Research Article
BibTex RIS Cite

CO2 Emission from Soil Containing Different Organic Manures in Wetting-Drying Conditions and the Relationships of CO2 Emission with Moisture, Temperature and H2O Emission

Year 2022, Volume: 39 Issue: 3, 161 - 168, 31.12.2022
https://doi.org/10.55507/gopzfd.1187899

Abstract

The aim of this study was to examine the effect of five different organic substance additions to the soil (hazelnut husk compost and farmyard, pigeon, poultry and sheep manures) on carbon dioxide (CO2) emission from the soil and the relations of CO2 emission with soil moisture, water steam (H2O) emission and soil temperature during the wetting-drying cycle of the soil. The results showed that the highest CO2 emissions was in pigeon manure treatment (0.805 g m-2 h-1), and followed by hazelnut husk compost (0.658 g m-2 h-1) and poultry (0.541 g m-2 h-1), farmyard (0.476 g m-2 h-1) and sheep manure (0.424 g m-2 h-1) treatments and soil as control treatment (0.300 g m-2 h-1), respectively. Soil moisture increased, and H2O emission and soil temperature decreased in all organic substance treatments compared to the control (soil), thus the CO2 emission had positive linear relationship with soil moisture and negative linear relationships with H2O emission and soil temperature. Therefore, it could be concluded that it can be more protective opinion for global warming risk applying organic substances (sheep, farmyard and poultry manures respectively) with both low organic matter and nitrogen content to the soil by managing soil moisture to decrease CO2 emission.

