Research Article
BibTex RIS Cite

Effects of microplastic and copper applications on chlorophyll and carotenoid contents in kale and tomato

Year 2025, Volume: 42 Issue: 2, 133 - 141, 30.08.2025
https://doi.org/10.55507/gopzfd.1668445

Abstract

Microplastics (MP) are important pollutants observed almost everywhere in the ecosphere and threaten agricultural ecosystems due to modern agricultural practices. The MPs change the soil structure and affect plant growth. This study investigated individual and combined effects of MP and copper (Cu) on chlorophyll and carotenoid contents of tomato (Lycopersicon esculentum Mill.) and kale (Brassica oleracea var. acephala DC) plants. Experimental groups were treated with 100 ppm and 500 ppm CuSO₄ and 0.5%, 1.5% and 2.5% MP concentrations. The MPs were obtained by cutting polyethylene films. Chlorophyll a, b, total chlorophyll and carotenoid contents were measured spectrophotometrically and analyzed using one-way ANOVA. In tomato plants, 1.5% MP application and the combination of 500 ppm Cu and 1.5% MP decreased the chlorophyll a content by 3% compared to the control (p<0.05), while the combination of 100 ppm Cu and 0.5% MP increased it by 2.5%. In tomato, 100 ppm Cu and 0.5% MP application decreased the chlorophyll b and total chlorophyll contents by 29% and 14%, respectively, while other applications caused an increase (p<0.05). There was no significant difference in the carotenoid contents compared to the control group. In kale, chlorophyll a, total chlorophyll and carotenoid contents did not significantly vary compared to the control group, while 500 ppm Cu application increased the amount of chlorophyll b by 15% (p<0.05). The results showed that tomato was more sensitive to Cu and MP applications than kale. The response in plants varied depending on whether Cu and MP were applied individually or combined.

Ethical Statement

There is no need to obtain permission from the ethics committee for this study.

Supporting Institution

The authors also wish to thank the Amasya University Scientific Research Projects Coordination Unit for its financial support to our study with the projects of FMB-BAP 21-0517 and FMB-BAP 22-0580.

Project Number

FMB-BAP 21-0517 and FMB-BAP 22-0580

Thanks

The authors also wish to thank the Amasya University Scientific Research Projects Coordination Unit for its financial support to our study with the projects of FMB-BAP 21-0517 and FMB-BAP 22-0580.

