Research Article
BibTex RIS Cite

Doğal Havalandırmalı Serbest Duraklı Bir Süt Sığırı Ahırında Çevre Koşullarının Hesaplamalı Akışkanlar Dinamiği ile Modellenmesi

Year 2022, Volume: 39 Issue: 3, 176 - 184, 31.12.2022
https://doi.org/10.55507/gopzfd.1181753

Abstract

: Süt sığırı ahırlarının tasarımında yeterli havalandırmanın sağlanması önemli bir faktördür. İyi havalandırılmış bir ahır, hayvanlarda stresi azaltarak ve hava kalitesini iyileştirerek çevreye ve hayvanlara fayda sağlar. Bu çalışmanın amacı, hesaplamalı akışkanlar dinamiği (HAD) modelini kullanarak serbest duraklı bir süt ahırında çevresel koşulların mekânsal değişkenliğini değerlendirmektir. Simülasyondan edilen sonuçlarla karşılaştırmak için ahırda sıcaklık ve hava hızı ölçümleri yapılmıştır. Simülasyon, kararlı durum koşulları altında gerçekleştirilmiş ve ahırdaki hayvan dağılımlarının yanı sıra ayakta duran ve yatan ineklerin belirli davranışları da göz önünde bulundurulmuştur. Ahırda ölçülen ve tahmin edilen ortalama hava sıcaklıkları sırasıyla 21.50 ± 0.174 °C ve 21.33 ± 0.213 °C, hava hızları ise sırasıyla 0.30 ± 0.196 m s-1 ve 0.31 ± 0.197 m s-1 olarak elde edilmiştir. Sonuç olarak, bu çalışma, HAD'ın süt ahırlarındaki çevresel koşulların mekânsal değişkenliğini değerlendirmek için önemli bir araç olduğunu ve ahır iç ortam koşullarını analiz etmek için alternatif bir teknik olarak kullanılabileceğini göstermiştir.

