Research Article
BibTex RIS Cite

Trend Analysis of the Flow and Water Quality Data for the Broad River Basin, South Carolina, USA

Year 2024, Volume: 41 Issue: 3, 226 - 235, 31.12.2024
https://doi.org/10.55507/gopzfd.1556000

Abstract

Water quality is vital for human health and the protection of natural ecosystems, and demand for quality water is increasing day by day. It is known that changes in precipitation and temperature patterns due to climate change directly or indirectly affect water quantity and quality. In order to understand the potential effects of climate change on water resources, it is very important to know the changes in flow and water quality data over time. Trend analysis methods are the most used methods for this purpose. In this study, monthly, seasonal, and annual changes of dissolved oxygen (DO), water temperature (WT), discharge (Q), and specific conductance (SC) parameters, which are measured and recorded daily between 1987 and 2022 at four monitoring stations in the Broad River Basin (South Carolina, USA), were investigated using the Mann-Kendall test and innovative trend analysis (ITA) methods. Electrical conductivity (EC) values, calculated by considering SC and WT data, were considered. The Mann-Kendall test and ITA identified significant trends in 32.4 and 64.6% of the 272-time series analysed, respectively. It was determined that ITA was more sensitive in identifying decreasing trends. While the spatially and temporally varying trends in the river DO concentration and EC values were associated with human activities, it was concluded that the increasing trends in WT values and decreasing trends in Q values may be due to climate change on precipitation and air temperature parameters. This study, based on long-term data sets, illuminates the global concerns about the impacts of climate change on water quality and provides important findings that will guide sustainable management of water resources and measures to be taken against climate change. It is the first study to examine long-term trends of water quality parameters for the basin.

Thanks

The authors sincerely thank the United States Geological Survey staff who made this work possible by ensuring the monitoring, processing, and management of the river water-quality data. Theyare also appreciative of the providers of the Salford Predictive Modeler 8 software, which was used to perform the analyses.