References

  • Alaboz, P., & Cakmakci, T. (2020). Effect of cocopeat application on field capacity and permanent wilting point in sandy loam and clay loam soil. Mediterranean Agricultural Sciences, 33(2), 285-290. 10.29136/mediterranean.660207
  • Al‐Kaisi, M. M., & Yin, X. (2005). Tillage and crop residue effects on soil carbon and carbon dioxide emission in corn-soybean rotations. Journal of Environmental Quality, 34(2), 437-445. https://doi.org/10.2134/jeq2005.0437
  • Altikat, S., Kucukerdem, H. K., & Altikat, A. (2018). Effects of wheel traffic and farmyard manure applications on soil CO2 emission and soil oxygen content. Turkish Journal of Agriculture and Forestry, 42, 288-297. https://doi.org/10.3906/tar-1709-79
  • Amooh, M. K., & Bonsu, M. (2015). Effects of soil texture and organic matter on evaporative loss of soil moisture. Journal of Global Agriculture and Ecology, 3(3), 152-161.
  • Buragiene, S., Sarauskis, E., Romaneckas, K., Adamaviciene, A., Kriauciuniene, Z., Avizienyte, D., Marozas, V., & Naujokiene, V. (2019). Relationship between CO2 emissions and soil properties of differently tilled soils. Science of the Total Environment, 662, 786-795. https://doi.org/10.1016/j.scitotenv.2019.01.236
  • Coban, H., Miltner, A., Elling, F. J., Hinrichs, K. U., & Kästner, M. (2015). The contribution of biogas residues to soil organic matter formation and CO2 emissions in an arable soil. Soil Biology and Biochemistry, 86, 108-115. https://doi.org/10.1016/j.soilbio.2015.03.023
  • Evans, S. E., & Burke, I. C. (2013). Carbon and nitrogen decoupling under an 11-year drought in the shortgrass steppe. Ecosystems, 16, 20-33. https://doi.org/10.1007/s10021-012-9593-4
  • Fan, L., Tarin, M. W. K., Zhang, Y., Han, Y., Rong, J., Cai, X., Chen, L., Shi, C., & Zheng, Y. (2021). Patterns of soil microorganisms and enzymatic activities of various forest types in coastal sandy land. Global Ecology and Conservation, 28, e01625. https://doi.org/10.1016/j.gecco.2021.e01625
  • Fang, X., Zhu, Y. L., Liu, J. D., Lin, X. P., Sun, H. Z., Tang, X. H., Hu, Y. L., Huang, Y. P., & Yi, Z. G. (2022). Effects of moisture and temperature on soil organic carbon decomposition along a vegetation restoration gradient of subtropical China. Forests, 13(4), 578. https://doi.org/10.3390/f13040578
  • Fangueiro, D., Senbayran, M., Trindade, H., & Chadwick, D. (2008). Cattle slurry treatment by screw press separation and chemically enhanced settling: effect on greenhouse gas emissions after land spreading and grass yield. Bioresource Technology, 99, 7132- 7142. 10.1016/j.biortech.2007.12.069
  • Gee, G. W., & Bauder, J. W. (1986). Particle-Size Analysis, In: Methods of Soil Analysis, Part I, Physical and Mineralogical Methods, Klute A. (Ed.), American Society of Agronomy, Madison, Wisconsin, 383-411.
  • Gonzalez-Mendez, B., Webster, R., Fiedler, S., Loza-Reyes, E., Hernandez, J. M., Ruiz-Suarez, L. G., & Siebe, C. (2015). Short-term emissions of CO2 and N2O in response to periodic flood irrigation with waste water in the Mezquital Valley of Mexico. Atmospheric Environment, 101, 116-124. https://doi.org/10.1016/j.atmosenv.2014.10.048
  • Haddaway, N. R., Hedlund, K., Jackson, L. E., Katterer, T., Lugato, E., Thomsen, I. K., Jorgensen, H. B., & Isberg, P. E. (2017). How does tillage intensity affect soil organic carbon? A systematic review. Environmental Evidence, 5(1), 1-8. https://doi.org/10.1186/s13750-017-0108-9
  • Hussary, J., Alowaisy, A., Yasufuku, N., Ishikura, R., & Abdelhadi, M. (2022). Pore structure and falling rate stage of evaporation in homogeneous sandy soil profiles. Soils and Foundations, 62(2), 101108. https://doi.org/10.1016/j.sandf.2022.101108
  • Jabro, J. D., Sainju, U., Stevens, W. B., & Evans, R. G. (2008). Carbon dioxide flux as affected by tillage and irrigation in soil converted from perennial forages to annual crops. Journal of Environmental Management, 88(4), 1478-1484. https://doi.org/10.1016/j.jenvman.2007.07.012
  • Lal, R. (2020). Soil organic matter and water retention. Agronomy Journal, 112 (5), 3265-3277.
  • Lamparter, A., Bachmann, J., Goebel, M. O., & Woche, S. K. (2009). Carbon mineralization soil: impact of wetting-drying, aggregation and water repellency. Geoderma, 150, 324-333. https://doi.org/10.1016/j.geoderma.2009.02.014
  • Li, X., Liu, F., Li, G., Lin, Q., & Jensen, C. R. (2010). Soil microbial response, water and nitrogen use by tomato under different irrigation regimes. Agriculture Water Management 98, 414-418. https://doi.org/10.1016/j.agwat.2010.10.008
