Research Article
BibTex RIS Cite

Bazı Herbisitlerin (Metribuzin, Pendimethalin ve Fluazifop-p-Butil) Bacillus cereus ve Pseudomonas putida Üzerine Etkisi

Year 2023, Volume: 40 Issue: 3, 155 - 162, 03.01.2024

Abstract

Birçok faydası olan yararlı bakteriler tarımda bitki gelişimini destekleyici olarak kullanılmaktadır. Tarımsal alanlarda kullanılan herbisitlerin faydalı bakteriler üzerindeki hedef dışı etkilerinin belirlenmesi gerekmektedir. Bu çalışma, herbisitlerin faydalı bakteriler Bacillus cereus ve Pseudomonas putida ‘nın çoğalmasına olumlu veya olumsuz etkilerini belirlemek amacıyla gerçekleştirilmiştir. Test edilen herbisit aktif maddeleri Fluazifop-p-buthyl, Pendimethalin ve Metribuzin'dir. Aktif maddelerin etkileri in vitro, sera saksı deneyleri ve tarla denemelerinde değerlendirilmiştir. Her herbisit için aktif maddenin üç dozu kullanılmıştır: önerilen doz (N), önerilen dozun iki katı (2N) ve önerilen dozun üç katı (3N). Artan Pendimethalin ve Fluazifop-p-buthyl dozları her iki bakterinin de yoğunluğunu azaltmaktadır. Öte yandan, artan Pendimethalin dozları P. putida'nın yoğunluğunu azaltırken, B. cereus'u etkilememiştir. Serada, B. cereus'un yoğunluğu Fluazifop-p-buthyl ve Metribuzin'in artan dozlarından etkilenmezken, pendimethalin ile artmıştır. Aktif maddelerin dozları arttıkça, serada P. putida bakteri yoğunluğu da artmıştır. Tarla denemelerinde, Pendimethalin ve Metribuzin'in önerilen dozları B. cereus yoğunluğunu engellemezken, Fluazifop-p-buthyl bakteri yoğunluğunu artırmıştır. Fluazifop-p-buthyl ve Metribuzin P. putida yoğunluğunu etkilemezken, Pendimethalin P. putida yoğunluğunu azaltmıştır. Bu çalışmada, sonuçlar herbisit etken maddeleri olan Pendimethalin, Fluazifop-p-buthyl ve Metribuzin'in P. putida ve B. cereus'un yoğunluklarını deneysel koşullara bağlı olarak artırdığını veya azalttığını, ancak topraktaki popülasyonlarını tamamen ortadan kaldırmadığını açıkça göstermiştir. Elde edilen sonuçlara ait bazı kantitatif değerlerin de özet kısmında verilmesi uygun olacaktır.