References

  • Acar, E., Kankal, M., Akcay, F., & San, M. (2022). Innovative polygon trend analyses with star graph for rainfall and temperature data in agricultural regions of Turkey. Environmental Earth Sciences, 81(23), 530. https://doi.org/10.1007/s12665-022-10646-9
  • Achite, M., Ceribasi, G., Ceyhunlu, A. I., Walega, A., & Caloiero, T. (2021). The innovative polygon trend analysis (IPTA) as a simple qualitative method to detect changes in environment-example detecting trends of the total monthly precipitation in semiarid area. Sustainability, 13(22), 12674. https://doi.org/10.3390/su132212674
  • Agbo, E. P., Nkajoe, U., & Edet, C. O. (2023). Comparison of Mann–Kendall and Şen’s innovative trend method for climatic parameters over Nigeria’s climatic zones. Climate Dynamics, 60(11), 3385-3401. https://doi.org/10.1007/s00382-022-06521-9
  • Akçay, F. (2018). Trend analysis for the monthly and yearly mean flows of the Eastern Black Sea Basin (Publication No. 511679) [Master thesis, Karadeniz Technical University]. (in Turkish with an English abstract)
  • Aytekin, A. (2012). Statistical analysis of low flow in climate change (Publication No. 328142) [Doctoral dissertation, İstanbul Technical University]. (in Turkish with an English abstract)
  • Bettinger, J., Crane, J., & Bulak, J. (2003). Broad River aquatic resources inventory completion report. Broad River comprehensive entrainment mitigation and fisheries resource enhancement program. South Carolina Department of Natural Resources. https://www.dnr.sc.gov/fish/fwfi/files/broadriver2001-2002.pdf.
  • Collaud Coen, M., Andrews, E., Bigi, A., Martucci, G., Romanens, G., Vogt, F. P., & Vuilleumier, L. (2020). Effects of the prewhitening method, the time granularity, and the time segmentation on the Mann–Kendall trend detection and the associated Sen’s slope. Atmospheric Measurement Techniques, 13(12), 6945-6964. https:// doi.org/ 10.5194/amt-13-6945-2020
  • Dabanlı, İ. (2017). Climate change impact on precipitation-temperature in Turkey and drought analysis: Akarcay case study, (Publication No. 451037) [Doctoral dissertation, İstanbul Technical University]. (in Turkish with an English abstract)
  • Da Silva, R. M., Santos, C. A., Moreira, M., Corte-Real, J., Silva, V. C., & Medeiros, I. C. (2015). Rainfall and river flow trends using Mann–Kendall and Sen’s slope estimator statistical tests on the Cobres River Basin. Natural Hazards, 77, 1205-1221. https://doi.org/10.1007/s11069-015-1644-7
  • Diop, L., Yaseen, Z. M., Bodian, A., Djaman, K., & Brown, L. (2018). Trend analysis of streamflow with different time scales: a case study of the upper Senegal River. ISH Journal of Hydraulic Engineering, 24(1), 105-114. https://doi.org/10.1080/09715010.2017.1333045
  • Duy, V. V., Ouillon, S., & Minh, H. N. (2022). Sea surface temperature trend analysis by Mann-Kendall test and Sen’s slope estimator: a study of the Hai Phong coastal area (Vietnam) for the period 1995-2020. Vietnam Journal of Earth Sciences, 44(1), 73-91. https://doi.org/10.15625/2615-9783/16874
  • Field, A. (2009). Discovering statistics using SPSS. SAGE Publications.
  • Gaddikeri, V., Sarangi, A., Singh, D. K., Jatav, M. S., Rajput, J., & Kushwaha, N. L. (2024). Trend and change-point analyses of meteorological variables using Mann–Kendall family tests and innovative trend assessment techniques in New Bhupania command (India). Journal of Water and Climate Change, 15(5), 2033-2058. https://doi.org/10.2166/wcc.2024.462
  • Garcia, S., Fernandez, A., Luengo, J., & Herrera, F. (2010). Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: experimental analysis of power. Information Sciences, 180(10), 2044-2064. https://doi.org/10.1016/j.ins.2009.12.010
  • Gentilucci, M., Djouohou, S. I., Barbieri, M., Hamed, Y., & Pambianchi, G. (2023). Trend analysis of streamflows in relation to precipitation: a case study in Central Italy. Water, 15(8), 1586. https://doi.org/10.3390/w15081586
  • Hadi, S. J., & Tombul, M. (2018). Long‐term spatiotemporal trend analysis of precipitation and temperature over Turkey. Meteorological Applications, 25(3), 445-455. https://doi.org/10.1002/met.1712
