of different tillage and seeding methods in chickpea cultivation. S. D. U Faculty of Agriculture J., 10(2), 1-10.
  • Malhi, S. S., Legere, A., Vanasse, A., & Parent, G. (2018). Effects of long-term tillage, terminating no-till and cropping system on organic C and N, and available nutrients in a Gleysolic soil in Québec, Canada. The Journal of Agricultural Science, 156(4), 472-480. https://doi.org/10.1017/S0021859618000448
  • Mujdeci, M., Simsek, S., & Uygur, V. (2017). The effects of organic amendments on soil water retention characteristics under conventional tillage system. Fresenius Environmental Bullet, 26, 4075-4081.
  • Musazura, W., Odindo, A. O., Tesfamariam, E. H., Hughes, J. C., & Buckley, C. A. (2019). Nitrogen and phosphorus fluxes in three soils fertigated with decentralised wastewater treatment effluent to field capacity. Journal of Water Reuse and Desalination, 9(2), 142-151. https://doi.org/10.2166/wrd.2019.025
  • Nelson, D. W., & Sommers, L. E. (1982). Total carbon, organic carbon, and organic matter. In: Page, A. L., Miller, M. H., Keeney, D. R (Eds), Methods of soil analysis, America and Soil Science Society, Madison, p. 961-1010.
  • Nouwakpo, S. K., Song, J., & Gonzalez, J. M. (2018). Soil structural stability assessment with the fluidized bed, aggregate stability, and rainfall simulation on long-term tillage and crop rotation systems. Soil and Tillage Research, 178, 65-71. https://doi.org/10.1016/j.still.2017.12.009
  • Ors, S., Sahin, U., & Khadra, R. (2015). Reclamation of saline sodic soils with the use of mixed fly ash and sewage sludge. Arid Land Research and Management, 29(1), 41-54. https://doi.org/10.1080/15324982.2014.903314
  • Pescod, M. B. (1992). Wastewater treatment and use in agriculture. FAO Irrigation and Drainage Paper No: 47
  • Ramezani, N., Landi, A., Barzegar, A. R., & Sayyad, G. A. (2019). Evaluation and comparison of physical and hydraulic properties in different soil. MJSS, 23, 43-54.
  • Shahid, N. M., Khalid, S., Murtaza, B., Anwar, H., Shah, A. H., Sardar, A., Shabbir, Z., & Niazi, N. K. (2020). A critical analysis of wastewater use in agriculture and associated health risks in Pakistan. Environmental Geochemistry and Health, 45, 5599-5618. https://doi.org/10.1007/s10653-020-00702-3
  • Shoushtarian, F., & Azar, M. N. (2020). Worldwide regulations and guidelines for agricultural water reuse: a critical review. Water, 12, 971. https://doi.org/10.3390/w12040971
  • Sithole, N. J., Lembe, S. M., & Guy, R. (2019). Long-term impact of no-till conservation agriculture and N-fertilizer on soil aggregate stability, infiltration and distribution of C in different fractions. Soil and Tillage Research, 190, 147-156. https://doi.org/10.1016/j.still.2019.03.004
  • Somasundaram, J., Sinha, N. K., Mohanty, M., Chaudhary, R. S., Hati, K. M., Singh, R. K., Biswas, A. K., Shukla, A. K., Dalal, R., & Patra, A. K. (2018). Soil hydro-thermal regimes as affected by different tillage and cropping systems in a rainfed Vertisol. J. Indian Soc. Soil Sci., 66(4), 362-369. https://doi.org/10.5958/0974-0228.2018.00045.2
  • TSMS (2022). Turkish State Meteorological Service. https://www.mgm.gov.tr/veridegerlendirme/il-ve-ilceler-istatistik.aspx?k=H&m=VAN
  • Tunc, T., & Sahin, U. (2015). The changes in the physical and hydraulic properties of a loamy soil under irrigation with simpler-reclaimed wastewaters. Agricultural Water Management, 158, 213-224. https://doi.org/10.1016/j.agwat.2015.05.012
  • Tunc, T., & Sahin, U. (2016). Red cabbage yield, heavy metal content, water use and soil chemical characteristics under wastewater irrigation. Environmental Science and Pollution Research, 23(7), 6264-6276. https://doi.org/10.1007/s11356-015-5848-x
  • Yang, X., Bao, X., Yang, Y., Zhao, Y., Liang, C., & Xie, H. (2019). Comparison of soil phosphorus and phosphatase activity under long-term no-tillage and maize residue management. Plant, Soil and Environment, 65(8), 408-415. https://doi.org/10.17221/307/2019-PSE
  • Yerli, C., & Sahin, U. (2022). Quality proficiency to crop, soil and irrigation system of recycled wastewater from the Van/Edremit wastewater treatment plant. YYU Journal of Agricultural Sciences, 32(3), 497-506. https://doi.org/10.29133/yyutbd.1139773
  • Yerli, C., Sahin, U., Ors, S., & Kiziloglu, F. M. (2023). Improvement of water and crop productivity of silage maize by irrigation with different levels of recycled wastewater under conventional and zero tillage conditions. Agricultural Water Management, 277, 108100. https://doi.org/10.1016/j.agwat.2022.108100
  • Yerli, C., Sahin, U., Oztas, T., & Ors, S. (2024). Fertility and heavy metal pollution in silage maize soil irrigated with different levels of recycled wastewater under conventional and no-tillage practices. Irrigation Science, https://doi.org/10.1007/s00271-024-00927-5
  • Zhao, P., Ma, M., Hu, Y., Wu, W., & Xiao, J. (2022). Comparison of international standards for irrigation with reclaimed water. Agriculture Water Management, 274, 107974. https://doi.org/10.1016/j.agwat.2022.107974