  • Licht, M. A., & Al-Kaisi, M. (2005). Strip-tillage effect on seedbed soil temperature and other soil physical properties. Soil and Tillage Research, 80(1-2), 233-249. https://doi.org/10.1016/j.still.2004.03.017
  • Mancinelli, R., Marinari, S., Brunetti, P., Radicetti, E., & Campiglia, E. (2015). Organic mulching, irrigation and fertilization affect soil CO2 emission and C storage in tomato crop in the Mediterranean environment. Soil and Tillage Research, 152, 39-51. https://doi.org/10.1016/j.still.2015.04.001
  • Navarro-Pedreño, J., Almendro-Candel, M. B., & Zorpas, A. A. (2021). The increase of soil organic matter reduces global warming, myth or reality? Sci, 3(1), 18. https://doi.org/10.3390/sci3010018
  • Oldfield, E. E., Bradford, M. A., & Wood, S. A. (2019). Global meta-analysis of the relationship between soil organic matter and crop yields. Soil, 5(1), 15-32. https://doi.org/10.5194/soil-5-15-2019
  • Ors, S., Sahin, U., & Khadra, R. (2015). Reclamation of saline sodic soils with the use of mixed fly ash and sewage sludge. Arid Land Reserach and Management, 29, 41-54. https://doi.org/10.1080/15324982.2014.903314
  • Powlson, D. S., Bhogal, A., Chambers, B. J., Coleman, K., Macdonald, A. J., Goulding, K. W. T., & Whitmore, A. P. (2012). The potential to increase soil carbon stocks through reduced tillage or organic material additions in England and Wales: a case study. Agriculture, Ecosystems & Environment, 146(1), 23-33. https://doi.org/10.1016/j.agee.2011.10.004
  • Sainju, U. M., Singh, B. P., & Whitehead, W. F. (2002). Long-term effects of tillage, cover crops, and nitrogen fertilization on organic carbon and nitrogen concentrations in sandy loam soils in Georgia, USA. Soil and Tillage Research, 63(3-4), 167-179. https://doi.org/10.1016/S0167-1987(01)00244-6
  • Sakin, E., & Yanardag, I. H. (2019). Effect of application of sheep manure and its biochar on carbon emissions in salt affected calcareous soil in Sanliurfa Region SE Turkey. Fresenius Environmental Bulletin, 28(4), 2553-2560.
  • Shi, A. D., & Marschner, P. (2014). Drying and rewetting frequency influences cumulative respiration and its distribution over time in two soilswith contrasting management. Soil Biology and Biochemistry, 72, 172-179. https://doi.org/10.1016/j.soilbio.2014.02.001
  • Tang, J., Wang, J., Li., Z., Wang, S., & Qu, Y. (2018). Effects of irrigation regime and nitrogen fertilizer management on CH4, N2O and CO2 emissions from saline-alkaline paddy fields in Northeast China. Sustainability, 10, 475. https://doi.org/10.3390/su10020475
  • Thangarajan, R., Kunhikrishnan, A., Seshadri, B., Bolan, N.S., & Naidu, R. (2012). Greenhouse Gas Emission from Wastewater Irrigated Soils. Sustainable Irrigation and Drainage IV: Management, Technologies and Policies. Ed: B. Henning. Lightning Source, Britain.
  • Yang, F., Zhang, G. L., Yang, J. L., Li, D. C., Zhao, Y. G., Liu, F., Yang, R., & Yang, F. (2014). Organic matter controls of soil water retention in an alpine grassland and its significance for hydrological processes. Journal of Hydrology, 519, 3086-3093. https://doi.org/10.1016/j.jhydrol.2014.10.054
  • Yerli, C., & Sahin, U. (2021). Effect of different manure applications and wetting-drying cycles on CO2 emissions from soil. Environmental Engineering and Management Journal, 20(9), 317-324. 10.30638/eemj.2021.140
  • Yerli, C., Sahin, U., Cakmakci, T., & Tufenkci, S. (2019). Effects of agricultural applications on CO2 emission and ways to reduce. Turkish Journal of Agriculture-Food Science and Technology, 7(9), 1446-1456. 10.24925/turjaf.v7i9.1446-1456.2750
  • Yerli, C., Sahin, U., Kiziloglu, F. M., Oztas, T., & Ors, S. (2022b). Deficit irrigation with wastewater in direct sowed silage maize reduces CO2 emissions from soil by providing carbon savings. Journal of Water and Climate Change, 13(7), 2837-2846. https://doi.org/10.2166/wcc.2022.190
  • Yerli, C., Sahin, U., & Oztas, T. (2022a). CO2 emission from soil in silage maize irrigated with wastewater under deficit irrigation in direct sowing practice. Agricultural Water Management, 271, 107791. https://doi.org/10.1016/j.agwat.2022.107791
  • Yu, Z., Wang, G., & Marschner, P. (2014). Drying and rewetting-effect of frequency of cycles and length of moist period on soil respiration and microbial biomass. European Journal of Soil Biology, 62, 132-137. https://doi.org/10.1016/j.ejsobi.2014.03.007
  • Zhang, Z., Dong, X., Wang, S., & Pu, X. (2020). Benefits of organic manure combined with biochar amendments to cotton root growth and yield under continuous cropping systems in Xinjiang, China. Scientific Reports, 10(1), 1-10. https://doi.org/10.1038/s41598-020-61118-8

