Research Article
BibTex RIS Cite

Biberiye Rizosferindeki Yararlı Rizobakterilerin Tanımlanması ve Bitki Gelişimini Teşvik Edici Özelliklerinin Belirlenmesi

Year 2024, Volume: 41 Issue: 3, 201 - 208, 31.12.2024
https://doi.org/10.55507/gopzfd.1529947

Abstract

Bitki büyümesini teşvik eden rizobakteriler (PGPR), rizosferde kolonize olan, doğrudan ya da dolaylı olarak bitki büyümesini destekleyen çevre dostu faydalı bakterilerdir. Bu çalışmada, Rosmarinus officinalis L. (Biberiye) rizosferinden on üç izolat MALDI-TOF-MS methodu ile tanımlanarak morfolojik, biyokimyasal, bitki büyümesini teşvik edici özellikleri ile Fusarium oxysporum’a karşı antagonistik özellikleri değerlendirildi. Tüm izolatlar arasında 9 izolatın azot fikse ettiği, 8 izolatın norganik fosfatı çözdüğü, 8 izolatın siderofor ürettiği, 7 izolatın IAA (indole-3-acetic acid) ürettiği ve 6 izolatın HCN ürettiği belirlendi. BBR-6 izolatı, Fusarium oxysporum’a karşı % 61.54’lük bir inhibisyon oranıyla en yüksek antifungal aktiviteyi gösterdi. BBR-10 izolatı ise % 19.40 ile F. oxysporum’a karşı en zayıf etkiyi gösterdi. PGPR'ler üzerindeki araştırmalar son zamanlarda artsa da biberiye üzerine yapılan araştırmalar hala sınırlıdır. Bu çalışma, biberiye rizosferindeki yerel bakteri topluluğunu tanımlamayı, bitki büyümesini teşvik edici özelliklerini, mikrobiyal gübre ve biyokontrol ajan potansiyeli ile biberiye bitkisinde kök hastalığa neden olan F. oxysporum’a karşı antifungal aktivitesini değerlendirmeyi amaçlamaktadır.