  • Hashim, M., Nayan, N., Setyowati, D. L., Said, Z. M., Mahat, H., & Saleh, Y. (2021). Analysis of water quality trends using the Mann-Kendall test and Sen’s estimator of slope in a tropical river basin. Pollution, 7(4), 933-942. https:// doi.org/10.22059/poll.2021.325794.1118
  • Hirca, T., & Eryilmaz Turkkan, G. (2022). Comparison of statistical methods to graphical method in precipitation trend analysis, a case study: Coruh Basin, Turkey. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 46(6), 4605-4617. https://doi.org/10.1007/s40996-022-00869-y
  • Isaak, D. J., Wollrab, S., Horan, D., & Chandler, G. (2012). Climate change effects on stream and river temperatures across the northwest US from 1980–2009 and implications for salmonid fishes. Climatic Change, 113, 499-524. https://doi.org/10.1007/s10584-011-0326-z
  • Jamian, Y., Lamat, Z., & Rali, N. (2017). Trend analysis of water quality at Sungai Sarawak. Pertanika Journal Sciences & Technological, 25, 55-62.
  • Javed, A., Cheng, V. Y., & Arhonditsis, G. B. (2019). Detection of spatial and temporal hydro-meteorological trends in Lake Michigan, Lake Huron and Georgian Bay. Aquatic Ecosystem Health & Management, 22(1), 1-14. https://doi.org/10.1080/14634988.2018.1500850
  • Jin, D. H., Jang, S. H., Kim, H. K., & Lee, Y. S. (2021). A trend analysis of seasonal average temperatures over 40 years in South Korea using Mann-Kendall test and Sen’s slope. The Korean Journal of Applied Statistics, 34(3), 439-447. https:// doi.org/ 10.5351/KJAS.2021.34.3.439
  • Kendall, M. G. (1975). Rank correlation methods. Charless Griffin.
  • Kisi, O., & Ay, M. (2014). Comparison of Mann–Kendall and innovative trend method for water quality parameters of the Kizilirmak River, Turkey. Journal of Hydrology, 513, 362-375. https://doi.org/10.1016/j.jhydrol.2014.03.005
  • Koruk, A. E., Kankal, M., Yildiz, M. B., Akcay, F., San, M., & Nacar, S. (2023). Trend analysis of precipitation using innovative approaches in northwestern Turkey. Physics and Chemistry of the Earth, Parts A/B/C, 131, 103416. https://doi.org/10.1016/j.pce.2023.103416
  • Kundzewicz, Z. W. (2008). Climate change impacts on the hydrological cycle. Ecohydrology and Hydrobiology, 8(2-4), 195-203.
  • Mann, H. B. (1945). Non-parametric tests against trend. Econometric Society, 13(3), 245-259. https://doi.org/10.2478/v10104-009-0015-y
  • Likinaw, A., Alemayehu, A., & Bewket, W. (2023). Trends in extreme precipitation indices in Northwest Ethiopia: comparative analysis using the Mann–Kendall and innovative trend analysis methods. Climate, 11(8), 164. https://doi.org/10.3390/cli11080164
  • Maxwell, J. T., Harley, G. L., Tucker, C. S., Galuska, T., Ficklin, D. L., Bregy, J. C., & Therrell, M. D. (2022). 1,100‐Year Reconstruction of baseflow for the Santee River, South Carolina, USA reveals connection to the North Atlantic subtropical high. Geophysical Research Letters, 49(22), e2022GL100742. https://doi.org/10.1029/2022GL100742
  • Nabi, M. M., Wang, J., & Baalousha, M. (2021). Episodic surges in titanium dioxide engineered particle concentrations in surface waters following rainfall events. Chemosphere, 263, 128261. https://doi.org/10.1016/j.chemosphere.2020.128261
  • Nacar, S., Mete, B., & Bayram, A. (2019). Estimation of daily dissolved oxygen concentration in the Broad River, South Carolina. International Civil Engineering and Architecture Conference, Trabzon, Turkey, pp: 879-885
  • Nacar, S., Mete, B., & Bayram, A. (2020). Estimation of daily dissolved oxygen concentration for river water quality using conventional regression analysis, multivariate adaptive regression splines, and TreeNet techniques. Environmental Monitoring and Assessment, 192(12), 752. https://doi.org/10.1007/s10661-020-08649-9
  • Nourani, V., Danandeh Mehr, A., & Azad, N. (2018). Trend analysis of hydroclimatological variables in Urmia Lake Basin using hybrid wavelet Mann–Kendall and Şen tests. Environmental Earth Sciences, 77(5), 207. https://doi.org/10.1007/s12665-018-7390-x
  • Othman, M. A., Zakaria, N. A., Ghani, A. A., Chang, C. K., & Chan, N. W. (2016). Analysis of trends of extreme rainfall events using Mann Kendall test: a case study in Pahang and Kelantan River Basins. Jurnal Teknologi, 78(9-4), 63-69. https://doi.org/10.11113/jt.v78.9696