Project Number

2021/26

References

  • Aktan, ZC., Soylu, S. (2020). Prevalence and characterization of plant growth promoting mechanisms of endophytic and epiphytic bacterial species ısolated from almond trees growing in Diyarbakır province of Turkey. KSÜ Journal of Agriculturaland Nature, 23 (3), 641-654. https://doi.org/10.18016/ksutarimdoga.vi.659802.
  • Altin, N., Bora, T., (2005). Common properties and effects of plant growth promoting rhizobacteria. Anadolu Journal of Aegean Agricultural Research İnstitute,15 (2), 87-103.
  • Akbulut, G. (2008). The effects of atrazine and acetochlor herbicides on biochemical and physiological parameters of Zea mays L. (Maize) and P. sativum L. (Pea) Plants. [Doctoral dissertation, Inonu University]. Turkish Council of Higher Education National Thesis Center.
  • Belguzar, S., Yanar, Y., Aysan, Y. (2018). Epidemiology of Tomato Bacterial Wilt Disease (Clavibacter michiganensis subsp. michiganensis) in Tokat Province. Journal of Tekirdag Agricultural Faculty. 15 (3): 9-16.
  • Belguzar, S., Sin, B., Kadioglu, İ., Yilmaz, M. (2019). The effect of some herbicides on soil.3rd International UNIDOKAP Black Sea Symposium “Sustainable Agriculture and Environment”. 21-22-23 June 2019.
  • Cakmakci, R. (2004). Use of plant growth promoting rhizobacteria in agriculture. Ataturk University Research in Agricultural Sciences, 36 (1),97-107.
  • Darine, T., Alaeddine, C., Fethi, B., Ridha, M. (2015). Fluazifop-p-butyl (herbicide) affects richness and structure of soil. Biology and Biochemistry, 81, 89-97. https://doi.org/10.1016/j.soilbio.2014.10.030
  • Digrak, M., Kacar, N., Sonmez, A. (1998). Effects of the pomarsol, mitikol, rubigan and platoon on the soil microflora. Turkish Journal of Agriculture And Forestry, 23 (5):1071-1077.
  • Erguven, G O. (2019). İnvestigation of the bioremediation of herbicide metribuzin with bacillus subtilis bacteria at artifical agricultural field. International Journal of Pure and Applied Sciences, 5(1), 46-52. https://doi.org/10.29132/ijpas.529882.
  • Erguven, G., Nuhoglu Y. (2020). Bioremediation of fluazifop-p-butyl herbicide by some soil bacteria isolated from various regions of Turkey in an artificial agricultural field. Environment Protection Engineering, 46(3), 5-15. https://doi.org/10.37190/epe200301
  • Fao. (2023). Food and agriculture organization of the united nations. accessed from https://www.fao.org/faostat/en/#compare on June 22, 2023.
  • Gulec, D., Arslan, S., Tursun, N. (2015). The use of different gas injectors for developing flame cultivator torches. Journal of Agriculture Machinery Science, 11(3), 231-237.
  • Gupta, G., Parihar, S S., Ahirwar, N K., Snehi, S K., Singh, V. (2015). Plant growth promoting rhizobacteria (PGPR): current and future prospects for development of sustainable agriculture. J Microb Biochem Technol, 7(2), 096-102. https://doi.org/10.4172/1948-5948.1000188
  • Guven, A., Koc, İ. (2020). Diversity of non-targeted nematode, bacteria and microfungi populations in soil after some pesticide treatment. YYU Journal of Agricultural Science, 30(2), 252-265. https://doi.org/10.29133/yyutbd.689385.
  • Karaaslan, E., Gur, K. (2009). Effects of tree herbicides on the microbiological nitrification in two different soil texture. Selcuk Journal of Agricultureand Food Sciences, 23 (50), 68-74.
  • Kayaaslan, Z. (2021). Diagnosis, epidemiology and biological control of bacterial spot disease (Xanthomonas euvesicatoria) in pepper production areas of Tokat province. [Doctoral dissertation, Tokat Gaziosmanpasa University]. Turkish Council of Higher Education National Thesis Center.
  • Kitis, Y E., Yazir, B., Ozgonen Ozkaya., H. (2016). The effects of some soil herbicides on root colonization and spore number of mycorrhizal fungi glomusintraradices. Biological Diversityand Conservation, 9(2), 1-7.
  • Klement, Z., Mavridis, A., Rudolph, K., Vidaver, A., Perombelon, M.C.M. Moore, L.W. (1990). Inoculation of Plant Tissues. In Methods in Phytobacteriology. (Klement, Z., Rudolph. K. and Sands, D.C., Eds.) 95103. Academia Kiado.99 p.
  • Kotan, R., Tozlu, E. (2021). Determination of bactericidal effects of some pesticides on usefuland pathogenic bacteria. Journal of Tekirdag Agricultural Faculty, 18(2), 197-212. https://doi.org/10.33462/jotaf.737039
  • Kunc, F., Tichy, P., &Vancura, V. (1985). 2-4 dichlorophetexoxyaceticacid in the soil: mineralization and changes in the counts of bacteria decomposer. INRA Publ (Les Colloques de I'NRA No. 31).
  • Lelliott R A., Stead D E. (1987). Methods for the diagnosis of bacterial diseases of plants. Blackwell Scientific Publications.77p.
  • Lo, C. (2010). Effect of pesticides on soil microbial community. Journal of Environmental Science and Health, Part B., 45(5), 348-359. https://doi.org/10.1080/03601231003799804
  • Madhuri, K N., Kumar, K V K., Reddy, N S., Rao, M S., Prathima, T., Kumar, M H, ... &Giridhar, V. (2012). Influence of organic fertilizers on the population levels of Trichoderma spp. and Pseudomonas fluorescens in sugarcane. Journal of Sugarcane Research, 2(1), 61-63.
  • Maheswari, N U., Barjana, B F., Senthilkumar, R. (2016) Development of herbicide tolerant rhizobium species from different leguminous plants. Int. J. Pure App. Biosci, 4(2), 245-249. http://dx.doi.org/10.18782/2320-7051.2235
  • Oyeleke, S B., Oyewole, O A., Dagunduro, J N. (2011). Effect of herbicide (pendimethalin) on soil microbial population. Isabb Journal Of Food and Agriculture Science, 1(3), 40-43.
  • Raghavendra, K S., Gundappagol, R C., Santhosh, G P. (2017). Impact of herbicide application on beneficial soil microbial community, nodulation and yield parameters of chickpea (Cicer arietinumL.). Bulletin of Environment, Pharmacologyand Life Sciences, 6 (1), 154-159.
  • Saygili, H., Sahin F., Aysan Y. (2006). Phytobacteriology.Meta Printing House.78p.
  • Schaad, N W., Jones, J., Chun, W. (2001). Laboratory guide for the identification of plant pathogenic bacteria (No.Ed. 3). American Phytopathological society (APS press).
  • Singh, M., Singh, R., Singh, P., GS, M. (2021). In vitro compatibility of Pseudomonas fluorescens with systemic weedicides. The Pharma Innovation Journal, 10(3), 920-923.
  • Thiour-Mauprivez, C., Martin-Laurent, F., Calvayrac, C., Barthelmebs, L. (2019). Effects of herbicide on non-target microorganisms: Towards a new class of biomarkers. Science of The Total Environment, 684, 314-325. https://doi.org/10.1016/j.scitotenv.2019.05.230
  • Torun, S. (2015). Effect of application of a microbial fertilizer that contains phosphorus solubilizing bacteria on some soil biological properties and growth and nutritional status of tomato plant. [Master dissertation, Akdeniz University]. Turkish Council of Higher Education National Thesis Center.
  • Vig, K., Singh, D K., Agarwal H C., Dhawan, A K., Dureja, P. (2008). Soil microorganisms in cotton fields sequentially treated with insecticides. Ecotoxicology and environmental safety, 69(2), 263-276. https://doi.org/10.1016/j.ecoenv.2006.12.008
  • Yavuz, R., Esmeray, M., Urin, V. (2017). The effect of some herbicides on maize and weed biomass. Journal of Bahri Dagdas Crop Research. 6 (2): 1-6.
  • Zaid, A M., Mayouf, M., Said, Y F. (2014). The effect of pre-emergent herbicides on soil microflora and n-fixing bacteria in pea field. International Journal of sciences: Basic and Applied Research, 15(1), 131-138