References

  • Abdelkefi, N., Louati, I., Mechichi, H. Z., Sayahi, N., El-Sayed, W. S., El Nayal, A., & Mechichi, T. (2024). Enhanced salt stress tolerance in tomato plants following inoculation with newly isolated plant growth-promoting rhizobacteria. Scientia Horticulturae, 328, 112-921. https://doi.org/10.1016/j.scienta.2024.112921 
  • Agake, S. I., Artigas Ramirez, M. D., Kojima, K., Ookawa, T., Ohkama‐Ohtsu, N., & Yokoyama, T. (2021). Seed coating by biofertilizer containing spores of Bacillus pumilus TUAT1 strain enhanced initial growth of Oryza sativa L. Agronomy Journal, 113(4), 3708-3717. https://doi.org/10.1002/agj2.20747 
  • Ahmad, F., Ahmad, I., & Khan, M.S. (2008). Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiological Research, 163(2), 173-181. https://doi.org/10.1016/j.micres.2006.04.001 
  • Amri, M., Rjeibi, M. R., Gatrouni, M., Mateus, D. M., Asses, N., Pinho, H. J., & Abbes, C. (2023). Isolation, identification, and characterization of phosphate-solubilizing bacteria from Tunisian soils. Microorganisms, 11(3), 783. https://doi.org/10.3390/microorganisms11030783
  • Anderson, A.J., & Kim, Y.C. (2018). Biopesticides produced by plant-probiotic plant bacteria interaction Pseudomonas chlororaphis isolates. Crop Protection, 105, 62-69. https://doi.org/10.1016/j.cropro.2017.11.009
  • Bakker, AW., & Schippers, B. (1987). Microbial cyanides production in the rhizosphere in relation to potato yield reduction and Pseudomonas spp. mediated plant growth stimulation. Soil Biology and Biochemistry, 19(4), 451-457.
  • Bautista, D., Corrales Ramírez MSC, L.C., Cuervo Andrade, J.L., González, L., Guevara, M., & Sánchez Leal M.S.C, L.C. (2010). Evaluation of biocontrol effect of Bacillus spp. vs. Fusarium spp. under greenhouse conditions in Rosmarinus officinalis L. Biomedical Sciences Journal, 8(13), 63-75. doi.org/10.1016/0038-0717(87)90037
  • Chowhan, L.B., Mir, M. I., Sabra, M. A., El-Habbab, A.A., & Kumar, B.K. (2023). Plant growth promoting and antagonistic traits of bacteria isolated from forest soil samples. Iranian Journal of Microbiology, 15(2), 278. https://doi.org/10.18502/ijm. v15i2.1248
  • Clericuzio, M., Novello, G., Bivona, M., Gamalero, E., & Medana, C. (2024). A Study of metabolites from basidiomycota and their activities against Pseudomonas aeruginosa. Antibiotics, 13(4), 326. https://doi.org/10.3390/antibiotics13040326 
  • Diabankana, R.G.C., Afordoanyi, D.M., Safin, R. I., Nizamov, R. M., Karimova, L.Z., & Validov, S.Z. (2021). Antifungal properties, abiotic stress resistance, and biocontrol ability of Bacillus mojavensis PS17. Current Microbiology. 78:3124-3132.
  • Halimursyadah, H., Syafruddin, S., Syamsuddin, S., & Sriwati, R. (2023). Screening of indigenous rhizobacteria isolates from patchouli rhizosphere producing HCN, siderophores and chitinolytic enzymes. In IOP Conference Series: Earth and Environmental Science, 1183(1), 012096. doi.org/10.1088/1755-1315/1183/1/012096 
  • Hammer, M., & Junghanns, W. (2020). Rosmarinus officinalis L.: Rosemary. Medicinal, Aromatic and Stimulant Plants, 501-521. https://doi.org/10.1007/978-3-030-38792-11
  • Hynes, R.K., Leung, G.C., Hirkala, DL., & Nelson, L.M. (2008). Isolation, selection, and characterization of beneficial rhizobacteria from pea, lentil, and chickpea grown in western Canada. Canadian Journal of Microbiology, 54(4), 248-258.
  • Joseph, B., Patra, R.R., & Lawrence, R. (2007). Characterization of plant growth promoting rhizobacteria associated with chickpea (Cicer arietinum L.). International Journal of Plant Production,1(2), 141-152.https://doi.org/10.9734/bmrj/2015/14496
  • Khatami, S.A., Kasraie, P., Oveysi, M., Tohidi Moghadam, H.R., & Ghooshchi, F. (2023). Impacts of plant growth-promoting bacteria, compost and biodynamic compost preparations for alleviating the harmful effects of salinity on essential oil characteristics of lavender. Chemical and Biological Technologies in Agriculture, 10(1), 110. https://doi.org/10.1186/s40538-023-00485-6 