Farklı Toprak İşleme Yönetimi Kapsamında Atık Su ile Sulama Yapılarak Toprağın Fiziksel ve Hidrolik Özelliklerinin İyileştirilmesi

Year 2024, , 72 - 85, 31.08.2024
https://doi.org/10.55507/gopzfd.1480116

Abstract

Geri dönüştürülmüş atık su ile sulama yapmak, toprağın organik maddesini artırmaktadır. Böylece artan organik maddenin toprağın fiziksel ve hidrolik özelliklerine etkisi farklı sulama suyu miktarları ve farklı toprak işleme uygulamaları ile geliştirilebilir. Bu çalışmada, artan organik maddenin etkisi, doğrudan ekim (DS) ve geleneksel toprak işleme (CT) altında değişen geri dönüştürülmüş atık su (RWW) (RWW ile %100, %67 ve %33 sulama seviyeleri) ve temiz suyla (FW) (FW ile %100 sulama seviyesi) sulama seviyelerinde sulanan bir silajlık mısır tarlasında gerçekleştirilen iki yıllık bir çalışmanın ardından belirlenmiştir. %100 sulama düzeyinde; RWW, FW ile karşılaştırıldığında, hacim ağırlığı %1.5 daha düşük olmuşken, porozite, agregat stabilitesi, tarla kapasitesi, solma noktası ve kullanılabilir su kapasitesi sırasıyla %1.9, %12.0, %2.8, %2.2 ve %3.6 oranında önemli ölçüde artış göstermiştir. Hacim ağırlığı, agregat stabilitesi, tarla kapasitesi, solma noktası ve kullanılabilir su kapasitesi CT'ye göre DS'de sırasıyla %1.5, %4.3, %3.3, %2.2 ve %4.2 seviyesinde anlamlı derecede artış göstermişken, porozite %1.5 daha düşük olmuştur. Bu etkiler, DS'deki organik madde içeriğinin CT'ye göre %1.1 daha yüksek olması nedeniyle DS altında RWW ile sulamaya ilişkin açıklanabilirken, tam sulamalar arasında; RWW, FW'ye göre organik madde içeriğini %17 arttırmıştır. Çalışma sonucunda DS kapsamında RWW kullanılarak %100 sulama seviyelerinin silajlık mısır tarlasının fiziksel ve hidrolik özelliklerini iyileştirmede pratik bir yaklaşım olabileceği sonucuna ulaşılmıştır.

Project Number

TUBITAK with project number 119O528.