References

  • Al-Haidary, A. A. (2004). Physiological responses of Naimey sheep to heat stress challenge under semi-arid environments. International Journal of Agriculture and Biology, 2, 307-309.
  • Anderson, N. (2014). Dairy cow comfort tie-stall dimensions. OMAFRA, Ontario Ministry of Agriculture, Food and Rural Affairs.
  • Averós, X., Martin, S., Riu, M., Serratosa, J., & Gosalvez, L. (2008). Stress response of extensively reared young bulls being transported to growing-finishing farms under Spanish summer commercial conditions. Livestock Science, 119(1-3), 174-182.
  • Blanes-Vidal, V., Guijarro, E., Balasch, S., & Torres, A. (2008). Application of computational fluid dynamics to the prediction of airflow in a mechanically ventilated commercial poultry building. Biosystems engineering, 100(1), 105-116.
  • Brown-Brandl, T., Eigenberg, R., Hahn, G., Nienaber, J., Mader, T., Spiers, D., & Parkhurst, A. (2005). Analyses of thermoregulatory responses of feeder cattle exposed to simulated heat waves. International Journal of Biometeorology, 49(5), 285-296.
  • Bustamante, E., García-Diego, F.-J., Calvet, S., Estellés, F., Beltrán, P., Hospitaler, A., & Torres, A. G. (2013). Exploring ventilation efficiency in poultry buildings: the validation of computational fluid dynamics (CFD) in a cross-mechanically ventilated broiler farm. Energies, 6(5), 2605-2623.
  • Bustos-Vanegas, J. D., Hempel, S., Janke, D., Doumbia, M., Streng, J., & Amon, T. (2019). Numerical simulation of airflow in animal occupied zones in a dairy cattle building. Biosystems engineering, 186, 100-105.
  • Chang, J. C., & Hanna, S. R. (2004). Air quality model performance evaluation. Meteorology and Atmospheric Physics, 87(1), 167-196.
  • Chen, J. M., Schütz, K. E., & Tucker, C. B. (2016). Cooling cows efficiently with water spray: Behavioral, physiological, and production responses to sprinklers at the feed bunk. Journal of dairy science, 99(6), 4607-4618.
  • Chen, L., Fabian-Wheeler, E. E., Cimbala, J. M., Hofstetter, D., & Patterson, P. (2021). Computational fluid dynamics analysis of alternative ventilation schemes in cage-free poultry housing. Animals, 11(8), 2352.
  • Cook, N., Bennett, T., & Nordlund, K. (2004). Effect of free stall surface on daily activity patterns in dairy cows with relevance to lameness prevalence. Journal of dairy science, 87(9), 2912-2922.
  • Doumbia, E. M., Janke, D., Yi, Q., Amon, T., Kriegel, M., & Hempel, S. (2021). CFD modelling of an animal occupied zone using an anisotropic porous medium model with velocity depended resistance parameters. Computers and Electronics in Agriculture, 181, 105950.
  • Du, L., Yang, C., Dominy, R., Yang, L., Hu, C., Du, H., . . . Jiang, X. (2019). Computational Fluid Dynamics aided investigation and optimization of a tunnel-ventilated poultry house in China. Computers and Electronics in Agriculture, 159, 1-15.
  • Gautam, K. R., Rong, L., Iqbal, A., & Zhang, G. (2021). Full-scale CFD simulation of commercial pig building and comparison with porous media approximation of animal occupied zone. Computers and Electronics in Agriculture, 186, 106206.
  • Gebremedhin, K., & Wu, B. (2003). Characterization of flow field in a ventilated space and simulation of heat exchange between cows and their environment. Journal of thermal biology, 28(4), 301-319.
  • Hanna, S. R., & Chang, J. (2011). Setting acceptance criteria for air quality models. In Air Pollution Modeling and its Application XXI (pp. 479-484). Springer.
  • Khalifa, H. (2003). Bioclimatology and adaptation of farm animals in a changing climate. Interactions between climate and animal production. Proc Symp,
  • Küçüktopcu, E., & Cemek, B. (2019a). Evaluating the influence of turbulence models used in computational fluid dynamics for the prediction of airflows inside poultry houses. Biosystems engineering, 183, 1-12.
  • Küçüktopcu, E., & Cemek, B. (2019b). Modelling indoor environmental conditions in a commercial broiler house. Journal of Agricultural Sciences, 25(4), 440-448.
  • Küçüktopcu, E., Cemek, B., Simsek, H., & Ni, J.-Q. (2022). Computational Fluid Dynamics Modeling of a Broiler House Microclimate in Summer and Winter. Animals, 12(7), 867.
  • Lee, S.-Y., Kim, J.-G., Kim, R.-W., Yeo, U.-H., & Lee, I.-B. (2022). Development of three-dimensional visualisation technology of aerodynamic environment in fattening pig house using CFD and VR technology. Computers and Electronics in Agriculture, 194, 106709.
  • Marai, I., Bahgat, L., Shalaby, T., & Abdel-Hafez, M. (2000). Fattening performance, some behavioural traits and physiological reactions of male lambs fed concentrates mixture alone with or without natural clay, under hot summer of Egypt. Annals of arid zone, 39, 449-460.
  • Martin, G., Rodger, J., & Blache, D. (2004). Nutritional and environmental effects on reproduction in small ruminants. Reproduction, Fertility and development, 16(4), 491-501.