References

  • Abbasi, S., Amiranipour, S., Karimi, J., Mohsenzadeh, S., & Turner, A. (2023). Impacts of polyethylene microplastics on the microalga, Spirulina (Arthrospira platensis). Environmental Pollution, 327, 121611. https://doi.org/10.1016/j.envpol.2023.121611
  • Boots, B., Russell, C. W., & Green, D. S. (2019). Effects of microplastics in soil ecosystems: above and below ground. Environmental Science & Technology, 53(19), 11496-11506. https://doi.org/10.1021/acs.est.9b03304
  • Huang, D., Wang, X., Yin, L., Chen, S., Tao, J., Zhou, W., ... & Xiao, R. (2022). Research progress of microplastics in soil-plant system: ecological effects and potential risks. Science of the Total Environment, 812, 151487. https://doi.org/10.1016/j.scitotenv.2021.151487
  • Jia, L., Liu, L., Zhang, Y., Fu, W., Liu, X., Wang, Q., Tanveer, M., & Huang, L. (2023). Microplastic stress in plants: effects on plant growth and their remediations. Frontiers in Plant Science, 14, 1226484. https://doi.org/10.3389/fpls.2023.1226484
  • Li, C., Wang, F., Zhang, W., Liu, Y., & Wang, H. (2022). Long-term plastic film mulching causes a significant accumulation of microplastics in agricultural soils. Science of the Total Environment, 806, 150500. https://pubmed.ncbi.nlm.nih.gov/35122919
  • Lian, J., Liu, W., Meng, L., Wu, J., Chao, L., Zeb, A., & Sun, Y. (2021). Foliar-applied polystyrene nanoplastics (PSNPs) reduce the growth and nutritional quality of lettuce (Lactuca sativa L.). Environmental Pollution, 280, 116978. https://doi.org/10.1016/j.envpol.2021.116978
  • Lichtenthaler K, Welburn AR (1983) Determination of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem Soc Trans 11:591–592.
  • Meng, F., Yang, X., Riksen, M., Xu, M., & Geissen, V. (2021). Response of common bean (Phaseolus vulgaris L.) growth to soil contaminated with microplastics. Science of the Total Environment, 755(2), 142516. https://doi.org/10.1016/j.scitotenv.2020.142516
  • Mondal, N. K., Kundu, S., Debnath, P., Mondal, A., & Sen, K. (2022). Effects of polyethylene terephthalate microplastic on germination, biochemistry and phytotoxicity of Cicer arietinum L. and cytotoxicity study on Allium cepa L. Environ. Toxicol. Pharmacol. 94, 103908. https://doi: 10.1016/j.etap.2022.103908
  • Mondol, M., Angon, P. B., & Roy, A. (2024). Effects of microplastics on soil physical, chemical and biological properties. Nat. Hazards Res., 5(1), 14-20. https://doi.org/10.1016/j.nhres.2024.02.002
  • Naziri, A., Mina, T., Manoli, K., Beretsou, V. G., Christou, A., Michael, C., Agathokleous, E., & Fatta-Kassinos, D. (2023). Looking into the effects of co-contamination by micro (nano) plastics in the presence of other pollutants on irrigated edible plants. Science of The Total Environment, 892, 164618. https://doi.org/10.1016/j.scitotenv.2023.164618
  • Okeke, E. S., Okoye, C. O., Atakpa, E. O., Ita, R. E., Nyaruaba, R., Mgbechidinma, C. L., & Akan, O. D. (2022). Microplastics in agroecosystems-impacts on ecosystem functions and food chain. Resources, Conservation and Recycling, 177, 105961. https://doi.org/10.1016/j.resconrec.2021.105961
  • Özmaya, M., Paksoy, M., Kayak, N., & Mutlu, A. (2025). Türkiye ve Kırgızistan’dan derlenen bazı yerel sofralık domates genotiplerinin morfolojik olarak incelenmesi. Anadolu Journal of Agricultural Sciences/Anadolu Tarım Bilimleri Dergisi, 40(1), 73-85.
  • Pignattelli, S., Broccoli, A., & Renzi, M. (2020). Physiological responses of garden cress (L. sativum) to different types of microplastics. Science of the Total Environment, 727, 138609. https://doi.org/10.1016/j.scitotenv.2020.138609
  • Pinto, A. C. R., Demattê, M. E. S. P., Creste, S., & Barbosa, J. C. (2011, September). Seed and seedling surface-sterilization for in vitro culture of Tillandsia gardneri (Bromeliaceae). In VII International Symposium on In Vitro Culture and Horticultural Breeding 961 (pp. 383-389). https://doi.org/10.17660/ActaHortic.2012.961.50
  • Prabhu, P. P., Pan, K., Krishnan, J. N. (2022). Microplastics: Global occurrence, impact, characteristics and sorting. Frontiers in Marine Science, 9, 893641. https://doi.org/10.3389/fmars.2022.893641
  • Rajalakshmi, K., & Banu, N. (2015). Extraction and estimation of chlorophyll from medicinal plants. International Journal of Science and Research, 4(11), 209-212.
  • Sarıca, V. and Özbay, G. (2023). Karadeniz Bölgesi’nin yenilebilir otlarının fonksiyonel gıdalar kapsamında değerlendirilmesi. Adıyaman Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, (44), 759-798. https://doi.org/10.14520/adyusbd.1179582