References

  • Abdelfattah, M. A. (2013). Pedogenesis, land management and soil classification in hyper-arid environments: results and implications from a case study in the United Arab Emirates. Soil Use Management, 29(2), 279-294. https://doi.org/10.1111/sum.12031
  • Abd-Elwahed, M. S. (2019). Effect of long-term wastewater irrigation on the quality of alluvial soil for agricultural sustainability. Annals of Agricultural Sciences, 64(2), 151-160. https://doi.org/10.1016/j.aoas.2019.10.003
  • Alaboz, P., & Cakmakci, T. (2020). Effect of cocopeat application on field capacity and permanent wilting point in sandy loam-clay loam soil. Mediterranean Agricultural Sciences, 33(2), 285-290. https://doi.org/10.29136/mediterranean.660207
  • Alhassan, I., Gashua, A. G., Dogo, S., & Sani, M. (2018). Physical properties and organic matter content of the soils of Bade in Yobe State, Nigeria. International J. of Agri. Environment and Food Sci., 2(4), 160-163. https://doi.org/10.31015/jaefs.18027
  • Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration. Guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper No: 56.
  • Ayers, R. S., & Westcot, D. W. (1994). Water quality for agriculture. FAO Irrigation and Drainage Paper No: 29.
  • Badaou, A. N. A. D., & Sahin, U. (2021). Effects of sewage sludge amendment and wetting-drying cycles of wastewater irrigation on structural improvement of clay soil. Int. J. Environ. Sci. T. 19, 6453-6466. https://doi.org/10.1007/s13762-021-03585-8
  • Bedbabis, S., Trigui, D., Ahmed, C. B., Clodoveo, M. L., Camposeo, S., Vivaldi, G. A., & Ben Rouina, B. (2015). Long-terms effects of irrigation with treated municipal wastewater on soil, yield, olive oil quality. Agricultural Water Management, 160, 14-21. https://doi.org/10.1016/j.agwat.2015.06.023
  • Biswas, S. K., Mojid, M. A., & Wyseure, G. C. L. (2017). Physicochemical properties of soil under wheat cultivation by irrigation with municipal wastewater in Bangladesh. Communications in Soil Science and Plant Analysis, 48(1), 1-10. https://doi.org/10.1080/00103624.2016.1253713
  • Blake, G. R., & Hartge, K. H. (1986a). Bulk density. In: Page, A. L., Miller, M. H., Keeney, D. R (Eds), Methods of soil analysis, America and Soil Science Society, Madison, p. 363-375.
  • Blake, G. R., & Hartge, K. H. (1986b). Particle density. I In: Page, A. L., Miller, M. H., Keeney, D. R (Eds), Methods of soil analysis, America and Soil Science Society, Madison, p. 377-382.
  • Blanco-Canqui, H., & Ruis, S. J. (2018). No-tillage and soil physical environment. Geoderma, 326, 164-200. https://doi.org/10.1016/j.geoderma.2018.03.011
  • Cakmakci, T., & Sahin, U. (2021). Productivity and heavy metal pollution management in a silage maize field with reduced recycled wastewater applications with different irrigation methods. Journal of Environmental Management, 291, 112602. https://doi.org/10.1016/j.jenvman.2021.112602
  • Danielson, R. E., & Sutherland, P. L. (1986). Porosity. In: Page, A. L., Miller, M. H., Keeney, D. R (Eds), Methods of soil analysis, America and Soil Science Society, Madison, p. 443-461.
  • Denardin, L. G. D. O., Carmona, F. D. C., Veloso, M. G., Martins, A. P., DE Freitas, T. F. S., Carlos, F. S., Marcolin, E., Camargo, F. A., & Anghinoni, I. (2019). No-tillage increases irrigated rice yield through soil quality improvement along time. Soil and Tillage Research, 186, 64-69. https://doi.org/10.1016/j.still.2018.10.006
  • Dogan Demir, A., & Sahin, U. (2019). Changes in physical and hydraulic properties of a clay soil due to the irrigation of tomatoes with recycled wastewater. Eurasian Journal of Forest Science, 7(3), 252-268. https://doi.org/10.31195/ejejfs.585595
  • Dogan Demir, A., & Sahin, U. (2020). Effects of recycled wastewater applications with different irrigation practices on the chemical properties of a Vertisol. Environmental Engineering Science, 37(2), 132-141. https://doi.org/10.1089/ees.2019.0156
  • Drechsel, P., Qadir, M., & Galibourg, D. (2022). The WHO guidelines for safe wastewater use in agriculture: a review of implementation challenges and possible solutions in the global south. Water, 14(6), 864. https://doi.org/10.3390/w14060864