  • Mattachini, G., Bava, L., Sandrucci, A., Tamburini, A., Riva, E., & Provolo, G. (2017). Effects of feed delivery frequency in different environmental conditions on time budget of lactating dairy cows. Journal of dairy research, 84(3), 272-279.
  • Mondaca, M. R., & Choi, C. Y. (2016). An evaluation of simplifying assumptions in dairy cow computational fluid dynamics models. Transactions of the ASABE, 59(6), 1575-1584.
  • Mondaca, M. R., Choi, C. Y., & Cook, N. B. (2019). Understanding microenvironments within tunnel-ventilated dairy cow freestall facilities: Examination using computational fluid dynamics and experimental validation. Biosystems engineering, 183, 70-84.
  • Nordlund, K., Strassburg, P., Bennett, T., Oetzel, G., & Cook, N. (2019). Thermodynamics of standing and lying behavior in lactating dairy cows in freestall and parlor holding pens during conditions of heat stress. Journal of dairy science, 102(7), 6495-6507.
  • Norton, T., Sun, D.-W., Grant, J., Fallon, R., & Dodd, V. (2007). Applications of computational fluid dynamics (CFD) in the modelling and design of ventilation systems in the agricultural industry: A review. Bioresource technology, 98(12), 2386-2414.
  • Pakari, A., & Ghani, S. (2021). Comparison of different mechanical ventilation systems for dairy cow barns: CFD simulations and field measurements. Computers and Electronics in Agriculture, 186, 106207.
  • Rivington, M., Matthews, K., Buchan, K., Miller, D., & Russell, G. (2009). Investigating climate change impacts and adaptation options using integrated assessment methods. Aspects of Applied Biology, 93, 85-92.
  • Rojano, F., Bournet, P.-E., Hassouna, M., Robin, P., Kacira, M., & Choi, C. Y. (2018). Assessment using CFD of the wind direction on the air discharges caused by natural ventilation of a poultry house. Environmental monitoring and assessment, 190(12), 1-15.
  • Rojano, F., Bournet, P.-E., Hassouna, M., Robin, P., Kacira, M., & Choi, C. Y. (2019). Modelling the impact of air discharges caused by natural ventilation in a poultry house. Biosystems engineering, 180, 168-181.
  • Saha, C. K., Yi, Q., Janke, D., Hempel, S., Amon, B., & Amon, T. (2020). Opening Size Effects on Airflow Pattern and Airflow Rate of a Naturally Ventilated Dairy Building—A CFD Study. Applied Sciences, 10(17), 6054.
  • Tabase, R. K., Bagci, O., De Paepe, M., Aarnink, A. J., & Demeyer, P. (2020). CFD simulation of airflows and ammonia emissions in a pig compartment with underfloor air distribution system: Model validation at different ventilation rates. Computers and Electronics in Agriculture, 171, 105297.
  • Tucker, C. B., Rogers, A. R., & Schütz, K. E. (2008). Effect of solar radiation on dairy cattle behaviour, use of shade and body temperature in a pasture-based system. Applied Animal Behaviour Science, 109(2-4), 141-154.
  • Uzal Seyfi, S. (2013). Hourly and seasonal variations in the area preferences of dairy cows in freestall housing. Journal of dairy science, 96(2), 906-917.
  • Wu, W., Zhai, J., Zhang, G., & Nielsen, P. V. (2012). Evaluation of methods for determining air exchange rate in a naturally ventilated dairy cattle building with large openings using computational fluid dynamics (CFD). Atmospheric Environment, 63, 179-188.
  • Xin, Y., Rong, L., Wang, C., Li, B., & Liu, D. (2022). CFD study on the impacts of geometric models of lying pigs on resistance coefficients for porous media modelling of the animal occupied zone. Biosystems engineering, 222, 93-105.
  • Yang, Z., Tu, Y., Ma, H., Yang, X., & Liang, C. (2022). Numerical simulation of a novel double-duct ventilation system in poultry buildings under the winter condition. Building and Environment, 207, 108557.
  • Yani, A., Suhardiyanto, H., Hasbullah, R., & Purwanto, B. (2007). Analisis dan simulasi distribusi suhu udara pada kandang sapi perah menggunakan Computational Fluid Dynamics (CFD). Media Peternakan, 30(3).
  • Yeo, U.-H., Lee, I.-B., Kim, R.-W., Lee, S.-Y., & Kim, J.-G. (2019). Computational fluid dynamics evaluation of pig house ventilation systems for improving the internal rearing environment. Biosystems engineering, 186, 259-278.
  • Zähner, M., Schrader, L., Hauser, R., Keck, M., Langhans, W., & Wechsler, B. (2004). The influence of climatic conditions on physiological and behavioural parameters in dairy cows kept in open stables. Animal Science, 78(1), 139-147.
  • Zhao, B., Li, X., & Yan, Q. (2003). A simplified system for indoor airflow simulation. Building and Environment, 38(4), 543-552.
  • Zhou, B., Wang, X., Mondaca, M. R., Rong, L., & Choi, C. Y. (2019). Assessment of optimal airflow baffle locations and angles in mechanically-ventilated dairy houses using computational fluid dynamics. Computers and Electronics in Agriculture, 165, 104930.