  • Ouyang, X., Chen, D., Zhou, S., Zhang, R., Yang, J., Hu, G., Dou, Y., & Liu, Q. (2021). A slight temperature warming trend occurred over Lake Ontario from 2001 to 2018. Land, 10(12), 1315. https://doi.org/10.3390/land10121315
  • Partal, T., & Kahya, E. (2006). Trend analysis in Turkish precipitation data. Hydrological Processes, 20, 2011-2026. https://doi.org/10.1002/hyp.5993
  • Phuong, D. N. D., Tram, V. N. Q., Nhat, T. T., Ly, T. D., & Loi, N. K. (2020). Hydro-meteorological trend analysis using the Mann-Kendall and innovative-Şen methodologies: a case study. International Journal of Global Warming, 20(2), 145-164. https://doi.org/10.1504/IJGW.2020.105385
  • Raschke, R. L., Carroll, B., & Tebo, L. B. (1975). The relationship between substrate content, water quality, actinomycetes and musty odours in the Broad River Basin. Journal of Applied Ecology, 12(2), 535-560. https://doi.org/10.2307/2402173
  • Rogers, K., Roland, V., Hoos, A., Crowley-Ornelas, E., & Knight, R. (2020). An analysis of streamflow trends in the Southern and Southeastern US from 1950-2015. Water, 12(12), 3345. https://doi.org/10.3390/w12123345
  • Salami, A. W., Mohammed, A. A., Abdulmalik, Z. H., & Olanlokun, O. K. (2014). Trend analysis of hydro-meteorological variables using the Mann-Kendall trend test: application to the Niger River and the Benue sub-basins in Nigeria. International Journal of Technology, 5(2), 100-110. https:// doi.org/10.14716/ijtech.v5i2.406
  • Salvai, A., Grabic, J., Josimov-Dundjerski, J., Zemunac, R., Antonic, N., Savic, R., & Blagojevic, B. (2022). Trend analysis of water quality parameters in the middle part of the Danube flow in Serbia. Ecological Chemistry and Engineering S, 29(1), 51-63. https:// doi.org/ 10.2478/eces-2022-0006
  • San, M., Akcay, F., Linh, N. T. T., Kankal, M., & Pham, Q. B. (2021). Innovative and polygonal trend analyses applications for rainfall data in Vietnam. Theoretical and Applied Climatology, 144, 809-822. https://doi.org/10.1007/s00704-021-03574-4
  • Santhi, C., Allen, P. M., Muttiah, R. S., Arnold, J. G., & Tuppad, P. (2008). Regional estimation of base flow for the conterminous United States by hydrologic landscape regions. Journal of Hydrology, 351(1-2), 139-153. https://doi.org/10.1016/j.jhydrol.2007.12.018
  • Sattari, M. T., Mirabbasi, R., Jarhan, S., Shaker Sureh, F., & Ahmad, S. (2020). Trend and abrupt change analysis in water quality of Urmia Lake in comparison with changes in lake water level. Environmental Monitoring and Assessment, 192(10), 623. https://doi.org/10.1007/s10661-020-08577-8
  • Schwartz, P., & Randall, D. (2003). An abrupt climate change scenario and its implications for United States national security (Vol. 22). US Department of Defense.
  • Sen, Z. (2020). Up-to-date statistical essentials in climate change and hydrology: a review. International Journal of Global Warming, 22(4), 392-431. https://doi.org/10.1504/IJGW.2020.111515
  • Swain, S., Mishra, S. K., Pandey, A., Dayal, D., & Srivastava, P. K. (2022). Appraisal of historical trends in maximum and minimum temperature using multiple non-parametric techniques over the agriculture-dominated Narmada Basin, India. Environmental Monitoring and Assessment, 194(12), 893. https://doi.org/10.1007/s10661-022-10534-6
  • Tadesse, S., Mekuriaw, A., & Assen, M. (2024). Spatiotemporal climate variability and trends in the Upper Gelana Watershed, northeastern highlands of Ethiopia. Heliyon, 10(5), e27274. https:// doi.org/ 10.1016/j.heliyon.2024.e27274
  • Ureta, J. C., Clay, L., Motallebi, M., & Ureta, J. (2020). Quantifying the landscape’s ecological benefits—an analysis of the effect of land cover change on ecosystem services. Land, 10(1), 21. https:// doi.org/ 10.3390/land10010021
  • Vani, P. C., Sahoo, B. C., Paul, J. C., Sahu, A. P., & Mohapatra, A. K. B. (2023). Trend analysis in gridded rainfall data using Mann-Kendall and Spearman’s Rho tests in Kesinga Catchment of Mahanadi River Basin, India. Pure and Applied Geophysics, 180(12), 4339-4353. https://doi.org/10.1007/s00024-023-03379-8