  • Sevgi, K. (2023). Kurşun ve bakır uygulamasının Cucurbita moschata Duch.’nın bazı ekofizyolojik parametreleri ve antioksidan savunma sistemi üzerine etkileri [Yayımlanmamış yüksek lisans tezi]. Bilecik Şeyh Edebali Üniversitesi.
  • Strzałka, K., Kostecka-Gugała, A., & Latowski, D. (2003). Carotenoids and environmental stress in plants: significance of carotenoid-mediated modulation of membrane physical properties. Russian Journal of Plant Physiology, 50, 168-173. https://doi.org/10.1023/A:1022960828050
  • Syuhada, N., Jahan, M. S., Khandaker, M. M., Nashriyah, M., Khairi, M., Nozulaidi, M., & Razali, M. B. (2014). Application of copper increased corn yield through enhancing physiological functions. Aust J Basic Appl Sci, 8(16), 282-6.
  • Talebzadeh, F., & Valeo, C. (2022). Evaluating the effects of environmental stress on leaf chlorophyll content as an index for tree health. In IOP Conference Series: Earth and Environmental Science (Vol. 1006, No. 1, p. 012007). IOP Publishing.
  • Trukhachev, V. I., Seregina, I. I., Belopukhov, S. L., Dmitrevskaya, I. I., Fomina, T. I., Zharkikh, O. A., & Akhmetzhanov, D. M. (2022). The effect of stressful ecological conditions on chlorophyll content in the leaves of spring wheat plants. In IOP Conference Series: Earth and Environmental Science (Vol. 981, No. 3, p. 032093). IOP Publishing.
  • Vatansever, R., Ozyigit, I. I., & Filiz, E. (2017). Genome-Wide Identification and Comparative Analysis of Copper Transporter Genes in Plants. Interdisciplinary Sciences: Computational Life Sciences, 9, 278-291. https://doi.org/10.1007/s12539-016-0150-2
  • Wu, Y., Guo, P., Zhang, X., Zhang, Y., Xie, S., & Deng, J. (2019). Effect of microplastics exposure on the photosynthesis system of freshwater algae. Journal of Hazardous Materials, 374, 219-227. https://doi.org/10.1016/j.jhazmat.2019.04.039
  • Xiao, X., Sallach, J. B., & Hodson, M. E. (2024). Microplastics and metals: Microplastics generated from biodegradable polylactic acid mulch reduce bioaccumulation of cadmium in earthworms compared to those generated from polyethylene. Ecotoxicology and environmental safety, 282, 116746. https://doi.org/10.1016/j.ecoenv.2024.116746
  • Xu, Z., Zhang, Y., Lin, L., Wang, L., Sun, W., Liu, C., Yu, G., Yu, J., Lv, Y., Chen, J., Chen, X., Fu, L., & Wang, Y. (2022). Toxic effects of microplastics in plants depend more by their surface functional groups than just accumulation contents. Sci. Total Environ. 833, 155097. https://doi.org/10.1016/j.scitotenv.2022.155097
  • Yerli, C., Çakmakcı, T., Sahin, U., & Tüfenkçi, Ş. (2020). The Effects of Heavy Metals on Soil, Plant, Water and Human Health. Tr. J. Nature Sci., 9(special issue), 103-114. https://doi.org/10.46810/tdfd.718449
  • Yıldırım, N. (2022). Possible effects of heavy metal (Cu) and simulated acid rain stresses on mRNA expression levels of FAD2 gene responsible for linoleic acid transduction of oleic acid and some ecophysiological traits in safflower (Carthamus tinctorius L.) [Unpublished master's thesis]. Amasya University.
  • Yıldız, M., Terzi, H. & Uruşak, B. (2011). Bitkilerde Krom Toksisitesi ve Hücresel Cevaplar. Erciyes Üniversitesi, Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi. 27(2):163-176.
  • Yu, H., Hou, J., Dang, Q., Cui, D., Xi, B., & Tan, W. (2020). Decrease in bioavailability of soil heavy metals caused by the presence of microplastics varies across aggregate levels. J. Hazard. Mater, 395, 122690. https://doi.org/10.1016/j. jhazmat.2020.122690
  • Yurtsever, M. (2015). Mikroplastikler’e Genel Bir Bakış. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi, 17(50), 68-83.
  • Zhang, G. S., & Liu, Y. F. (2018). The distribution of microplastics in soil aggregate fractions in southwestern China. Science of The Total Environment, 642, 12–20. https://doi.org/10.1016/j.scitotenv.2018.06.004
  • Zhang, S., Gao, W., Cai, K., Liu, T., & Wang, X. (2022). Effects of Microplastics on Growth and Physiological Characteristics of Tobacco (Nicotiana tabacum L.). Agronomy, 12(11), 2692. https://doi.org/10.3390/agronomy12112692
  • Zhuang, H., Liu, X., Ma, H., Li, R., Liu, B., Lin, Z., & Li, Z. (2023). Growth and physiological–biochemical characteristics of cucumber (Cucumis sativus L.) in the presence of different microplastics. Arabian Journal of Geosciences, 16, 194. https://doi.org/10.1007/s12517-023-11273-9
  • Zong, X., Zhang, J., Zhu, J., Zhang, L., Jiang, L., Yin, Y., & Guo, H. (2021). Effects of polystyrene microplastic on uptake and toxicity of copper and cadmium in hydroponic wheat seedlings (Triticum aestivum L.). Ecotoxicology and Environmental Safety, 217, 112217. https://doi.org/10.1016/j.ecoenv.2021.112217