Computational Fluid Dynamics Modeling of Environmental Conditions in A Naturally Ventilated Free-Stall Dairy Barn

Year 2022, Volume: 39 Issue: 3, 176 - 184, 31.12.2022
https://doi.org/10.55507/gopzfd.1181753

Abstract

An essential parameter for the design of a dairy barn is adequate ventilation. A well-ventilated barn benefits the environment and the animals by reducing stress and improving air quality. The aim of this study was to evaluate the spatial variability of environmental conditions in a free-stall dairy barn using computational fluid dynamics (CFD). Measurements of temperature and air velocity in the barn were made for comparison with the simulated results. The simulations were performed under steady-state conditions and considered the specific behavior of standing and lying cows and their distribution in the barn. The measured and predicted mean air temperatures in the barn were 21.50 ± 0.174 °C and 21.33 ± 0.213 °C, while the air velocities were 0.30 ± 0.196 m s-1 and 0.31 ± 0.197 m s-1, respectively. In conclusion, this study demonstrated that CFD is a valuable tool for evaluating the spatial variability of environmental conditions in dairy barns and can be used as an alternative technique for analyzing barn environments.

References

  • Al-Haidary, A. A. (2004). Physiological responses of Naimey sheep to heat stress challenge under semi-arid environments. International Journal of Agriculture and Biology, 2, 307-309.
  • Anderson, N. (2014). Dairy cow comfort tie-stall dimensions. OMAFRA, Ontario Ministry of Agriculture, Food and Rural Affairs.
  • Averós, X., Martin, S., Riu, M., Serratosa, J., & Gosalvez, L. (2008). Stress response of extensively reared young bulls being transported to growing-finishing farms under Spanish summer commercial conditions. Livestock Science, 119(1-3), 174-182.
  • Blanes-Vidal, V., Guijarro, E., Balasch, S., & Torres, A. (2008). Application of computational fluid dynamics to the prediction of airflow in a mechanically ventilated commercial poultry building. Biosystems engineering, 100(1), 105-116.
  • Brown-Brandl, T., Eigenberg, R., Hahn, G., Nienaber, J., Mader, T., Spiers, D., & Parkhurst, A. (2005). Analyses of thermoregulatory responses of feeder cattle exposed to simulated heat waves. International Journal of Biometeorology, 49(5), 285-296.
  • Bustamante, E., García-Diego, F.-J., Calvet, S., Estellés, F., Beltrán, P., Hospitaler, A., & Torres, A. G. (2013). Exploring ventilation efficiency in poultry buildings: the validation of computational fluid dynamics (CFD) in a cross-mechanically ventilated broiler farm. Energies, 6(5), 2605-2623.
  • Bustos-Vanegas, J. D., Hempel, S., Janke, D., Doumbia, M., Streng, J., & Amon, T. (2019). Numerical simulation of airflow in animal occupied zones in a dairy cattle building. Biosystems engineering, 186, 100-105.
  • Chang, J. C., & Hanna, S. R. (2004). Air quality model performance evaluation. Meteorology and Atmospheric Physics, 87(1), 167-196.
  • Chen, J. M., Schütz, K. E., & Tucker, C. B. (2016). Cooling cows efficiently with water spray: Behavioral, physiological, and production responses to sprinklers at the feed bunk. Journal of dairy science, 99(6), 4607-4618.
  • Chen, L., Fabian-Wheeler, E. E., Cimbala, J. M., Hofstetter, D., & Patterson, P. (2021). Computational fluid dynamics analysis of alternative ventilation schemes in cage-free poultry housing. Animals, 11(8), 2352.
  • Cook, N., Bennett, T., & Nordlund, K. (2004). Effect of free stall surface on daily activity patterns in dairy cows with relevance to lameness prevalence. Journal of dairy science, 87(9), 2912-2922.
  • Doumbia, E. M., Janke, D., Yi, Q., Amon, T., Kriegel, M., & Hempel, S. (2021). CFD modelling of an animal occupied zone using an anisotropic porous medium model with velocity depended resistance parameters. Computers and Electronics in Agriculture, 181, 105950.