Farklı organik gübre uygulanan topraklarda ıslanma-kuruma koşullarında CO2 Emisyonu ve CO2 Emisyonunun Nem, Sıcaklık ve H2O Emisyonu ile İlişkileri

Year 2022, Volume: 39 Issue: 3, 161 - 168, 31.12.2022
https://doi.org/10.55507/gopzfd.1187899

Abstract

Bu çalışmanın amacı, toprağa beş farklı organik madde ilavesinin (fındık kabuğu kompostu ve çiftlik, güvercin, kümes hayvanları ve koyun gübreleri) toprağın ıslanma-kuruma döngüsü sırasında topraktan karbondioksit (CO2) salınımına etkisini ve CO2 salınımının toprak nemi, su buharı (H2O) salınımı ve toprak sıcaklığı ile ilişkilerini incelemektedir. Sonuçlar, en yüksek CO2 salınımının güvercin gübresi uygulamasında (0.805 g m-2 h-1) olduğunu ve bunu sırasıyla fındık kabuğu kompostu (0.658 g m-2 h-1), kümes hayvanları (0.541 g m-2 h-1), çiftlik (0.476 g m-2 h-1) ve koyun gübresi uygulamalarının (0.424 g m-2 h-1) ve akabinden kontrol uygulaması olarak toprağın (0.300 g m-2 h-1) takip ettiğini göstermiştir. Kontrol uygulamasına kıyasla tüm organik madde ilavesi uygulamalarında toprak nemi artmış, H2O salınımı ve toprak sıcaklığı azalmış, böylece CO2 salınımı toprak nemi ile pozitif lineer, H2O salınımı ve toprak sıcaklığı ile negatif lineer ilişkiye sahip olmuştur. Bu nedenle, CO2 salınımını azaltmak için toprak nemini yöneterek hem organik madde hem de azot içeriği düşük organik madde ilavelerinin (sırasıyla koyun, çiftlik ve kanatlı gübreler) toprağa uygulanmasının küresel ısınma riskine karşı daha koruyucu bir görüş olabileceği sonucuna ulaşılmıştır.

