Research Article
BibTex RIS Cite

Tuzluluk Stresi Koşullarında Yetiştirilen ve Yapraktan Salisilik Asit Uygulanan Kıvırcık Marul İçin Yaprak Alanı Tahmin Modelinin Geliştirilmesi

Year 2024, , 178 - 185, 31.12.2024
https://doi.org/10.55507/gopzfd.1537132

Abstract

Stres koşulları altında bitkilerin büyümesini ve fizyolojik değişimlerini anlamak için yaprak alanının doğru ve bitkiye zarar vermeyen yöntemlerle ölçülmesi büyük önem taşımaktadır. Bu çalışmada farklı sulama suyu tuzlulukları (IWS: 0.30, 4.15, 8.0 dS m-1) ve salisilik asit dozları (SA: 0, 1, 2 mM) altında yetiştirilen kıvırcık marulun yaprak alanını tahmin etmek için çeşitli regresyon modellerinin geliştirilmesi ve etkinliğinin değerlendirilmesini amaçlanmıştır. Modeller için R2 değerleri 0.505 ile 0.968 arasında, RMSE değerleri 4.59 ile 17.79 cm² ve MAE değerleri 3.44 ile 13.05 cm² arasında bulunmuştur. Sadece yaprak uzunluğu (LL) ve yaprak genişliği (LW) kullanılarak kıvırcık marul bitkilerinin yaprak alanı etkili bir şekilde tahmin edilebileceği anlaşılmıştır (Model 3, R²: 0.962, RMSE: 7.58 cm², MAE: 5.34 cm²). IWS ve SA' nın tahmin modellerine dahil edilmesi elde edilen regresyon eşitliklerinin doğruluk ve güvenilirliklerini artırmıştır. Kıvırcık marulun yaprak alanını tahmin etmek için en iyi model, en yüksek R² (0.968) ve en düşük RMSE (4.59 cm²) ve MAE (3.44 cm²) değerlerinin elde edildiği dört parametreyi (SA, IWS, LL ve LW) entegre eden Model 13 olduğu belirlenmiştir. Sonuç olarak, stres koşullarını dikkate alan yaprak alanı tahmin modellerinin kullanılması, tarımda bitki sağlığı ve büyümesinin doğru bir şekilde izlenmesine olanak sağlayarak ürün yönetimini iyileştirebilir.

Ethical Statement

Çalışmanın tüm süreçlerinin araştırma ve yayın etiğine uygun olduğunu, etik kurallara ve bilimsel atıf gösterme ilkelerine uyduğumu beyan ederim.

Supporting Institution

Bu çalışma için herhangi bir kurumdan maddi destek almamıştır.