Broad Nehri Havzası, için Akış ve Su Kalitesi Verilerinin Trend Analizi, Güney Karolina, ABD

Year 2024, Volume: 41 Issue: 3, 226 - 235, 31.12.2024
https://doi.org/10.55507/gopzfd.1556000

Abstract

Su kalitesi, insan sağlığı ve doğal ekosistemlerin korunması bakımından hayati öneme sahip olup, kaliteli suya olan ihtiyaç her geçen gün artmaktadır. İklim değişikliği sebebiyle yağış ve sıcaklık rejimlerinde meydana gelen değişimlerin su miktarını ve kalitesini doğrudan veya dolaylı olarak etkilediği bilinmektedir. İklim değişikliğinin su kaynakları üzerindeki potansiyel etkilerinin anlaşılabilmesi için akım ve su kalitesi verilerinin zaman içerisindeki değişimlerinin bilinmesi oldukça önemlidir. Trend analizleri bu amaçla en çok kullanılan yöntemlerdir. Bu çalışmada, Broad Nehri Havzası’nda (Güney Carolina, ABD) seçilen dört gözlem istasyonunda 1987-2022 yılları arasında günlük olarak ölçülmüş ve kaydedilmiş çözünmüş oksijen (DO), su sıcaklığı (WT), debi (Q) ve özgül iletkenlik (SC) parametrelerinin aylık, mevsimlik ve yıllık değişimleri Mann-Kendall testi ve yenilikçi eğilim analizi (ITA) yöntemleri kullanılarak araştırılmıştır. Çalışmada SC ve WT verileri dikkate alınarak hesaplanan elektriksel iletkenlik (EC) değerleri kullanılmıştır. Analiz edilen 272 zaman serisinin %32.4’ünde Mann-Kendall testi, %64.6’sında ise ITA yöntemi anlamlı eğilimler belirlemiştir. ITA yöntemi azalan eğilimleri belirlemede daha hassas olduğu tespit edilmiştir. DO konsantrasyonları ve EC değerlerindeki mekâna ve zamana bağlı olarak değişiklik gösteren eğilimler insani faaliyetler ile ilişkilendirilirken, WT değerlerindeki artma ve Q değerlerindeki azalma eğilimlerinin iklim değişikliğinin yağış ve hava sıcaklığı parametreleri üzerindeki etkilerinden kaynaklanabileceği sonucuna varılmıştır. Uzun süreli veri setlerine dayanan bu çalışma iklim değişikliğinin su kalitesi üzerindeki etkilerine dair küresel endişelere ışık tutmakta ve su kaynaklarının sürdürülebilir yönetimi ve iklim değişikliğine karşı alınacak önlemler konusunda rehberlik edecek önemli bulgular sunmaktadır.