Mikroplastik ve bakır uygulamalarının karalahana ve domateste klorofil ve karotenoid üzerine etkileri

Year 2025, Volume: 42 Issue: 2, 133 - 141, 30.08.2025
https://doi.org/10.55507/gopzfd.1668445

Abstract

Mikroplastikler (MP) ekosferin hemen her yerinde gözlenen önemli kirleticilerdir ve modern tarım uygulamaları nedeniyle tarımsal ekosistemleri de tehdit etmektedirler. MP'ler toprağın yapısını değiştirir ve bitki gelişimi etkiler. Bu çalışmada, mikroplastik (MP) ve bakır (Cu) uygulamalarının domates (Lycopersicon esculentum Mill.) ve karalahana (Brassica oleracea var. acephala DC) bitkilerinin klorofil ve karotenoid içerikleri üzerine ayrı ayrı ve kombine etkileri araştırılmıştır. Deney grupları 100 ppm ve 500 ppm CuSO₄ ve %0.5, %1.5 ve %2.5 konsantrasyonlarında MP ile muamele edilmiştir. mikroplastikler polietilen malç naylonunun kesilmesiyle elde edilmiştir. Klorofil a, b, toplam klorofil ve karotenoid içerikleri spektrofotometrik olarak ölçülmüş ve tek yönlü ANOVA kullanılarak analiz edilmiştir. Domates bitkilerinde %1,5 MP uygulaması ile 500 ppm Cu ve %1,5 MP kombinasyonu klorofil a içeriğini kontrole kıyasla %3 oranında azaltırken (p<0,05), 100 ppm Cu ve %0.5 MP kombinasyonu %2.5 oranında artırmıştır. Domateste 100 ppm Cu ve %0.5 MP uygulaması klorofil b ve toplam klorofil içeriklerini sırasıyla %29 ve %14 oranlarında azaltırken, diğer uygulamalar artışa neden olmuştur (p<0,05). Karotenoid miktarında ise kontrol grubuna kıyasla önemli bir farklılık olmamıştır. Karalahanada klorofil a, toplam klorofil ve karotenoid miktarları kontrol grubuna kıyasla önemli bir farklılık göstermezken, 500 ppm Cu uygulaması klorofil b miktarını %15 oranında artırmıştır (p<0,05). Sonuçlar, domatesin, karalahanaya göre Cu ve MP uygulamalarına karşı daha duyarlı olduğu göstermektedir. Bitkilerde oluşan yanıt, Cu ve MP'in ayrı ayrı ya da birlikte uygulanmasına bağlı olarak değişmiştir.