Effect of Some Herbicide (Metribuzin, Pendimethalin and Fluazifop-p-Butyl) on Bacillus cereus and Pseudomonas putida

Year 2023, Volume: 40 Issue: 3, 155 - 162, 03.01.2024

Abstract

Beneficial bacteria are used as plant growth promoters in agriculture. The off-target effects of herbicides on beneficial bacteria are needed to be investigated. This study was carried out to determine the positive or negative effects of active compounds of herbicides on the reproduction of beneficial bacteria, Bacillus cereus and Pseudomonas putida. The herbicides used in this study contained active compounds such as Fluazifop-p-buthyl, Pendimethalin and Metribuzin. Effects of the active compounds were evaluated on the bacteria under in vitro, greenhouse and field conditions. Three doses of each active compound were used: the recommended dose (N), twice the recommended dose (2N) and three folds (3N) the recommended dose. It was observed that the increased dose of Pendimethalin, Fluazifop-p-buthyl, Metribuzin had significant effects on B. cereus and P. putida under in vitro conditions. Also, the increased dose of Pendimethalin, Fluazifop-p-buthyl significantly reduced the density of both bacteria. On the other hand, increasing doses of Pendimethalin decreased the density of P. putida, but did not affect that of B. cereus. Under greenhouse conditions, the density of B. cereus was not affected with increased doses of Fluazifop-p-buthyl and Metribuzin while the bacteria concentration were increased with doses of pendimethalin. As the doses of active substances increased, P. putida bacterial density also increased in greenhouse. Under field conditions, the recommended doses of Pendimethalin, Metribuzin did not inhibit B. cereus density, while the dose of Fluazifop-p-buthyl increased the bacterial concentration. Additionally, under similar conditions, Fluazifop-p-buthyl and Metribuzin did not affect P. putida, while Pendimethalin decreased concentration of P putida. In the present study results showed that increased active substances of Pendimethalin, Fluazifop-p-buthyl and Metribuzin are decreasing or increasing the densities of P. putida and B. cereus with dependent on experimental conditions. All these active substances are not eradicating the beneficial bacterial population in soil. It would be appropriate to give some quantitative values of the obtained results in the abstract.