  • Du, Z. L., Ren, T. S., Hu, C. S., Zhang, Q. Z., & Blanco-Canqui, H. (2013). Soil aggregate stability and aggregate-associated carbon under different tillage systems in the North China. Journal of Integrative Agriculture, 12(11), 2114-2123. https://doi.org/10.1016/S2095-3119(13)60428-1
  • EPA, (2012). Guidelines for water reuse, EPA/600/R-12/618. United States Environmental Protection Agency, Washington, USA.
  • Gozubuyuk, Z., Sahin, U., Adiguzel, M. C., & Dasci, E. (2020). Energy use efficiency of deficit-irrigated silage maize in different soil tillage practices on a high plain with a semi-arid climate. Archives of Agronomy and Soil Science, 66(12), 1611-1626. https://doi.org/10.1080/03650340.2019.1683544
  • Gozubuyuk, Z., Sahin, U., Ozturk, I., Celik, A., & Adiguzel, M. C. (2014). Tillage effects on certain physical and hydraulic properties of a loamy soil under crop rotation in semi-arid region with cool climate. Catena, 118, 195-205. https://doi.org/10.1016/j.catena.2014.01.006
  • Hartmann, A., Weiler, M., & Blume, T. (2020). The impact of landscape evolution on soil physics: evolution of soil physical and hydraulic properties along two chronosequences of proglacial moraines. Earth System Science Data, 12, 3189-3204. https://doi.org/10.5194/essd-12-3189-2020
  • Kadioglu, B., & Canbolat, M. Y. (2019). Hydrophysical properties of growing media prepared by addition of organic and inorganic materials to fine textured soil. Ataturk Uni. J. Agric. Faculty, 50(2), 107-114. https://doi.org/10.17097/ataunizfd.453748
  • Kan, Z. R., Virk, A. L., Wu, G., Qi, J. Y., Ma, S. T., Wang, X., Zhao, X., Lal, R., & Zhang, H. L. (2020). Priming effect intensity of soil organic carbon mineralization under no-till and residue retention. Applied Soil Ecology, 147, 103445. https://doi.org/10.1016/j.apsoil.2019.103445
  • Kemper, W. D., & Rosenau, R. C. (1986). Aggregate stability and size distribution. In: Page, A. L., Miller, M. H., Keeney, D. R (Eds), Methods of soil analysis, America and Soil Science Society, Madison, p. 442-462.
  • Klute, A. (1986). Water retention. In: Page, A. L., Miller, M. H., Keeney, D. R (Eds), Methods of soil analysis, America and Soil Science Society, Madison, p. 435-462.
  • Kucukalbay, M., & Akbolat, D. (2015). Investigation of different tillage and seeding methods in chickpea cultivation. S. D. U Faculty of Agriculture J., 10(2), 1-10.
  • Malhi, S. S., Legere, A., Vanasse, A., & Parent, G. (2018). Effects of long-term tillage, terminating no-till and cropping system on organic C and N, and available nutrients in a Gleysolic soil in Québec, Canada. The Journal of Agricultural Science, 156(4), 472-480. https://doi.org/10.1017/S0021859618000448
  • Mujdeci, M., Simsek, S., & Uygur, V. (2017). The effects of organic amendments on soil water retention characteristics under conventional tillage system. Fresenius Environmental Bullet, 26, 4075-4081.
  • Musazura, W., Odindo, A. O., Tesfamariam, E. H., Hughes, J. C., & Buckley, C. A. (2019). Nitrogen and phosphorus fluxes in three soils fertigated with decentralised wastewater treatment effluent to field capacity. Journal of Water Reuse and Desalination, 9(2), 142-151. https://doi.org/10.2166/wrd.2019.025
  • Nelson, D. W., & Sommers, L. E. (1982). Total carbon, organic carbon, and organic matter. In: Page, A. L., Miller, M. H., Keeney, D. R (Eds), Methods of soil analysis, America and Soil Science Society, Madison, p. 961-1010.
  • Nouwakpo, S. K., Song, J., & Gonzalez, J. M. (2018). Soil structural stability assessment with the fluidized bed, aggregate stability, and rainfall simulation on long-term tillage and crop rotation systems. Soil and Tillage Research, 178, 65-71. https://doi.org/10.1016/j.still.2017.12.009
  • Ors, S., Sahin, U., & Khadra, R. (2015). Reclamation of saline sodic soils with the use of mixed fly ash and sewage sludge. Arid Land Research and Management, 29(1), 41-54. https://doi.org/10.1080/15324982.2014.903314
  • Pescod, M. B. (1992). Wastewater treatment and use in agriculture. FAO Irrigation and Drainage Paper No: 47