References

  • Acar, E., Kankal, M., Akcay, F., & San, M. (2022). Innovative polygon trend analyses with star graph for rainfall and temperature data in agricultural regions of Turkey. Environmental Earth Sciences, 81(23), 530. https://doi.org/10.1007/s12665-022-10646-9
  • Achite, M., Ceribasi, G., Ceyhunlu, A. I., Walega, A., & Caloiero, T. (2021). The innovative polygon trend analysis (IPTA) as a simple qualitative method to detect changes in environment-example detecting trends of the total monthly precipitation in semiarid area. Sustainability, 13(22), 12674. https://doi.org/10.3390/su132212674
  • Agbo, E. P., Nkajoe, U., & Edet, C. O. (2023). Comparison of Mann–Kendall and Şen’s innovative trend method for climatic parameters over Nigeria’s climatic zones. Climate Dynamics, 60(11), 3385-3401. https://doi.org/10.1007/s00382-022-06521-9
  • Akçay, F. (2018). Trend analysis for the monthly and yearly mean flows of the Eastern Black Sea Basin (Publication No. 511679) [Master thesis, Karadeniz Technical University]. (in Turkish with an English abstract)
  • Aytekin, A. (2012). Statistical analysis of low flow in climate change (Publication No. 328142) [Doctoral dissertation, İstanbul Technical University]. (in Turkish with an English abstract)
  • Bettinger, J., Crane, J., & Bulak, J. (2003). Broad River aquatic resources inventory completion report. Broad River comprehensive entrainment mitigation and fisheries resource enhancement program. South Carolina Department of Natural Resources. https://www.dnr.sc.gov/fish/fwfi/files/broadriver2001-2002.pdf.
  • Collaud Coen, M., Andrews, E., Bigi, A., Martucci, G., Romanens, G., Vogt, F. P., & Vuilleumier, L. (2020). Effects of the prewhitening method, the time granularity, and the time segmentation on the Mann–Kendall trend detection and the associated Sen’s slope. Atmospheric Measurement Techniques, 13(12), 6945-6964. https:// doi.org/ 10.5194/amt-13-6945-2020
  • Dabanlı, İ. (2017). Climate change impact on precipitation-temperature in Turkey and drought analysis: Akarcay case study, (Publication No. 451037) [Doctoral dissertation, İstanbul Technical University]. (in Turkish with an English abstract)
  • Da Silva, R. M., Santos, C. A., Moreira, M., Corte-Real, J., Silva, V. C., & Medeiros, I. C. (2015). Rainfall and river flow trends using Mann–Kendall and Sen’s slope estimator statistical tests on the Cobres River Basin. Natural Hazards, 77, 1205-1221. https://doi.org/10.1007/s11069-015-1644-7
  • Diop, L., Yaseen, Z. M., Bodian, A., Djaman, K., & Brown, L. (2018). Trend analysis of streamflow with different time scales: a case study of the upper Senegal River. ISH Journal of Hydraulic Engineering, 24(1), 105-114. https://doi.org/10.1080/09715010.2017.1333045
  • Duy, V. V., Ouillon, S., & Minh, H. N. (2022). Sea surface temperature trend analysis by Mann-Kendall test and Sen’s slope estimator: a study of the Hai Phong coastal area (Vietnam) for the period 1995-2020. Vietnam Journal of Earth Sciences, 44(1), 73-91. https://doi.org/10.15625/2615-9783/16874
  • Field, A. (2009). Discovering statistics using SPSS. SAGE Publications.
  • Gaddikeri, V., Sarangi, A., Singh, D. K., Jatav, M. S., Rajput, J., & Kushwaha, N. L. (2024). Trend and change-point analyses of meteorological variables using Mann–Kendall family tests and innovative trend assessment techniques in New Bhupania command (India). Journal of Water and Climate Change, 15(5), 2033-2058. https://doi.org/10.2166/wcc.2024.462
  • Garcia, S., Fernandez, A., Luengo, J., & Herrera, F. (2010). Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: experimental analysis of power. Information Sciences, 180(10), 2044-2064. https://doi.org/10.1016/j.ins.2009.12.010
  • Gentilucci, M., Djouohou, S. I., Barbieri, M., Hamed, Y., & Pambianchi, G. (2023). Trend analysis of streamflows in relation to precipitation: a case study in Central Italy. Water, 15(8), 1586. https://doi.org/10.3390/w15081586
  • Hadi, S. J., & Tombul, M. (2018). Long‐term spatiotemporal trend analysis of precipitation and temperature over Turkey. Meteorological Applications, 25(3), 445-455. https://doi.org/10.1002/met.1712
  • Hashim, M., Nayan, N., Setyowati, D. L., Said, Z. M., Mahat, H., & Saleh, Y. (2021). Analysis of water quality trends using the Mann-Kendall test and Sen’s estimator of slope in a tropical river basin. Pollution, 7(4), 933-942. https:// doi.org/10.22059/poll.2021.325794.1118