  • Kumar, A., Singh, S., Mukherjee, A., Rastogi, R. P., & Verma, J. P. (2021). Salt-tolerant plant growth-promoting Bacillus pumilus strain JPVS11 to enhance plant growth attributes of rice and improve soil health under salinity stress. Microbiological Research, 242, 126616. doi.org/10.1016/j.micres.2020.126616 
  • Landa, B. B., Hervás, A., Bettiol, W., & Jiménez-Díaz, R. M. (1997). Antagonistic activity of bacteria from the chickpea rhizosphere against Fusarium oxysporum f. sp. ciceris. Phytoparasitica, 25, 305-318. https://doi.org/10.1007/bf02981094 
  • Loera-Muro, A., Caamal-Chan, M. G., Castellanos, T., Luna-Camargo, A., Aguilar-Díaz, T., & Barraza, A. (2021). Growth effects in oregano plants (Origanum vulgare L.) assessment through inoculation of bacteria isolated from crop fields located on desert soils. Canadian Journal of Microbiology, 67(5), 381-395. https://doi.org 79/cbdm.541
  • Martínez-Hidalgo, P., Flores-Félix, J. D., Sánchez-Juanes, F., Rivas, R., Mateos, P. F., Santa Regina, I., & Velázquez, E. (2021). Identification of canola roots endophytic bacteria and analysis of their potential as biofertilizers for canola crops with special emphasisonsporulatingbacteria. Agronomy, 11,9 doi.org/10.3390/agronomy1109179,
  • Mehta, S., & Nautiyal, C.S. (2001). An efficient method for qualitative screening of phosphate-solubilizing bacteria. Current Microbiology 43, 51-56.
  • Nazir, R., Ganai, B. A., Rahi, P., Rehman, S., Farooq, S., & AbduAllah, E.F. (2020). MALDI-TOF-MS and 16S rRNA characterization of lead tolerant metallophile bacteria isolated from saffron soils of Kashmir for their sequestration potential. Saudi Journal of Biological Sciences, 27(8), 2047-2053. doi.org/10.1016/j.sjbs.2020.04.021 
  • Öksel, C., Balkan, A., Bilgin, O., Mirik, M., & Başer, İ. (2022). Investigation of the effect of PGPR on yield and some yield components in winter wheat (Triticum aestivum L.). Turkish Journal of Field Crops, 27(1), 127-133. https://doi.org/10.17557/tjfc.1019
  • Palleroni, N.J., Krieg, N.R., & Holt, J.G., (1984). Bergey's manual of systematic bacteriology. Baltimore: The Willian and Wilkins. Co, 141-219.
  • Park, M., Kim, C., Yang, J., Lee, H., Shin, W., Kim, S., & Sa, T., (2005). Isolation and characterization of diazotrophic growth promoting bacteria from rhizosphere of agricultural crops of Korea. Microbiological Research, 160(2), 127-133.
  • Patel, S.K., Singh, S., Benjamin, J.C., Singh, V.R., Bisht, D., & Lal, R.K. (2024). Plant growth-promoting activities of Serratia marcescens and Pseudomonas fluorescens on Capsicum annuum L. plants. Ecological Frontiers, 44(4), 654-663
  • Ramírez, V., Martínez, J., Bustillos‐Cristales, M.D.R., Catañeda‐Antonio, D., Munive, J. A., & Baez, A. (2022). Bacillus cereus MH778713 elicits tomato plant protection against Fusarium oxysporum. Journal of Applied Microbiology, 132(1), 470-482.
  • Rathore, R., Vakharia, D.N., & Rathore, D.S. (2020). In vitro screening of different Pseudomonas fluorescens isolates to study lytic enzyme production and growth inhibition during antagonism of Fusarium oxysporum f. sp. cumini, wilt causing pathogen of cumin. Egyptian Journal of Biological Pest Control, 30(1), 57.
  • Rawat, P., Das, S., Shankhdhar, D., & Shankhdhar, S.C. (2021). Phosphate-solubilizing microorganisms: mechanism and their role in phosphate solubilization and uptake. Journal of Soil Science and Plant Nutrition, 21(1), 49-68.
  • Rochlani, A., Dalwani, A., Shaikh, N., Shaikh, N., Sharma, S., & Saraf, M. (2022). Plant growth promoting rhizobacteria as biofertilizers: application in agricultural sustainability. Acta Scientific Microbiology 5(4), 2581-3226 
  • Royse, D., & Ries, S.M. (1978). The influence of fungi isolated from peach twigs on the pathogenicity of Cytospora cincta. Phytopathology, 68:6-37
  • Rudakova, N.L., Khilyas, I.V., Danilova, I.V., Pudova, D.S., & Sharipova, M.R. (2023). Evaluating of the potential of Bacillus pumilus 3-19 as a plant growth-promoting Strain. Russian Journal of Plant Physiology, 70(8),197. doi.org/10.1134/s1021443723