  • Du, L., Yang, C., Dominy, R., Yang, L., Hu, C., Du, H., . . . Jiang, X. (2019). Computational Fluid Dynamics aided investigation and optimization of a tunnel-ventilated poultry house in China. Computers and Electronics in Agriculture, 159, 1-15.
  • Gautam, K. R., Rong, L., Iqbal, A., & Zhang, G. (2021). Full-scale CFD simulation of commercial pig building and comparison with porous media approximation of animal occupied zone. Computers and Electronics in Agriculture, 186, 106206.
  • Gebremedhin, K., & Wu, B. (2003). Characterization of flow field in a ventilated space and simulation of heat exchange between cows and their environment. Journal of thermal biology, 28(4), 301-319.
  • Hanna, S. R., & Chang, J. (2011). Setting acceptance criteria for air quality models. In Air Pollution Modeling and its Application XXI (pp. 479-484). Springer.
  • Khalifa, H. (2003). Bioclimatology and adaptation of farm animals in a changing climate. Interactions between climate and animal production. Proc Symp,
  • Küçüktopcu, E., & Cemek, B. (2019a). Evaluating the influence of turbulence models used in computational fluid dynamics for the prediction of airflows inside poultry houses. Biosystems engineering, 183, 1-12.
  • Küçüktopcu, E., & Cemek, B. (2019b). Modelling indoor environmental conditions in a commercial broiler house. Journal of Agricultural Sciences, 25(4), 440-448.
  • Küçüktopcu, E., Cemek, B., Simsek, H., & Ni, J.-Q. (2022). Computational Fluid Dynamics Modeling of a Broiler House Microclimate in Summer and Winter. Animals, 12(7), 867.
  • Lee, S.-Y., Kim, J.-G., Kim, R.-W., Yeo, U.-H., & Lee, I.-B. (2022). Development of three-dimensional visualisation technology of aerodynamic environment in fattening pig house using CFD and VR technology. Computers and Electronics in Agriculture, 194, 106709.
  • Marai, I., Bahgat, L., Shalaby, T., & Abdel-Hafez, M. (2000). Fattening performance, some behavioural traits and physiological reactions of male lambs fed concentrates mixture alone with or without natural clay, under hot summer of Egypt. Annals of arid zone, 39, 449-460.
  • Martin, G., Rodger, J., & Blache, D. (2004). Nutritional and environmental effects on reproduction in small ruminants. Reproduction, Fertility and development, 16(4), 491-501.
  • Mattachini, G., Bava, L., Sandrucci, A., Tamburini, A., Riva, E., & Provolo, G. (2017). Effects of feed delivery frequency in different environmental conditions on time budget of lactating dairy cows. Journal of dairy research, 84(3), 272-279.
  • Mondaca, M. R., & Choi, C. Y. (2016). An evaluation of simplifying assumptions in dairy cow computational fluid dynamics models. Transactions of the ASABE, 59(6), 1575-1584.
  • Mondaca, M. R., Choi, C. Y., & Cook, N. B. (2019). Understanding microenvironments within tunnel-ventilated dairy cow freestall facilities: Examination using computational fluid dynamics and experimental validation. Biosystems engineering, 183, 70-84.
  • Nordlund, K., Strassburg, P., Bennett, T., Oetzel, G., & Cook, N. (2019). Thermodynamics of standing and lying behavior in lactating dairy cows in freestall and parlor holding pens during conditions of heat stress. Journal of dairy science, 102(7), 6495-6507.
  • Norton, T., Sun, D.-W., Grant, J., Fallon, R., & Dodd, V. (2007). Applications of computational fluid dynamics (CFD) in the modelling and design of ventilation systems in the agricultural industry: A review. Bioresource technology, 98(12), 2386-2414.
  • Pakari, A., & Ghani, S. (2021). Comparison of different mechanical ventilation systems for dairy cow barns: CFD simulations and field measurements. Computers and Electronics in Agriculture, 186, 106207.
  • Rivington, M., Matthews, K., Buchan, K., Miller, D., & Russell, G. (2009). Investigating climate change impacts and adaptation options using integrated assessment methods. Aspects of Applied Biology, 93, 85-92.