References

  • Alaboz, P., & Cakmakci, T. (2020). Effect of cocopeat application on field capacity and permanent wilting point in sandy loam and clay loam soil. Mediterranean Agricultural Sciences, 33(2), 285-290. 10.29136/mediterranean.660207
  • Al‐Kaisi, M. M., & Yin, X. (2005). Tillage and crop residue effects on soil carbon and carbon dioxide emission in corn-soybean rotations. Journal of Environmental Quality, 34(2), 437-445. https://doi.org/10.2134/jeq2005.0437
  • Altikat, S., Kucukerdem, H. K., & Altikat, A. (2018). Effects of wheel traffic and farmyard manure applications on soil CO2 emission and soil oxygen content. Turkish Journal of Agriculture and Forestry, 42, 288-297. https://doi.org/10.3906/tar-1709-79
  • Amooh, M. K., & Bonsu, M. (2015). Effects of soil texture and organic matter on evaporative loss of soil moisture. Journal of Global Agriculture and Ecology, 3(3), 152-161.
  • Buragiene, S., Sarauskis, E., Romaneckas, K., Adamaviciene, A., Kriauciuniene, Z., Avizienyte, D., Marozas, V., & Naujokiene, V. (2019). Relationship between CO2 emissions and soil properties of differently tilled soils. Science of the Total Environment, 662, 786-795. https://doi.org/10.1016/j.scitotenv.2019.01.236
  • Coban, H., Miltner, A., Elling, F. J., Hinrichs, K. U., & Kästner, M. (2015). The contribution of biogas residues to soil organic matter formation and CO2 emissions in an arable soil. Soil Biology and Biochemistry, 86, 108-115. https://doi.org/10.1016/j.soilbio.2015.03.023
  • Evans, S. E., & Burke, I. C. (2013). Carbon and nitrogen decoupling under an 11-year drought in the shortgrass steppe. Ecosystems, 16, 20-33. https://doi.org/10.1007/s10021-012-9593-4
  • Fan, L., Tarin, M. W. K., Zhang, Y., Han, Y., Rong, J., Cai, X., Chen, L., Shi, C., & Zheng, Y. (2021). Patterns of soil microorganisms and enzymatic activities of various forest types in coastal sandy land. Global Ecology and Conservation, 28, e01625. https://doi.org/10.1016/j.gecco.2021.e01625
  • Fang, X., Zhu, Y. L., Liu, J. D., Lin, X. P., Sun, H. Z., Tang, X. H., Hu, Y. L., Huang, Y. P., & Yi, Z. G. (2022). Effects of moisture and temperature on soil organic carbon decomposition along a vegetation restoration gradient of subtropical China. Forests, 13(4), 578. https://doi.org/10.3390/f13040578
  • Fangueiro, D., Senbayran, M., Trindade, H., & Chadwick, D. (2008). Cattle slurry treatment by screw press separation and chemically enhanced settling: effect on greenhouse gas emissions after land spreading and grass yield. Bioresource Technology, 99, 7132- 7142. 10.1016/j.biortech.2007.12.069
  • Gee, G. W., & Bauder, J. W. (1986). Particle-Size Analysis, In: Methods of Soil Analysis, Part I, Physical and Mineralogical Methods, Klute A. (Ed.), American Society of Agronomy, Madison, Wisconsin, 383-411.
  • Gonzalez-Mendez, B., Webster, R., Fiedler, S., Loza-Reyes, E., Hernandez, J. M., Ruiz-Suarez, L. G., & Siebe, C. (2015). Short-term emissions of CO2 and N2O in response to periodic flood irrigation with waste water in the Mezquital Valley of Mexico. Atmospheric Environment, 101, 116-124. https://doi.org/10.1016/j.atmosenv.2014.10.048
  • Haddaway, N. R., Hedlund, K., Jackson, L. E., Katterer, T., Lugato, E., Thomsen, I. K., Jorgensen, H. B., & Isberg, P. E. (2017). How does tillage intensity affect soil organic carbon? A systematic review. Environmental Evidence, 5(1), 1-8. https://doi.org/10.1186/s13750-017-0108-9
  • Hussary, J., Alowaisy, A., Yasufuku, N., Ishikura, R., & Abdelhadi, M. (2022). Pore structure and falling rate stage of evaporation in homogeneous sandy soil profiles. Soils and Foundations, 62(2), 101108. https://doi.org/10.1016/j.sandf.2022.101108
  • Jabro, J. D., Sainju, U., Stevens, W. B., & Evans, R. G. (2008). Carbon dioxide flux as affected by tillage and irrigation in soil converted from perennial forages to annual crops. Journal of Environmental Management, 88(4), 1478-1484. https://doi.org/10.1016/j.jenvman.2007.07.012
  • Lal, R. (2020). Soil organic matter and water retention. Agronomy Journal, 112 (5), 3265-3277.
  • Lamparter, A., Bachmann, J., Goebel, M. O., & Woche, S. K. (2009). Carbon mineralization soil: impact of wetting-drying, aggregation and water repellency. Geoderma, 150, 324-333. https://doi.org/10.1016/j.geoderma.2009.02.014
  • Li, X., Liu, F., Li, G., Lin, Q., & Jensen, C. R. (2010). Soil microbial response, water and nitrogen use by tomato under different irrigation regimes. Agriculture Water Management 98, 414-418. https://doi.org/10.1016/j.agwat.2010.10.008
  • Licht, M. A., & Al-Kaisi, M. (2005). Strip-tillage effect on seedbed soil temperature and other soil physical properties. Soil and Tillage Research, 80(1-2), 233-249. https://doi.org/10.1016/j.still.2004.03.017
  • Mancinelli, R., Marinari, S., Brunetti, P., Radicetti, E., & Campiglia, E. (2015). Organic mulching, irrigation and fertilization affect soil CO2 emission and C storage in tomato crop in the Mediterranean environment. Soil and Tillage Research, 152, 39-51. https://doi.org/10.1016/j.still.2015.04.001