  • Saranraj, P., Sayyed, R. Z., Kokila, M., Salomi, V., Sivasakthivelan, P., Manigandan, M., & Mawar, R. (2023). Evolving concepts of biocontrol of phytopathogens by endophytic Pseudomonas fluorescence. Current Microbiology 12(7), 304
  • Sarwar, M., & Kremer, R.J. (1995). Determination of bacterially derived auxins using a microplate method. Letters in Applied Microbiology, 20(5), 282-285
  • Schwyn, B., & Neilands, J. (1987). Universal chemical assay for the detection and determination of siderophores. Analytical biochemistry, 160(1), 47-56.
  • Shariati J.V., Malboobi, M.A., Tabrizi, Z., Tavakol, E., Owlia, P., & Safari, M. (2017). Comprehensive genomic analysis of a plant growth-promoting rhizobacterium Pantoea agglomerans strain P5. Scientific Reports, 7(1), 15610.
  • Sharma, A., Dev, K., Sourirajan, A., & Choudhary, M. (2021). Isolation and characterization of salt-tolerant bacteria with plant growth-promoting activities from saline agricultural fields of Haryana, India. Journal of Genetic Engineering and Biotechnology, 19(1), 99. https://doi.org/10.1186/s43141-021-00186-3 
  • Singh, T., Tiwari, Y., & Awasthi, G. (2019). Understanding the impact of Bacillus thuringiensis proteins on non-target organisms. International Journal of Scientific Research in Biological Sciences, 6(2), 169-176 doi.org/10.26438/ijsrbs/v6i2.169176 
  • Singh, P., Singh, R.K., Li, H.B., Guo, D.J., Sharma, A., Verma, K. K., & Li, Y.R., (2023). Nitrogen fixation and phytohormone stimulation of sugarcane plant through plant growth promoting diazotrophic Pseudomonas. Biotechnology and Genetic Engineering Reviews, 1-21. https://doi.org/10.1080/02648725.2023.2177814 
  • Sivri, G.T., & Öksüz, Ö. (2019). Identification of Propionibacterium spp. isolated from mihaliç cheeses by MALDI-TOF MS. Tekirdağ Ziraat Fakültesi Dergisi, 16(2), 244-250. https://doi.org/10.33462/jotaf.526431 
  • Subramanium, N., & Sundaram, L. (2020). Siderophore producing Pseudomonas spp. isolated from rhizospheric soil and enhancing iron content in Arachis hypogaea L. plant. International Journal of Agricultural Technology, 16(2), 429-442
  • Stamenov, D., Đurić, S., & Jafari, T. H. (2021). Biostimulatory potential of microorganisms from rosemary (l.) rhizospheric soil. Contemporary Agriculture, 70(4), 108-115. https://doi.org/10.2478/contagri-2021-0016 
  • Shi, Z., Guo, X., Lei, Z., Wang, Y., Yang, Z., Niu, J., & Liang, J. (2023). Screening of high-efficiency nitrogen-fixing bacteria from the traditional Chinese medicine plant Astragalus mongolicus and its effect on plant growth promotion and bacterial communities in the rhizosphere. BMC Microbiology, 23(1), 292.
  • Tamura, H. (2023). A MALDI‐TOF MS Proteotyping Approach for Environmental, Agricultural and Food Microbiology. Microbiological identification using maldı‐tof and tandem mass spectrometry: Industrial and Environmental Applications, 147-182. https://doi.org/10.1002/9781119814085.ch6 
  • Wang, S., Huang, Z., Wan, Q., Feng, S., Xie, X., Zhang, R., & Zhang, Z. (2020). Comparative genomic and metabolomic analyses of two Pseudomonas aeruginosa strains with different antifungal activities. Frontiers in Microbiology, 11, 1841.
  • Wei, D., Zhu, D., Zhang, Y., Yang, Z., Wu, X., Shang, J., & Chang, X. (2023). Characterization of rhizosphere Pseudomonas chlororaphis IRHB3 in the reduction of Fusarium root rot and promotion of soybean growth. Biological Control, 186, 105-349. https://doi.org/10.2139/ssrn.4514461 
  • Wilson, M., & Knight, D. (1952). Methods of Plant Pathology, Ed. Tuite, J. London: Academic Press.343
  • Yang, D., Zhang, X., Li, Z., Chu, R., Shah, S., & Zhang, X. (2024). Antagonistic effect of Bacillus and Pseudomonas combinations against Fusarium oxysporum and their effect on disease resistance and growth promotion in watermelon. Journal of Applied Microbiology, 135(5), 74. https://doi.org/10.1093/jambio/lxae074