  • Hirca, T., & Eryilmaz Turkkan, G. (2022). Comparison of statistical methods to graphical method in precipitation trend analysis, a case study: Coruh Basin, Turkey. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 46(6), 4605-4617. https://doi.org/10.1007/s40996-022-00869-y
  • Isaak, D. J., Wollrab, S., Horan, D., & Chandler, G. (2012). Climate change effects on stream and river temperatures across the northwest US from 1980–2009 and implications for salmonid fishes. Climatic Change, 113, 499-524. https://doi.org/10.1007/s10584-011-0326-z
  • Jamian, Y., Lamat, Z., & Rali, N. (2017). Trend analysis of water quality at Sungai Sarawak. Pertanika Journal Sciences & Technological, 25, 55-62.
  • Javed, A., Cheng, V. Y., & Arhonditsis, G. B. (2019). Detection of spatial and temporal hydro-meteorological trends in Lake Michigan, Lake Huron and Georgian Bay. Aquatic Ecosystem Health & Management, 22(1), 1-14. https://doi.org/10.1080/14634988.2018.1500850
  • Jin, D. H., Jang, S. H., Kim, H. K., & Lee, Y. S. (2021). A trend analysis of seasonal average temperatures over 40 years in South Korea using Mann-Kendall test and Sen’s slope. The Korean Journal of Applied Statistics, 34(3), 439-447. https:// doi.org/ 10.5351/KJAS.2021.34.3.439
  • Kendall, M. G. (1975). Rank correlation methods. Charless Griffin.
  • Kisi, O., & Ay, M. (2014). Comparison of Mann–Kendall and innovative trend method for water quality parameters of the Kizilirmak River, Turkey. Journal of Hydrology, 513, 362-375. https://doi.org/10.1016/j.jhydrol.2014.03.005
  • Koruk, A. E., Kankal, M., Yildiz, M. B., Akcay, F., San, M., & Nacar, S. (2023). Trend analysis of precipitation using innovative approaches in northwestern Turkey. Physics and Chemistry of the Earth, Parts A/B/C, 131, 103416. https://doi.org/10.1016/j.pce.2023.103416
  • Kundzewicz, Z. W. (2008). Climate change impacts on the hydrological cycle. Ecohydrology and Hydrobiology, 8(2-4), 195-203.
  • Mann, H. B. (1945). Non-parametric tests against trend. Econometric Society, 13(3), 245-259. https://doi.org/10.2478/v10104-009-0015-y
  • Likinaw, A., Alemayehu, A., & Bewket, W. (2023). Trends in extreme precipitation indices in Northwest Ethiopia: comparative analysis using the Mann–Kendall and innovative trend analysis methods. Climate, 11(8), 164. https://doi.org/10.3390/cli11080164
  • Maxwell, J. T., Harley, G. L., Tucker, C. S., Galuska, T., Ficklin, D. L., Bregy, J. C., & Therrell, M. D. (2022). 1,100‐Year Reconstruction of baseflow for the Santee River, South Carolina, USA reveals connection to the North Atlantic subtropical high. Geophysical Research Letters, 49(22), e2022GL100742. https://doi.org/10.1029/2022GL100742
  • Nabi, M. M., Wang, J., & Baalousha, M. (2021). Episodic surges in titanium dioxide engineered particle concentrations in surface waters following rainfall events. Chemosphere, 263, 128261. https://doi.org/10.1016/j.chemosphere.2020.128261
  • Nacar, S., Mete, B., & Bayram, A. (2019). Estimation of daily dissolved oxygen concentration in the Broad River, South Carolina. International Civil Engineering and Architecture Conference, Trabzon, Turkey, pp: 879-885
  • Nacar, S., Mete, B., & Bayram, A. (2020). Estimation of daily dissolved oxygen concentration for river water quality using conventional regression analysis, multivariate adaptive regression splines, and TreeNet techniques. Environmental Monitoring and Assessment, 192(12), 752. https://doi.org/10.1007/s10661-020-08649-9
  • Nourani, V., Danandeh Mehr, A., & Azad, N. (2018). Trend analysis of hydroclimatological variables in Urmia Lake Basin using hybrid wavelet Mann–Kendall and Şen tests. Environmental Earth Sciences, 77(5), 207. https://doi.org/10.1007/s12665-018-7390-x
  • Othman, M. A., Zakaria, N. A., Ghani, A. A., Chang, C. K., & Chan, N. W. (2016). Analysis of trends of extreme rainfall events using Mann Kendall test: a case study in Pahang and Kelantan River Basins. Jurnal Teknologi, 78(9-4), 63-69. https://doi.org/10.11113/jt.v78.9696
  • Ouyang, X., Chen, D., Zhou, S., Zhang, R., Yang, J., Hu, G., Dou, Y., & Liu, Q. (2021). A slight temperature warming trend occurred over Lake Ontario from 2001 to 2018. Land, 10(12), 1315. https://doi.org/10.3390/land10121315
  • Partal, T., & Kahya, E. (2006). Trend analysis in Turkish precipitation data. Hydrological Processes, 20, 2011-2026. https://doi.org/10.1002/hyp.5993