  • Ramezani, N., Landi, A., Barzegar, A. R., & Sayyad, G. A. (2019). Evaluation and comparison of physical and hydraulic properties in different soil. MJSS, 23, 43-54.
  • Shahid, N. M., Khalid, S., Murtaza, B., Anwar, H., Shah, A. H., Sardar, A., Shabbir, Z., & Niazi, N. K. (2020). A critical analysis of wastewater use in agriculture and associated health risks in Pakistan. Environmental Geochemistry and Health, 45, 5599-5618. https://doi.org/10.1007/s10653-020-00702-3
  • Shoushtarian, F., & Azar, M. N. (2020). Worldwide regulations and guidelines for agricultural water reuse: a critical review. Water, 12, 971. https://doi.org/10.3390/w12040971
  • Sithole, N. J., Lembe, S. M., & Guy, R. (2019). Long-term impact of no-till conservation agriculture and N-fertilizer on soil aggregate stability, infiltration and distribution of C in different fractions. Soil and Tillage Research, 190, 147-156. https://doi.org/10.1016/j.still.2019.03.004
  • Somasundaram, J., Sinha, N. K., Mohanty, M., Chaudhary, R. S., Hati, K. M., Singh, R. K., Biswas, A. K., Shukla, A. K., Dalal, R., & Patra, A. K. (2018). Soil hydro-thermal regimes as affected by different tillage and cropping systems in a rainfed Vertisol. J. Indian Soc. Soil Sci., 66(4), 362-369. https://doi.org/10.5958/0974-0228.2018.00045.2
  • TSMS (2022). Turkish State Meteorological Service. https://www.mgm.gov.tr/veridegerlendirme/il-ve-ilceler-istatistik.aspx?k=H&m=VAN
  • Tunc, T., & Sahin, U. (2015). The changes in the physical and hydraulic properties of a loamy soil under irrigation with simpler-reclaimed wastewaters. Agricultural Water Management, 158, 213-224. https://doi.org/10.1016/j.agwat.2015.05.012
  • Tunc, T., & Sahin, U. (2016). Red cabbage yield, heavy metal content, water use and soil chemical characteristics under wastewater irrigation. Environmental Science and Pollution Research, 23(7), 6264-6276. https://doi.org/10.1007/s11356-015-5848-x
  • Yang, X., Bao, X., Yang, Y., Zhao, Y., Liang, C., & Xie, H. (2019). Comparison of soil phosphorus and phosphatase activity under long-term no-tillage and maize residue management. Plant, Soil and Environment, 65(8), 408-415. https://doi.org/10.17221/307/2019-PSE
  • Yerli, C., & Sahin, U. (2022). Quality proficiency to crop, soil and irrigation system of recycled wastewater from the Van/Edremit wastewater treatment plant. YYU Journal of Agricultural Sciences, 32(3), 497-506. https://doi.org/10.29133/yyutbd.1139773
  • Yerli, C., Sahin, U., Ors, S., & Kiziloglu, F. M. (2023). Improvement of water and crop productivity of silage maize by irrigation with different levels of recycled wastewater under conventional and zero tillage conditions. Agricultural Water Management, 277, 108100. https://doi.org/10.1016/j.agwat.2022.108100
  • Yerli, C., Sahin, U., Oztas, T., & Ors, S. (2024). Fertility and heavy metal pollution in silage maize soil irrigated with different levels of recycled wastewater under conventional and no-tillage practices. Irrigation Science, https://doi.org/10.1007/s00271-024-00927-5
  • Zhao, P., Ma, M., Hu, Y., Wu, W., & Xiao, J. (2022). Comparison of international standards for irrigation with reclaimed water. Agriculture Water Management, 274, 107974. https://doi.org/10.1016/j.agwat.2022.107974
There are 48 citations in total.

Details

Primary Language English
Subjects Biosystem, Irrigation Systems , Irrigation Water Quality, Soil Physics, Conservation and Improvement of Soil and Water Resources
Journal Section Research Articles
Authors

Caner Yerli 0000-0002-8601-8791

Ustun Sahin 0000-0002-1924-1715

Fatih Kızıloğlu 0000-0001-8493-2419

Project Number TUBITAK with project number 119O528.
Publication Date August 31, 2024
Submission Date May 7, 2024
Acceptance Date July 24, 2024
Published in Issue Year 2024

Cite

APA Yerli, C., Sahin, U., & Kızıloğlu, F. (2024). Improving the Soil Physical and Hydraulic Properties by Irrigation with Wastewater under Different Soil Tillage Management. Journal of Agricultural Faculty of Gaziosmanpaşa University (JAFAG), 41(2), 72-85. https://doi.org/10.55507/gopzfd.1480116