Identification of Beneficial Bacteria in Rosemary Rhizospheres and Determination of Plant Growth Promoting (PGP) Potential

Year 2024, Volume: 41 Issue: 3, 201 - 208, 31.12.2024
https://doi.org/10.55507/gopzfd.1529947

Abstract

Plant growth-promoting rhizobacteria (PGPR), which colonize the rhizosphere, are eco-friendly and beneficial bacteria that directly or indirectly promote plant growth. In this study, 13 isolates from the rhizosphere of Rosmarinus officinalis L. (Rosemary) were identified using MALDI-TOF-MS to assess morphology, biochemistry, and plant growth-promoting traits and to evaluate their antagonistic effects against Fusarium oxysporum. Among all isolates, 9 isolates fixed nitrogen, 8 isolates dissolved inorganic phosphate, 8 isolates produced siderophores, 7 isolates produced IAA (Indole-3-Acetic Acid), and 6 isolates produced HCN. Isolate BBR-6 showed the highest antifungal activity against Fusarium oxysporum, with an inhibition rate of 61.54 %. The isolate BBR-10 (19.40 %) showed the weakest effect against F. oxysporum. Although research on PGPRs has increased recently, research on rosemary is still limited. This study aimed to identify the local bacterial community in the rhizosphere of rosemary and assess its growth-promoting properties and antifungal activity against disease-causing F. oxysporum, potentially acting as a microbial fertilizer and biocontrol agentents.