References

  • Akyüz, A., & Cemek, B. (2024). Development of leaf area model in chokeberry plant grown in different ırrigation water quality. Anadolu Journal of Agricultural Sciences, 39(1), 207–219. https://doi.org/10.7161/OMUANAJAS.1419318
  • Amorim, P. E. C., Pereira, D. de F., Freire, R. I. da S., de Oliveira, A. M. F., Mendonça, V., & Ribeiro, J. E. da S. (2024). A non-destructive method for leaflet area prediction of Spondias tuberosa Arruda: an approach to regression models. Bragantia, 83, e20230269. https://doi.org/10.1590/1678-4499.20230269
  • Cemek, B., Unlukara, A., & Kurunc, A. (2011). Non-destructive leaf-area estimation and validation for green pepper (Capsicum annuum L.) grown under different stress conditions. Photosynthetica, 49(1), 98–106. https://doi.org/10.1007/S11099-011-0010-6/METRICS
  • Cemek, B., Ünlükara, A., Kurunç, A., & Küçüktopcu, E. (2020). Leaf area modeling of bell pepper (Capsicum annuum L.) grown under different stress conditions by soft computing approaches. Computers and Electronics in Agriculture, 174, 105514. https://doi.org/10.1016/J.COMPAG.2020.105514
  • Fahrmeir, L., Kneib, T., Lang, S., & Marx, B. D. (2022). Regression: Models, Methods and Applications: Second Edition, Springer Berlin Heidelberg, 1–746. https://doi.org/10.1007/978-3-662-63882-8/COVER
  • Ghassemi-Golezani, K., & Farhadi, N. (2022). The efficacy of salicylic acid levels on photosynthetic activity, growth, and essential oil content and composition of pennyroyal plants under salt stress. Journal of Plant Growth Regulation, 41(5), 1953–1965. https://doi.org/10.1007/s00344-021-10515-y
  • Huang, G., Shu, Y., Peng, S., & Li, Y. (2022). Leaf photosynthesis is positively correlated with xylem and phloem areas in leaf veins in rice (Oryza sativa) plants. Annals of Botany, 129(5), 619–631. https://doi.org/10.1093/AOB/MCAC020
  • Kandiannan, K., Parthasarathy, U., Krishnamurthy, K. S., Thankamani, C. K., & Srinivasan, V. (2009). Modeling individual leaf area of ginger (Zingiber officinale Roscoe) using leaf length and width. Scientia Horticulturae, 120(4), 532–537. https://doi.org/10.1016/J.SCIENTA.2008.11.037
  • Kiremit, M. S. (2024). Effect of melatonin on increasing leaf development of sweet corn seedlings under salt stress conditions. International Congress of Sustainable Agriculture, (pp. 310–316), 01-03 March 2024, Iğdır, Türkiye .
  • Kiremit, M. S., Akınoğlu, G., Mitrovica, B., & Rakıcıoğlu, S. (2024). Enhancing drought-salinity stress tolerance in lettuce: Synergistic effects of salicylic acid and melatonin. South African Journal of Botany, 172, 212–226. https://doi.org/10.1016/J.SAJB.2024.07.021
  • Kiremit, M. S., & Arslan, H. (2018). Response of leek (Allium porrum L.) to different irrigation water levels under rain shelter. Communications in Soil Science and Plant Analysis, 49(1), 99–108. https://doi.org/10.1080/00103624.2017.1421652
  • Kusvuran, S., & Yilmaz, U. D. (2023). Ameliorative role of salicylic acid in the growth, nutrient content, and antioxidative responses of salt-stressed lettuce. Acta Scientiarum Polonorum Hortorum Cultus, 22(1), 75–85. https://doi.org/10.24326/ASPHC.2023.4603
  • Nigam, B., Dubey, R. S., & Rathore, D. (2022). Protective role of exogenously supplied salicylic acid and PGPB (Stenotrophomonas sp.) on spinach and soybean cultivars grown under salt stress. Scientia Horticulturae, 293, 110654. https://doi.org/10.1016/J.SCIENTA.2021.110654
  • Pandey, S. K., & Singh, H. (2011). A simple, cost-effective method for leaf area estimation. Journal of Botany, 2011(1), 658240. https://doi.org/10.1155/2011/658240
  • Patrício, D. I., & Rieder, R. (2018). Computer vision and artificial intelligence in precision agriculture for grain crops: A systematic review. Computers and Electronics in Agriculture, 153, 69–81. https://doi.org/10.1016/J.COMPAG.2018.08.001
  • Peksen, E. (2007). Non-destructive leaf area estimation model for faba bean (Vicia faba L.). Scientia Horticulturae, 113(4), 322–328. https://doi.org/10.1016/J.SCIENTA.2007.04.003
  • Peng, Y., Yang, J., Li, X., & Zhang, Y. (2021). Salicylic acid: biosynthesis and signaling. Annual review of plant biology, 72(1), 761-791. https://doi.org/10.1146/ANNUREV-ARPLANT-081320-092855
  • Rahimikhoob, H., Delshad, M., & Habibi, R. (2023). Leaf area estimation in lettuce: Comparison of artificial intelligence-based methods with image analysis technique. Measurement, 222, 113636. https://doi.org/10.1016/J.MEASUREMENT.2023.113636
  • Ribeiro, J. E. da S., Nóbrega, J. S., Coêlho, E. D. S., Dias, T. J., & Melo, M. F. (2022). Estimating leaf area of basil cultivars through linear dimensions of leaves. Revista Ceres, 69(2), 139–147. https://doi.org/10.1590/0034-737X202269020003
  • Ribeiro, J. E. da S., Coêlho, E. dos S., Figueiredo, F. R. A., Melo, M. F., Ribeiro, J. E. da S., Coêlho, E. dos S., Figueiredo, F. R. A., & Melo, M. F. (2020). Non-destructive method for estimating leaf area of Erythroxylum pauferrense (Erythroxylaceae) from linear dimensions of leaf blades. Acta Botánica Mexicana, 2020(127). https://doi.org/10.21829/ABM127.2020.1717
  • Ribeiro, J. E. da S., Silva, A. G. C. da, Lima, J. V. L., Oliveira, P. H. de A., Coêlho, E. dos S., Silveira, L. M. da, & Barros Júnior, A. P. (2024). Leaf area prediction of sweet potato cultivars: An approach to a non-destructive and accurate method. South African Journal of Botany, 172, 42–51. https://doi.org/10.1016/J.SAJB.2024.07.006
  • Şalk, A., Arın, L., Deveci, M., & Polat, S. (2008). Special vegetables. University of Namık Kemal, Faculty of Agriculture, Department of Horticulturae.
  • Soheili, F., Heydari, M., Woodward, S., & Naji, H. R. (2023). Adaptive mechanism in Quercus brantii Lindl. leaves under climatic differentiation: morphological and anatomical traits. Scientific Reports 13(1), 1–12. https://doi.org/10.1038/s41598-023-30762-1
  • Tanaka, M., Keira, M., Yoon, D. K., Mae, T., Ishida, H., Makino, A., & Ishiyama, K. (2022). Photosynthetic enhancement, lifespan extension, and leaf area enlargement in flag leaves increased the yield of transgenic rice plants overproducing rubisco under sufficient N fertilization. Rice, 15(1), 1–15. https://doi.org/10.1186/S12284-022-00557-5/FIGURES/7
  • Tunca, E., Köksal, E. S., Öztürk, E., Akay, H., & Taner, S. Ç. (2024). Accurate leaf area index estimation in sorghum using high-resolution UAV data and machine learning models. Physics and Chemistry of the Earth, Parts A/B/C, 133, 103537. https://doi.org/10.1016/J.PCE.2023.103537
  • Ünlükara, A., Cemek, B., Karaman, S., & Erşahin, S. (2008). Response of lettuce (Lactuca sativa var. Crispa) to salinity of irrigation water. New Zealand Journal of Crop and Horticultural Science, 36(4), 265–273. https://doi.org/10.1080/01140670809510243
  • Willmott, C. J., & Matsuura, K. (2005). Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Climate Research, 30(1), 79–82. https://doi.org/10.3354/CR030079
  • Yavuz, D., RASHID, B. A. R., & Seymen, M. (2023). The influence of NaCl salinity on evapotranspiration, yield traits, antioxidant status, and mineral composition of lettuce grown under deficit irrigation. Scientia Horticulturae, 310, 111776. https://doi.org/10.1016/J.SCIENTA.2022.111776