Supporting Institution

Tokat Gaziosmanpasa University Scientific Research Projects (BAP) Commission

Project Number

2021/26

References

  • Aktan, ZC., Soylu, S. (2020). Prevalence and characterization of plant growth promoting mechanisms of endophytic and epiphytic bacterial species ısolated from almond trees growing in Diyarbakır province of Turkey. KSÜ Journal of Agriculturaland Nature, 23 (3), 641-654. https://doi.org/10.18016/ksutarimdoga.vi.659802.
  • Altin, N., Bora, T., (2005). Common properties and effects of plant growth promoting rhizobacteria. Anadolu Journal of Aegean Agricultural Research İnstitute,15 (2), 87-103.
  • Akbulut, G. (2008). The effects of atrazine and acetochlor herbicides on biochemical and physiological parameters of Zea mays L. (Maize) and P. sativum L. (Pea) Plants. [Doctoral dissertation, Inonu University]. Turkish Council of Higher Education National Thesis Center.
  • Belguzar, S., Yanar, Y., Aysan, Y. (2018). Epidemiology of Tomato Bacterial Wilt Disease (Clavibacter michiganensis subsp. michiganensis) in Tokat Province. Journal of Tekirdag Agricultural Faculty. 15 (3): 9-16.
  • Belguzar, S., Sin, B., Kadioglu, İ., Yilmaz, M. (2019). The effect of some herbicides on soil.3rd International UNIDOKAP Black Sea Symposium “Sustainable Agriculture and Environment”. 21-22-23 June 2019.
  • Cakmakci, R. (2004). Use of plant growth promoting rhizobacteria in agriculture. Ataturk University Research in Agricultural Sciences, 36 (1),97-107.
  • Darine, T., Alaeddine, C., Fethi, B., Ridha, M. (2015). Fluazifop-p-butyl (herbicide) affects richness and structure of soil. Biology and Biochemistry, 81, 89-97. https://doi.org/10.1016/j.soilbio.2014.10.030
  • Digrak, M., Kacar, N., Sonmez, A. (1998). Effects of the pomarsol, mitikol, rubigan and platoon on the soil microflora. Turkish Journal of Agriculture And Forestry, 23 (5):1071-1077.
  • Erguven, G O. (2019). İnvestigation of the bioremediation of herbicide metribuzin with bacillus subtilis bacteria at artifical agricultural field. International Journal of Pure and Applied Sciences, 5(1), 46-52. https://doi.org/10.29132/ijpas.529882.
  • Erguven, G., Nuhoglu Y. (2020). Bioremediation of fluazifop-p-butyl herbicide by some soil bacteria isolated from various regions of Turkey in an artificial agricultural field. Environment Protection Engineering, 46(3), 5-15. https://doi.org/10.37190/epe200301
  • Fao. (2023). Food and agriculture organization of the united nations. accessed from https://www.fao.org/faostat/en/#compare on June 22, 2023.
  • Gulec, D., Arslan, S., Tursun, N. (2015). The use of different gas injectors for developing flame cultivator torches. Journal of Agriculture Machinery Science, 11(3), 231-237.
  • Gupta, G., Parihar, S S., Ahirwar, N K., Snehi, S K., Singh, V. (2015). Plant growth promoting rhizobacteria (PGPR): current and future prospects for development of sustainable agriculture. J Microb Biochem Technol, 7(2), 096-102. https://doi.org/10.4172/1948-5948.1000188
  • Guven, A., Koc, İ. (2020). Diversity of non-targeted nematode, bacteria and microfungi populations in soil after some pesticide treatment. YYU Journal of Agricultural Science, 30(2), 252-265. https://doi.org/10.29133/yyutbd.689385.
  • Karaaslan, E., Gur, K. (2009). Effects of tree herbicides on the microbiological nitrification in two different soil texture. Selcuk Journal of Agricultureand Food Sciences, 23 (50), 68-74.
  • Kayaaslan, Z. (2021). Diagnosis, epidemiology and biological control of bacterial spot disease (Xanthomonas euvesicatoria) in pepper production areas of Tokat province. [Doctoral dissertation, Tokat Gaziosmanpasa University]. Turkish Council of Higher Education National Thesis Center.
  • Kitis, Y E., Yazir, B., Ozgonen Ozkaya., H. (2016). The effects of some soil herbicides on root colonization and spore number of mycorrhizal fungi glomusintraradices. Biological Diversityand Conservation, 9(2), 1-7.
  • Klement, Z., Mavridis, A., Rudolph, K., Vidaver, A., Perombelon, M.C.M. Moore, L.W. (1990). Inoculation of Plant Tissues. In Methods in Phytobacteriology. (Klement, Z., Rudolph. K. and Sands, D.C., Eds.) 95103. Academia Kiado.99 p.