References

  • Abdelkefi, N., Louati, I., Mechichi, H. Z., Sayahi, N., El-Sayed, W. S., El Nayal, A., & Mechichi, T. (2024). Enhanced salt stress tolerance in tomato plants following inoculation with newly isolated plant growth-promoting rhizobacteria. Scientia Horticulturae, 328, 112-921. https://doi.org/10.1016/j.scienta.2024.112921 
  • Agake, S. I., Artigas Ramirez, M. D., Kojima, K., Ookawa, T., Ohkama‐Ohtsu, N., & Yokoyama, T. (2021). Seed coating by biofertilizer containing spores of Bacillus pumilus TUAT1 strain enhanced initial growth of Oryza sativa L. Agronomy Journal, 113(4), 3708-3717. https://doi.org/10.1002/agj2.20747 
  • Ahmad, F., Ahmad, I., & Khan, M.S. (2008). Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiological Research, 163(2), 173-181. https://doi.org/10.1016/j.micres.2006.04.001 
  • Amri, M., Rjeibi, M. R., Gatrouni, M., Mateus, D. M., Asses, N., Pinho, H. J., & Abbes, C. (2023). Isolation, identification, and characterization of phosphate-solubilizing bacteria from Tunisian soils. Microorganisms, 11(3), 783. https://doi.org/10.3390/microorganisms11030783
  • Anderson, A.J., & Kim, Y.C. (2018). Biopesticides produced by plant-probiotic plant bacteria interaction Pseudomonas chlororaphis isolates. Crop Protection, 105, 62-69. https://doi.org/10.1016/j.cropro.2017.11.009
  • Bakker, AW., & Schippers, B. (1987). Microbial cyanides production in the rhizosphere in relation to potato yield reduction and Pseudomonas spp. mediated plant growth stimulation. Soil Biology and Biochemistry, 19(4), 451-457.
  • Bautista, D., Corrales Ramírez MSC, L.C., Cuervo Andrade, J.L., González, L., Guevara, M., & Sánchez Leal M.S.C, L.C. (2010). Evaluation of biocontrol effect of Bacillus spp. vs. Fusarium spp. under greenhouse conditions in Rosmarinus officinalis L. Biomedical Sciences Journal, 8(13), 63-75. doi.org/10.1016/0038-0717(87)90037
  • Chowhan, L.B., Mir, M. I., Sabra, M. A., El-Habbab, A.A., & Kumar, B.K. (2023). Plant growth promoting and antagonistic traits of bacteria isolated from forest soil samples. Iranian Journal of Microbiology, 15(2), 278. https://doi.org/10.18502/ijm. v15i2.1248
  • Clericuzio, M., Novello, G., Bivona, M., Gamalero, E., & Medana, C. (2024). A Study of metabolites from basidiomycota and their activities against Pseudomonas aeruginosa. Antibiotics, 13(4), 326. https://doi.org/10.3390/antibiotics13040326 
  • Diabankana, R.G.C., Afordoanyi, D.M., Safin, R. I., Nizamov, R. M., Karimova, L.Z., & Validov, S.Z. (2021). Antifungal properties, abiotic stress resistance, and biocontrol ability of Bacillus mojavensis PS17. Current Microbiology. 78:3124-3132.
  • Halimursyadah, H., Syafruddin, S., Syamsuddin, S., & Sriwati, R. (2023). Screening of indigenous rhizobacteria isolates from patchouli rhizosphere producing HCN, siderophores and chitinolytic enzymes. In IOP Conference Series: Earth and Environmental Science, 1183(1), 012096. doi.org/10.1088/1755-1315/1183/1/012096 
  • Hammer, M., & Junghanns, W. (2020). Rosmarinus officinalis L.: Rosemary. Medicinal, Aromatic and Stimulant Plants, 501-521. https://doi.org/10.1007/978-3-030-38792-11
  • Hynes, R.K., Leung, G.C., Hirkala, DL., & Nelson, L.M. (2008). Isolation, selection, and characterization of beneficial rhizobacteria from pea, lentil, and chickpea grown in western Canada. Canadian Journal of Microbiology, 54(4), 248-258.
  • Joseph, B., Patra, R.R., & Lawrence, R. (2007). Characterization of plant growth promoting rhizobacteria associated with chickpea (Cicer arietinum L.). International Journal of Plant Production,1(2), 141-152.https://doi.org/10.9734/bmrj/2015/14496
  • Khatami, S.A., Kasraie, P., Oveysi, M., Tohidi Moghadam, H.R., & Ghooshchi, F. (2023). Impacts of plant growth-promoting bacteria, compost and biodynamic compost preparations for alleviating the harmful effects of salinity on essential oil characteristics of lavender. Chemical and Biological Technologies in Agriculture, 10(1), 110. https://doi.org/10.1186/s40538-023-00485-6 
  • Kumar, A., Singh, S., Mukherjee, A., Rastogi, R. P., & Verma, J. P. (2021). Salt-tolerant plant growth-promoting Bacillus pumilus strain JPVS11 to enhance plant growth attributes of rice and improve soil health under salinity stress. Microbiological Research, 242, 126616. doi.org/10.1016/j.micres.2020.126616 