Developing Leaf Area Prediction Model for Curly Lettuce Grown Under Salinity Stress and Applied with Foliar Salicylic Acid

Year 2024, , 178 - 185, 31.12.2024
https://doi.org/10.55507/gopzfd.1537132

Abstract

Accurate and non-destructive methods for measuring leaf area are crucial for understanding the growth and physiological variations of plants under stress conditions. This investigation aimed to develop and assess the effectiveness of various regression models for predicting the leaf area of curly lettuce cultivated under different irrigation water salinities (IWS: 0.30, 4.15, 8.0 dS m-1) and salicylic acid doses (SA: 0, 1, 2 mM). The coefficient of determination (R2) values for the models ranged from 0.505 to 0.968, with Root Mean Square Error (RMSE) values between 4.59 and 17.79 cm² and Mean Absolute Error (MAE) values of 3.44 to 13.05 cm². Using only leaf length (LL) and leaf width (LW) can effectively estimate the leaf area of curly lettuce plants (Model 3, R²: 0.962, RMSE: 7.58 cm², MAE: 5.34 cm²). Incorporating IWS and SA into prediction models enhanced their accuracy and reliability. The best model for estimating the leaf area of curly lettuce was found from Model 13, which integrated all four parameters—SA, IWS, LL, and LW—achieving the highest R² (0.968) and the lowest RMSE (4.59 cm²) and MAE (3.44 cm²). Finally, using leaf area prediction models that consider stress conditions can enhance crop management by allowing accurate monitoring of plant health and growth in agriculture.

Ethical Statement

Çalışmanın tüm süreçlerinin araştırma ve yayın etiğine uygun olduğunu, etik kurallara ve bilimsel atıf gösterme ilkelerine uyduğumu beyan ederim.

Supporting Institution

Bu çalışmanın yürütülmesinde herhangi bir kurumdan finansal destek alınmamıştır.