  • Phuong, D. N. D., Tram, V. N. Q., Nhat, T. T., Ly, T. D., & Loi, N. K. (2020). Hydro-meteorological trend analysis using the Mann-Kendall and innovative-Şen methodologies: a case study. International Journal of Global Warming, 20(2), 145-164. https://doi.org/10.1504/IJGW.2020.105385
  • Raschke, R. L., Carroll, B., & Tebo, L. B. (1975). The relationship between substrate content, water quality, actinomycetes and musty odours in the Broad River Basin. Journal of Applied Ecology, 12(2), 535-560. https://doi.org/10.2307/2402173
  • Rogers, K., Roland, V., Hoos, A., Crowley-Ornelas, E., & Knight, R. (2020). An analysis of streamflow trends in the Southern and Southeastern US from 1950-2015. Water, 12(12), 3345. https://doi.org/10.3390/w12123345
  • Salami, A. W., Mohammed, A. A., Abdulmalik, Z. H., & Olanlokun, O. K. (2014). Trend analysis of hydro-meteorological variables using the Mann-Kendall trend test: application to the Niger River and the Benue sub-basins in Nigeria. International Journal of Technology, 5(2), 100-110. https:// doi.org/10.14716/ijtech.v5i2.406
  • Salvai, A., Grabic, J., Josimov-Dundjerski, J., Zemunac, R., Antonic, N., Savic, R., & Blagojevic, B. (2022). Trend analysis of water quality parameters in the middle part of the Danube flow in Serbia. Ecological Chemistry and Engineering S, 29(1), 51-63. https:// doi.org/ 10.2478/eces-2022-0006
  • San, M., Akcay, F., Linh, N. T. T., Kankal, M., & Pham, Q. B. (2021). Innovative and polygonal trend analyses applications for rainfall data in Vietnam. Theoretical and Applied Climatology, 144, 809-822. https://doi.org/10.1007/s00704-021-03574-4
  • Santhi, C., Allen, P. M., Muttiah, R. S., Arnold, J. G., & Tuppad, P. (2008). Regional estimation of base flow for the conterminous United States by hydrologic landscape regions. Journal of Hydrology, 351(1-2), 139-153. https://doi.org/10.1016/j.jhydrol.2007.12.018
  • Sattari, M. T., Mirabbasi, R., Jarhan, S., Shaker Sureh, F., & Ahmad, S. (2020). Trend and abrupt change analysis in water quality of Urmia Lake in comparison with changes in lake water level. Environmental Monitoring and Assessment, 192(10), 623. https://doi.org/10.1007/s10661-020-08577-8
  • Schwartz, P., & Randall, D. (2003). An abrupt climate change scenario and its implications for United States national security (Vol. 22). US Department of Defense.
  • Sen, Z. (2020). Up-to-date statistical essentials in climate change and hydrology: a review. International Journal of Global Warming, 22(4), 392-431. https://doi.org/10.1504/IJGW.2020.111515
  • Swain, S., Mishra, S. K., Pandey, A., Dayal, D., & Srivastava, P. K. (2022). Appraisal of historical trends in maximum and minimum temperature using multiple non-parametric techniques over the agriculture-dominated Narmada Basin, India. Environmental Monitoring and Assessment, 194(12), 893. https://doi.org/10.1007/s10661-022-10534-6
  • Tadesse, S., Mekuriaw, A., & Assen, M. (2024). Spatiotemporal climate variability and trends in the Upper Gelana Watershed, northeastern highlands of Ethiopia. Heliyon, 10(5), e27274. https:// doi.org/ 10.1016/j.heliyon.2024.e27274
  • Ureta, J. C., Clay, L., Motallebi, M., & Ureta, J. (2020). Quantifying the landscape’s ecological benefits—an analysis of the effect of land cover change on ecosystem services. Land, 10(1), 21. https:// doi.org/ 10.3390/land10010021
  • Vani, P. C., Sahoo, B. C., Paul, J. C., Sahu, A. P., & Mohapatra, A. K. B. (2023). Trend analysis in gridded rainfall data using Mann-Kendall and Spearman’s Rho tests in Kesinga Catchment of Mahanadi River Basin, India. Pure and Applied Geophysics, 180(12), 4339-4353. https://doi.org/10.1007/s00024-023-03379-8
There are 50 citations in total.

Details

Primary Language English
Subjects Irrigation Water Quality
Journal Section Research Articles
Authors

Betül Mete 0000-0002-3689-6430

Sinan Nacar 0000-0003-2497-5032

Adem Bayram 0000-0003-4359-9183

Publication Date December 31, 2024
Submission Date September 25, 2024
Acceptance Date December 5, 2024
Published in Issue Year 2024 Volume: 41 Issue: 3

Cite

APA Mete, B., Nacar, S., & Bayram, A. (2024). Trend Analysis of the Flow and Water Quality Data for the Broad River Basin, South Carolina, USA. Journal of Agricultural Faculty of Gaziosmanpaşa University (JAFAG), 41(3), 226-235. https://doi.org/10.55507/gopzfd.1556000