  • Navarro-Pedreño, J., Almendro-Candel, M. B., & Zorpas, A. A. (2021). The increase of soil organic matter reduces global warming, myth or reality? Sci, 3(1), 18. https://doi.org/10.3390/sci3010018
  • Oldfield, E. E., Bradford, M. A., & Wood, S. A. (2019). Global meta-analysis of the relationship between soil organic matter and crop yields. Soil, 5(1), 15-32. https://doi.org/10.5194/soil-5-15-2019
  • Ors, S., Sahin, U., & Khadra, R. (2015). Reclamation of saline sodic soils with the use of mixed fly ash and sewage sludge. Arid Land Reserach and Management, 29, 41-54. https://doi.org/10.1080/15324982.2014.903314
  • Powlson, D. S., Bhogal, A., Chambers, B. J., Coleman, K., Macdonald, A. J., Goulding, K. W. T., & Whitmore, A. P. (2012). The potential to increase soil carbon stocks through reduced tillage or organic material additions in England and Wales: a case study. Agriculture, Ecosystems & Environment, 146(1), 23-33. https://doi.org/10.1016/j.agee.2011.10.004
  • Sainju, U. M., Singh, B. P., & Whitehead, W. F. (2002). Long-term effects of tillage, cover crops, and nitrogen fertilization on organic carbon and nitrogen concentrations in sandy loam soils in Georgia, USA. Soil and Tillage Research, 63(3-4), 167-179. https://doi.org/10.1016/S0167-1987(01)00244-6
  • Sakin, E., & Yanardag, I. H. (2019). Effect of application of sheep manure and its biochar on carbon emissions in salt affected calcareous soil in Sanliurfa Region SE Turkey. Fresenius Environmental Bulletin, 28(4), 2553-2560.
  • Shi, A. D., & Marschner, P. (2014). Drying and rewetting frequency influences cumulative respiration and its distribution over time in two soilswith contrasting management. Soil Biology and Biochemistry, 72, 172-179. https://doi.org/10.1016/j.soilbio.2014.02.001
  • Tang, J., Wang, J., Li., Z., Wang, S., & Qu, Y. (2018). Effects of irrigation regime and nitrogen fertilizer management on CH4, N2O and CO2 emissions from saline-alkaline paddy fields in Northeast China. Sustainability, 10, 475. https://doi.org/10.3390/su10020475
  • Thangarajan, R., Kunhikrishnan, A., Seshadri, B., Bolan, N.S., & Naidu, R. (2012). Greenhouse Gas Emission from Wastewater Irrigated Soils. Sustainable Irrigation and Drainage IV: Management, Technologies and Policies. Ed: B. Henning. Lightning Source, Britain.
  • Yang, F., Zhang, G. L., Yang, J. L., Li, D. C., Zhao, Y. G., Liu, F., Yang, R., & Yang, F. (2014). Organic matter controls of soil water retention in an alpine grassland and its significance for hydrological processes. Journal of Hydrology, 519, 3086-3093. https://doi.org/10.1016/j.jhydrol.2014.10.054
  • Yerli, C., & Sahin, U. (2021). Effect of different manure applications and wetting-drying cycles on CO2 emissions from soil. Environmental Engineering and Management Journal, 20(9), 317-324. 10.30638/eemj.2021.140
  • Yerli, C., Sahin, U., Cakmakci, T., & Tufenkci, S. (2019). Effects of agricultural applications on CO2 emission and ways to reduce. Turkish Journal of Agriculture-Food Science and Technology, 7(9), 1446-1456. 10.24925/turjaf.v7i9.1446-1456.2750
  • Yerli, C., Sahin, U., Kiziloglu, F. M., Oztas, T., & Ors, S. (2022b). Deficit irrigation with wastewater in direct sowed silage maize reduces CO2 emissions from soil by providing carbon savings. Journal of Water and Climate Change, 13(7), 2837-2846. https://doi.org/10.2166/wcc.2022.190
  • Yerli, C., Sahin, U., & Oztas, T. (2022a). CO2 emission from soil in silage maize irrigated with wastewater under deficit irrigation in direct sowing practice. Agricultural Water Management, 271, 107791. https://doi.org/10.1016/j.agwat.2022.107791
  • Yu, Z., Wang, G., & Marschner, P. (2014). Drying and rewetting-effect of frequency of cycles and length of moist period on soil respiration and microbial biomass. European Journal of Soil Biology, 62, 132-137. https://doi.org/10.1016/j.ejsobi.2014.03.007
  • Zhang, Z., Dong, X., Wang, S., & Pu, X. (2020). Benefits of organic manure combined with biochar amendments to cotton root growth and yield under continuous cropping systems in Xinjiang, China. Scientific Reports, 10(1), 1-10. https://doi.org/10.1038/s41598-020-61118-8
There are 36 citations in total.

Details

Primary Language English
Subjects Agricultural Engineering, Agricultural Engineering (Other)
Journal Section Research Articles
Authors

Caner Yerli 0000-0002-8601-8791

Talip Çakmakcı 0000-0001-5815-1256

Ustun Sahin 0000-0002-1924-1715

Publication Date December 31, 2022
Published in Issue Year 2022 Volume: 39 Issue: 3

Cite

APA Yerli, C., Çakmakcı, T., & Sahin, U. (2022). CO2 Emission from Soil Containing Different Organic Manures in Wetting-Drying Conditions and the Relationships of CO2 Emission with Moisture, Temperature and H2O Emission. Journal of Agricultural Faculty of Gaziosmanpaşa University (JAFAG), 39(3), 161-168. https://doi.org/10.55507/gopzfd.1187899