References

  • Akyüz, A., & Cemek, B. (2024). Development of leaf area model in chokeberry plant grown in different ırrigation water quality. Anadolu Journal of Agricultural Sciences, 39(1), 207–219. https://doi.org/10.7161/OMUANAJAS.1419318
  • Amorim, P. E. C., Pereira, D. de F., Freire, R. I. da S., de Oliveira, A. M. F., Mendonça, V., & Ribeiro, J. E. da S. (2024). A non-destructive method for leaflet area prediction of Spondias tuberosa Arruda: an approach to regression models. Bragantia, 83, e20230269. https://doi.org/10.1590/1678-4499.20230269
  • Cemek, B., Unlukara, A., & Kurunc, A. (2011). Non-destructive leaf-area estimation and validation for green pepper (Capsicum annuum L.) grown under different stress conditions. Photosynthetica, 49(1), 98–106. https://doi.org/10.1007/S11099-011-0010-6/METRICS
  • Cemek, B., Ünlükara, A., Kurunç, A., & Küçüktopcu, E. (2020). Leaf area modeling of bell pepper (Capsicum annuum L.) grown under different stress conditions by soft computing approaches. Computers and Electronics in Agriculture, 174, 105514. https://doi.org/10.1016/J.COMPAG.2020.105514
  • Fahrmeir, L., Kneib, T., Lang, S., & Marx, B. D. (2022). Regression: Models, Methods and Applications: Second Edition, Springer Berlin Heidelberg, 1–746. https://doi.org/10.1007/978-3-662-63882-8/COVER
  • Ghassemi-Golezani, K., & Farhadi, N. (2022). The efficacy of salicylic acid levels on photosynthetic activity, growth, and essential oil content and composition of pennyroyal plants under salt stress. Journal of Plant Growth Regulation, 41(5), 1953–1965. https://doi.org/10.1007/s00344-021-10515-y
  • Huang, G., Shu, Y., Peng, S., & Li, Y. (2022). Leaf photosynthesis is positively correlated with xylem and phloem areas in leaf veins in rice (Oryza sativa) plants. Annals of Botany, 129(5), 619–631. https://doi.org/10.1093/AOB/MCAC020
  • Kandiannan, K., Parthasarathy, U., Krishnamurthy, K. S., Thankamani, C. K., & Srinivasan, V. (2009). Modeling individual leaf area of ginger (Zingiber officinale Roscoe) using leaf length and width. Scientia Horticulturae, 120(4), 532–537. https://doi.org/10.1016/J.SCIENTA.2008.11.037
  • Kiremit, M. S. (2024). Effect of melatonin on increasing leaf development of sweet corn seedlings under salt stress conditions. International Congress of Sustainable Agriculture, (pp. 310–316), 01-03 March 2024, Iğdır, Türkiye .
  • Kiremit, M. S., Akınoğlu, G., Mitrovica, B., & Rakıcıoğlu, S. (2024). Enhancing drought-salinity stress tolerance in lettuce: Synergistic effects of salicylic acid and melatonin. South African Journal of Botany, 172, 212–226. https://doi.org/10.1016/J.SAJB.2024.07.021
  • Kiremit, M. S., & Arslan, H. (2018). Response of leek (Allium porrum L.) to different irrigation water levels under rain shelter. Communications in Soil Science and Plant Analysis, 49(1), 99–108. https://doi.org/10.1080/00103624.2017.1421652
  • Kusvuran, S., & Yilmaz, U. D. (2023). Ameliorative role of salicylic acid in the growth, nutrient content, and antioxidative responses of salt-stressed lettuce. Acta Scientiarum Polonorum Hortorum Cultus, 22(1), 75–85. https://doi.org/10.24326/ASPHC.2023.4603
  • Nigam, B., Dubey, R. S., & Rathore, D. (2022). Protective role of exogenously supplied salicylic acid and PGPB (Stenotrophomonas sp.) on spinach and soybean cultivars grown under salt stress. Scientia Horticulturae, 293, 110654. https://doi.org/10.1016/J.SCIENTA.2021.110654
  • Pandey, S. K., & Singh, H. (2011). A simple, cost-effective method for leaf area estimation. Journal of Botany, 2011(1), 658240. https://doi.org/10.1155/2011/658240
  • Patrício, D. I., & Rieder, R. (2018). Computer vision and artificial intelligence in precision agriculture for grain crops: A systematic review. Computers and Electronics in Agriculture, 153, 69–81. https://doi.org/10.1016/J.COMPAG.2018.08.001