  • Kotan, R., Tozlu, E. (2021). Determination of bactericidal effects of some pesticides on usefuland pathogenic bacteria. Journal of Tekirdag Agricultural Faculty, 18(2), 197-212. https://doi.org/10.33462/jotaf.737039
  • Kunc, F., Tichy, P., &Vancura, V. (1985). 2-4 dichlorophetexoxyaceticacid in the soil: mineralization and changes in the counts of bacteria decomposer. INRA Publ (Les Colloques de I'NRA No. 31).
  • Lelliott R A., Stead D E. (1987). Methods for the diagnosis of bacterial diseases of plants. Blackwell Scientific Publications.77p.
  • Lo, C. (2010). Effect of pesticides on soil microbial community. Journal of Environmental Science and Health, Part B., 45(5), 348-359. https://doi.org/10.1080/03601231003799804
  • Madhuri, K N., Kumar, K V K., Reddy, N S., Rao, M S., Prathima, T., Kumar, M H, ... &Giridhar, V. (2012). Influence of organic fertilizers on the population levels of Trichoderma spp. and Pseudomonas fluorescens in sugarcane. Journal of Sugarcane Research, 2(1), 61-63.
  • Maheswari, N U., Barjana, B F., Senthilkumar, R. (2016) Development of herbicide tolerant rhizobium species from different leguminous plants. Int. J. Pure App. Biosci, 4(2), 245-249. http://dx.doi.org/10.18782/2320-7051.2235
  • Oyeleke, S B., Oyewole, O A., Dagunduro, J N. (2011). Effect of herbicide (pendimethalin) on soil microbial population. Isabb Journal Of Food and Agriculture Science, 1(3), 40-43.
  • Raghavendra, K S., Gundappagol, R C., Santhosh, G P. (2017). Impact of herbicide application on beneficial soil microbial community, nodulation and yield parameters of chickpea (Cicer arietinumL.). Bulletin of Environment, Pharmacologyand Life Sciences, 6 (1), 154-159.
  • Saygili, H., Sahin F., Aysan Y. (2006). Phytobacteriology.Meta Printing House.78p.
  • Schaad, N W., Jones, J., Chun, W. (2001). Laboratory guide for the identification of plant pathogenic bacteria (No.Ed. 3). American Phytopathological society (APS press).
  • Singh, M., Singh, R., Singh, P., GS, M. (2021). In vitro compatibility of Pseudomonas fluorescens with systemic weedicides. The Pharma Innovation Journal, 10(3), 920-923.
  • Thiour-Mauprivez, C., Martin-Laurent, F., Calvayrac, C., Barthelmebs, L. (2019). Effects of herbicide on non-target microorganisms: Towards a new class of biomarkers. Science of The Total Environment, 684, 314-325. https://doi.org/10.1016/j.scitotenv.2019.05.230
  • Torun, S. (2015). Effect of application of a microbial fertilizer that contains phosphorus solubilizing bacteria on some soil biological properties and growth and nutritional status of tomato plant. [Master dissertation, Akdeniz University]. Turkish Council of Higher Education National Thesis Center.
  • Vig, K., Singh, D K., Agarwal H C., Dhawan, A K., Dureja, P. (2008). Soil microorganisms in cotton fields sequentially treated with insecticides. Ecotoxicology and environmental safety, 69(2), 263-276. https://doi.org/10.1016/j.ecoenv.2006.12.008
  • Yavuz, R., Esmeray, M., Urin, V. (2017). The effect of some herbicides on maize and weed biomass. Journal of Bahri Dagdas Crop Research. 6 (2): 1-6.
  • Zaid, A M., Mayouf, M., Said, Y F. (2014). The effect of pre-emergent herbicides on soil microflora and n-fixing bacteria in pea field. International Journal of sciences: Basic and Applied Research, 15(1), 131-138
There are 34 citations in total.

Details

Primary Language English
Subjects Phytopathology, Herbology
Journal Section Research Articles
Authors

Vasfiye Ilıkpınar Saygılı 0009-0009-3108-8870

İzzet Kadıoğlu 0000-0002-5080-4424

Sabriye Belgüzar 0000-0002-8892-0017

Yusuf Yanar 0000-0002-5795-6340

Project Number 2021/26
Publication Date January 3, 2024
Submission Date October 19, 2023
Acceptance Date January 3, 2024
Published in Issue Year 2023 Volume: 40 Issue: 3

Cite

APA Ilıkpınar Saygılı, V., Kadıoğlu, İ., Belgüzar, S., Yanar, Y. (2024). Effect of Some Herbicide (Metribuzin, Pendimethalin and Fluazifop-p-Butyl) on Bacillus cereus and Pseudomonas putida. Journal of Agricultural Faculty of Gaziosmanpaşa University (JAFAG), 40(3), 155-162.