  • Landa, B. B., Hervás, A., Bettiol, W., & Jiménez-Díaz, R. M. (1997). Antagonistic activity of bacteria from the chickpea rhizosphere against Fusarium oxysporum f. sp. ciceris. Phytoparasitica, 25, 305-318. https://doi.org/10.1007/bf02981094 
  • Loera-Muro, A., Caamal-Chan, M. G., Castellanos, T., Luna-Camargo, A., Aguilar-Díaz, T., & Barraza, A. (2021). Growth effects in oregano plants (Origanum vulgare L.) assessment through inoculation of bacteria isolated from crop fields located on desert soils. Canadian Journal of Microbiology, 67(5), 381-395. https://doi.org 79/cbdm.541
  • Martínez-Hidalgo, P., Flores-Félix, J. D., Sánchez-Juanes, F., Rivas, R., Mateos, P. F., Santa Regina, I., & Velázquez, E. (2021). Identification of canola roots endophytic bacteria and analysis of their potential as biofertilizers for canola crops with special emphasisonsporulatingbacteria. Agronomy, 11,9 doi.org/10.3390/agronomy1109179,
  • Mehta, S., & Nautiyal, C.S. (2001). An efficient method for qualitative screening of phosphate-solubilizing bacteria. Current Microbiology 43, 51-56.
  • Nazir, R., Ganai, B. A., Rahi, P., Rehman, S., Farooq, S., & AbduAllah, E.F. (2020). MALDI-TOF-MS and 16S rRNA characterization of lead tolerant metallophile bacteria isolated from saffron soils of Kashmir for their sequestration potential. Saudi Journal of Biological Sciences, 27(8), 2047-2053. doi.org/10.1016/j.sjbs.2020.04.021 
  • Öksel, C., Balkan, A., Bilgin, O., Mirik, M., & Başer, İ. (2022). Investigation of the effect of PGPR on yield and some yield components in winter wheat (Triticum aestivum L.). Turkish Journal of Field Crops, 27(1), 127-133. https://doi.org/10.17557/tjfc.1019
  • Palleroni, N.J., Krieg, N.R., & Holt, J.G., (1984). Bergey's manual of systematic bacteriology. Baltimore: The Willian and Wilkins. Co, 141-219.
  • Park, M., Kim, C., Yang, J., Lee, H., Shin, W., Kim, S., & Sa, T., (2005). Isolation and characterization of diazotrophic growth promoting bacteria from rhizosphere of agricultural crops of Korea. Microbiological Research, 160(2), 127-133.
  • Patel, S.K., Singh, S., Benjamin, J.C., Singh, V.R., Bisht, D., & Lal, R.K. (2024). Plant growth-promoting activities of Serratia marcescens and Pseudomonas fluorescens on Capsicum annuum L. plants. Ecological Frontiers, 44(4), 654-663
  • Ramírez, V., Martínez, J., Bustillos‐Cristales, M.D.R., Catañeda‐Antonio, D., Munive, J. A., & Baez, A. (2022). Bacillus cereus MH778713 elicits tomato plant protection against Fusarium oxysporum. Journal of Applied Microbiology, 132(1), 470-482.
  • Rathore, R., Vakharia, D.N., & Rathore, D.S. (2020). In vitro screening of different Pseudomonas fluorescens isolates to study lytic enzyme production and growth inhibition during antagonism of Fusarium oxysporum f. sp. cumini, wilt causing pathogen of cumin. Egyptian Journal of Biological Pest Control, 30(1), 57.
  • Rawat, P., Das, S., Shankhdhar, D., & Shankhdhar, S.C. (2021). Phosphate-solubilizing microorganisms: mechanism and their role in phosphate solubilization and uptake. Journal of Soil Science and Plant Nutrition, 21(1), 49-68.
  • Rochlani, A., Dalwani, A., Shaikh, N., Shaikh, N., Sharma, S., & Saraf, M. (2022). Plant growth promoting rhizobacteria as biofertilizers: application in agricultural sustainability. Acta Scientific Microbiology 5(4), 2581-3226 
  • Royse, D., & Ries, S.M. (1978). The influence of fungi isolated from peach twigs on the pathogenicity of Cytospora cincta. Phytopathology, 68:6-37
  • Rudakova, N.L., Khilyas, I.V., Danilova, I.V., Pudova, D.S., & Sharipova, M.R. (2023). Evaluating of the potential of Bacillus pumilus 3-19 as a plant growth-promoting Strain. Russian Journal of Plant Physiology, 70(8),197. doi.org/10.1134/s1021443723
  • Saranraj, P., Sayyed, R. Z., Kokila, M., Salomi, V., Sivasakthivelan, P., Manigandan, M., & Mawar, R. (2023). Evolving concepts of biocontrol of phytopathogens by endophytic Pseudomonas fluorescence. Current Microbiology 12(7), 304
  • Sarwar, M., & Kremer, R.J. (1995). Determination of bacterially derived auxins using a microplate method. Letters in Applied Microbiology, 20(5), 282-285