  • Peksen, E. (2007). Non-destructive leaf area estimation model for faba bean (Vicia faba L.). Scientia Horticulturae, 113(4), 322–328. https://doi.org/10.1016/J.SCIENTA.2007.04.003
  • Peng, Y., Yang, J., Li, X., & Zhang, Y. (2021). Salicylic acid: biosynthesis and signaling. Annual review of plant biology, 72(1), 761-791. https://doi.org/10.1146/ANNUREV-ARPLANT-081320-092855
  • Rahimikhoob, H., Delshad, M., & Habibi, R. (2023). Leaf area estimation in lettuce: Comparison of artificial intelligence-based methods with image analysis technique. Measurement, 222, 113636. https://doi.org/10.1016/J.MEASUREMENT.2023.113636
  • Ribeiro, J. E. da S., Nóbrega, J. S., Coêlho, E. D. S., Dias, T. J., & Melo, M. F. (2022). Estimating leaf area of basil cultivars through linear dimensions of leaves. Revista Ceres, 69(2), 139–147. https://doi.org/10.1590/0034-737X202269020003
  • Ribeiro, J. E. da S., Coêlho, E. dos S., Figueiredo, F. R. A., Melo, M. F., Ribeiro, J. E. da S., Coêlho, E. dos S., Figueiredo, F. R. A., & Melo, M. F. (2020). Non-destructive method for estimating leaf area of Erythroxylum pauferrense (Erythroxylaceae) from linear dimensions of leaf blades. Acta Botánica Mexicana, 2020(127). https://doi.org/10.21829/ABM127.2020.1717
  • Ribeiro, J. E. da S., Silva, A. G. C. da, Lima, J. V. L., Oliveira, P. H. de A., Coêlho, E. dos S., Silveira, L. M. da, & Barros Júnior, A. P. (2024). Leaf area prediction of sweet potato cultivars: An approach to a non-destructive and accurate method. South African Journal of Botany, 172, 42–51. https://doi.org/10.1016/J.SAJB.2024.07.006
  • Şalk, A., Arın, L., Deveci, M., & Polat, S. (2008). Special vegetables. University of Namık Kemal, Faculty of Agriculture, Department of Horticulturae.
  • Soheili, F., Heydari, M., Woodward, S., & Naji, H. R. (2023). Adaptive mechanism in Quercus brantii Lindl. leaves under climatic differentiation: morphological and anatomical traits. Scientific Reports 13(1), 1–12. https://doi.org/10.1038/s41598-023-30762-1
  • Tanaka, M., Keira, M., Yoon, D. K., Mae, T., Ishida, H., Makino, A., & Ishiyama, K. (2022). Photosynthetic enhancement, lifespan extension, and leaf area enlargement in flag leaves increased the yield of transgenic rice plants overproducing rubisco under sufficient N fertilization. Rice, 15(1), 1–15. https://doi.org/10.1186/S12284-022-00557-5/FIGURES/7
  • Tunca, E., Köksal, E. S., Öztürk, E., Akay, H., & Taner, S. Ç. (2024). Accurate leaf area index estimation in sorghum using high-resolution UAV data and machine learning models. Physics and Chemistry of the Earth, Parts A/B/C, 133, 103537. https://doi.org/10.1016/J.PCE.2023.103537
  • Ünlükara, A., Cemek, B., Karaman, S., & Erşahin, S. (2008). Response of lettuce (Lactuca sativa var. Crispa) to salinity of irrigation water. New Zealand Journal of Crop and Horticultural Science, 36(4), 265–273. https://doi.org/10.1080/01140670809510243
  • Willmott, C. J., & Matsuura, K. (2005). Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Climate Research, 30(1), 79–82. https://doi.org/10.3354/CR030079
  • Yavuz, D., RASHID, B. A. R., & Seymen, M. (2023). The influence of NaCl salinity on evapotranspiration, yield traits, antioxidant status, and mineral composition of lettuce grown under deficit irrigation. Scientia Horticulturae, 310, 111776. https://doi.org/10.1016/J.SCIENTA.2022.111776
There are 28 citations in total.

Details

Primary Language English
Subjects Biosystem, Irrigation Water Quality
Journal Section Research Articles
Authors

Mehmet Kiremit 0000-0002-7394-303X

Publication Date December 31, 2024
Submission Date August 22, 2024
Acceptance Date November 4, 2024
Published in Issue Year 2024

Cite

APA Kiremit, M. (2024). Developing Leaf Area Prediction Model for Curly Lettuce Grown Under Salinity Stress and Applied with Foliar Salicylic Acid. Journal of Agricultural Faculty of Gaziosmanpaşa University (JAFAG), 41(3), 178-185. https://doi.org/10.55507/gopzfd.1537132