  • Rojano, F., Bournet, P.-E., Hassouna, M., Robin, P., Kacira, M., & Choi, C. Y. (2018). Assessment using CFD of the wind direction on the air discharges caused by natural ventilation of a poultry house. Environmental monitoring and assessment, 190(12), 1-15.
  • Rojano, F., Bournet, P.-E., Hassouna, M., Robin, P., Kacira, M., & Choi, C. Y. (2019). Modelling the impact of air discharges caused by natural ventilation in a poultry house. Biosystems engineering, 180, 168-181.
  • Saha, C. K., Yi, Q., Janke, D., Hempel, S., Amon, B., & Amon, T. (2020). Opening Size Effects on Airflow Pattern and Airflow Rate of a Naturally Ventilated Dairy Building—A CFD Study. Applied Sciences, 10(17), 6054.
  • Tabase, R. K., Bagci, O., De Paepe, M., Aarnink, A. J., & Demeyer, P. (2020). CFD simulation of airflows and ammonia emissions in a pig compartment with underfloor air distribution system: Model validation at different ventilation rates. Computers and Electronics in Agriculture, 171, 105297.
  • Tucker, C. B., Rogers, A. R., & Schütz, K. E. (2008). Effect of solar radiation on dairy cattle behaviour, use of shade and body temperature in a pasture-based system. Applied Animal Behaviour Science, 109(2-4), 141-154.
  • Uzal Seyfi, S. (2013). Hourly and seasonal variations in the area preferences of dairy cows in freestall housing. Journal of dairy science, 96(2), 906-917.
  • Wu, W., Zhai, J., Zhang, G., & Nielsen, P. V. (2012). Evaluation of methods for determining air exchange rate in a naturally ventilated dairy cattle building with large openings using computational fluid dynamics (CFD). Atmospheric Environment, 63, 179-188.
  • Xin, Y., Rong, L., Wang, C., Li, B., & Liu, D. (2022). CFD study on the impacts of geometric models of lying pigs on resistance coefficients for porous media modelling of the animal occupied zone. Biosystems engineering, 222, 93-105.
  • Yang, Z., Tu, Y., Ma, H., Yang, X., & Liang, C. (2022). Numerical simulation of a novel double-duct ventilation system in poultry buildings under the winter condition. Building and Environment, 207, 108557.
  • Yani, A., Suhardiyanto, H., Hasbullah, R., & Purwanto, B. (2007). Analisis dan simulasi distribusi suhu udara pada kandang sapi perah menggunakan Computational Fluid Dynamics (CFD). Media Peternakan, 30(3).
  • Yeo, U.-H., Lee, I.-B., Kim, R.-W., Lee, S.-Y., & Kim, J.-G. (2019). Computational fluid dynamics evaluation of pig house ventilation systems for improving the internal rearing environment. Biosystems engineering, 186, 259-278.
  • Zähner, M., Schrader, L., Hauser, R., Keck, M., Langhans, W., & Wechsler, B. (2004). The influence of climatic conditions on physiological and behavioural parameters in dairy cows kept in open stables. Animal Science, 78(1), 139-147.
  • Zhao, B., Li, X., & Yan, Q. (2003). A simplified system for indoor airflow simulation. Building and Environment, 38(4), 543-552.
  • Zhou, B., Wang, X., Mondaca, M. R., Rong, L., & Choi, C. Y. (2019). Assessment of optimal airflow baffle locations and angles in mechanically-ventilated dairy houses using computational fluid dynamics. Computers and Electronics in Agriculture, 165, 104930.
There are 44 citations in total.

Details

Primary Language English
Subjects Agricultural Engineering
Journal Section Research Articles
Authors

Erdem Küçüktopcu 0000-0002-8708-2306

Selda Uzal Seyfi 0000-0003-1296-2939

Muminah Mustaqimah 0000-0002-7749-9810

Bilal Cemek 0000-0002-0503-6497

Publication Date December 31, 2022
Published in Issue Year 2022 Volume: 39 Issue: 3

Cite

APA Küçüktopcu, E., Uzal Seyfi, S., Mustaqimah, M., Cemek, B. (2022). Computational Fluid Dynamics Modeling of Environmental Conditions in A Naturally Ventilated Free-Stall Dairy Barn. Journal of Agricultural Faculty of Gaziosmanpaşa University (JAFAG), 39(3), 176-184. https://doi.org/10.55507/gopzfd.1181753