  • Schwyn, B., & Neilands, J. (1987). Universal chemical assay for the detection and determination of siderophores. Analytical biochemistry, 160(1), 47-56.
  • Shariati J.V., Malboobi, M.A., Tabrizi, Z., Tavakol, E., Owlia, P., & Safari, M. (2017). Comprehensive genomic analysis of a plant growth-promoting rhizobacterium Pantoea agglomerans strain P5. Scientific Reports, 7(1), 15610.
  • Sharma, A., Dev, K., Sourirajan, A., & Choudhary, M. (2021). Isolation and characterization of salt-tolerant bacteria with plant growth-promoting activities from saline agricultural fields of Haryana, India. Journal of Genetic Engineering and Biotechnology, 19(1), 99. https://doi.org/10.1186/s43141-021-00186-3 
  • Singh, T., Tiwari, Y., & Awasthi, G. (2019). Understanding the impact of Bacillus thuringiensis proteins on non-target organisms. International Journal of Scientific Research in Biological Sciences, 6(2), 169-176 doi.org/10.26438/ijsrbs/v6i2.169176 
  • Singh, P., Singh, R.K., Li, H.B., Guo, D.J., Sharma, A., Verma, K. K., & Li, Y.R., (2023). Nitrogen fixation and phytohormone stimulation of sugarcane plant through plant growth promoting diazotrophic Pseudomonas. Biotechnology and Genetic Engineering Reviews, 1-21. https://doi.org/10.1080/02648725.2023.2177814 
  • Sivri, G.T., & Öksüz, Ö. (2019). Identification of Propionibacterium spp. isolated from mihaliç cheeses by MALDI-TOF MS. Tekirdağ Ziraat Fakültesi Dergisi, 16(2), 244-250. https://doi.org/10.33462/jotaf.526431 
  • Subramanium, N., & Sundaram, L. (2020). Siderophore producing Pseudomonas spp. isolated from rhizospheric soil and enhancing iron content in Arachis hypogaea L. plant. International Journal of Agricultural Technology, 16(2), 429-442
  • Stamenov, D., Đurić, S., & Jafari, T. H. (2021). Biostimulatory potential of microorganisms from rosemary (l.) rhizospheric soil. Contemporary Agriculture, 70(4), 108-115. https://doi.org/10.2478/contagri-2021-0016 
  • Shi, Z., Guo, X., Lei, Z., Wang, Y., Yang, Z., Niu, J., & Liang, J. (2023). Screening of high-efficiency nitrogen-fixing bacteria from the traditional Chinese medicine plant Astragalus mongolicus and its effect on plant growth promotion and bacterial communities in the rhizosphere. BMC Microbiology, 23(1), 292.
  • Tamura, H. (2023). A MALDI‐TOF MS Proteotyping Approach for Environmental, Agricultural and Food Microbiology. Microbiological identification using maldı‐tof and tandem mass spectrometry: Industrial and Environmental Applications, 147-182. https://doi.org/10.1002/9781119814085.ch6 
  • Wang, S., Huang, Z., Wan, Q., Feng, S., Xie, X., Zhang, R., & Zhang, Z. (2020). Comparative genomic and metabolomic analyses of two Pseudomonas aeruginosa strains with different antifungal activities. Frontiers in Microbiology, 11, 1841.
  • Wei, D., Zhu, D., Zhang, Y., Yang, Z., Wu, X., Shang, J., & Chang, X. (2023). Characterization of rhizosphere Pseudomonas chlororaphis IRHB3 in the reduction of Fusarium root rot and promotion of soybean growth. Biological Control, 186, 105-349. https://doi.org/10.2139/ssrn.4514461 
  • Wilson, M., & Knight, D. (1952). Methods of Plant Pathology, Ed. Tuite, J. London: Academic Press.343
  • Yang, D., Zhang, X., Li, Z., Chu, R., Shah, S., & Zhang, X. (2024). Antagonistic effect of Bacillus and Pseudomonas combinations against Fusarium oxysporum and their effect on disease resistance and growth promotion in watermelon. Journal of Applied Microbiology, 135(5), 74. https://doi.org/10.1093/jambio/lxae074
There are 47 citations in total.

Details

Primary Language English
Subjects Plant Bacteriology in Agriculture, Medicinal and Aromatic Plants , Soil Sciences and Ecology
Journal Section Research Articles
Authors

Murat Güler 0000-0002-3074-6458

Publication Date December 31, 2024
Submission Date August 7, 2024
Acceptance Date November 20, 2024
Published in Issue Year 2024 Volume: 41 Issue: 3

Cite

APA Güler, M. (2024). Identification of Beneficial Bacteria in Rosemary Rhizospheres and Determination of Plant Growth Promoting (PGP) Potential. Journal of Agricultural Faculty of Gaziosmanpaşa University (JAFAG), 41(3), 201-208. https://doi.org/10.55507/gopzfd.1529947