Project Number

FMB-BAP 21-0517 and FMB-BAP 22-0580

References

  • Abbasi, S., Amiranipour, S., Karimi, J., Mohsenzadeh, S., & Turner, A. (2023). Impacts of polyethylene microplastics on the microalga, Spirulina (Arthrospira platensis). Environmental Pollution, 327, 121611. https://doi.org/10.1016/j.envpol.2023.121611
  • Boots, B., Russell, C. W., & Green, D. S. (2019). Effects of microplastics in soil ecosystems: above and below ground. Environmental Science & Technology, 53(19), 11496-11506. https://doi.org/10.1021/acs.est.9b03304
  • Huang, D., Wang, X., Yin, L., Chen, S., Tao, J., Zhou, W., ... & Xiao, R. (2022). Research progress of microplastics in soil-plant system: ecological effects and potential risks. Science of the Total Environment, 812, 151487. https://doi.org/10.1016/j.scitotenv.2021.151487
  • Jia, L., Liu, L., Zhang, Y., Fu, W., Liu, X., Wang, Q., Tanveer, M., & Huang, L. (2023). Microplastic stress in plants: effects on plant growth and their remediations. Frontiers in Plant Science, 14, 1226484. https://doi.org/10.3389/fpls.2023.1226484
  • Li, C., Wang, F., Zhang, W., Liu, Y., & Wang, H. (2022). Long-term plastic film mulching causes a significant accumulation of microplastics in agricultural soils. Science of the Total Environment, 806, 150500. https://pubmed.ncbi.nlm.nih.gov/35122919
  • Lian, J., Liu, W., Meng, L., Wu, J., Chao, L., Zeb, A., & Sun, Y. (2021). Foliar-applied polystyrene nanoplastics (PSNPs) reduce the growth and nutritional quality of lettuce (Lactuca sativa L.). Environmental Pollution, 280, 116978. https://doi.org/10.1016/j.envpol.2021.116978
  • Lichtenthaler K, Welburn AR (1983) Determination of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem Soc Trans 11:591–592.
  • Meng, F., Yang, X., Riksen, M., Xu, M., & Geissen, V. (2021). Response of common bean (Phaseolus vulgaris L.) growth to soil contaminated with microplastics. Science of the Total Environment, 755(2), 142516. https://doi.org/10.1016/j.scitotenv.2020.142516
  • Mondal, N. K., Kundu, S., Debnath, P., Mondal, A., & Sen, K. (2022). Effects of polyethylene terephthalate microplastic on germination, biochemistry and phytotoxicity of Cicer arietinum L. and cytotoxicity study on Allium cepa L. Environ. Toxicol. Pharmacol. 94, 103908. https://doi: 10.1016/j.etap.2022.103908
  • Mondol, M., Angon, P. B., & Roy, A. (2024). Effects of microplastics on soil physical, chemical and biological properties. Nat. Hazards Res., 5(1), 14-20. https://doi.org/10.1016/j.nhres.2024.02.002
  • Naziri, A., Mina, T., Manoli, K., Beretsou, V. G., Christou, A., Michael, C., Agathokleous, E., & Fatta-Kassinos, D. (2023). Looking into the effects of co-contamination by micro (nano) plastics in the presence of other pollutants on irrigated edible plants. Science of The Total Environment, 892, 164618. https://doi.org/10.1016/j.scitotenv.2023.164618
  • Okeke, E. S., Okoye, C. O., Atakpa, E. O., Ita, R. E., Nyaruaba, R., Mgbechidinma, C. L., & Akan, O. D. (2022). Microplastics in agroecosystems-impacts on ecosystem functions and food chain. Resources, Conservation and Recycling, 177, 105961. https://doi.org/10.1016/j.resconrec.2021.105961
  • Özmaya, M., Paksoy, M., Kayak, N., & Mutlu, A. (2025). Türkiye ve Kırgızistan’dan derlenen bazı yerel sofralık domates genotiplerinin morfolojik olarak incelenmesi. Anadolu Journal of Agricultural Sciences/Anadolu Tarım Bilimleri Dergisi, 40(1), 73-85.
  • Pignattelli, S., Broccoli, A., & Renzi, M. (2020). Physiological responses of garden cress (L. sativum) to different types of microplastics. Science of the Total Environment, 727, 138609. https://doi.org/10.1016/j.scitotenv.2020.138609
  • Pinto, A. C. R., Demattê, M. E. S. P., Creste, S., & Barbosa, J. C. (2011, September). Seed and seedling surface-sterilization for in vitro culture of Tillandsia gardneri (Bromeliaceae). In VII International Symposium on In Vitro Culture and Horticultural Breeding 961 (pp. 383-389). https://doi.org/10.17660/ActaHortic.2012.961.50
  • Prabhu, P. P., Pan, K., Krishnan, J. N. (2022). Microplastics: Global occurrence, impact, characteristics and sorting. Frontiers in Marine Science, 9, 893641. https://doi.org/10.3389/fmars.2022.893641
  • Rajalakshmi, K., & Banu, N. (2015). Extraction and estimation of chlorophyll from medicinal plants. International Journal of Science and Research, 4(11), 209-212.
  • Sarıca, V. and Özbay, G. (2023). Karadeniz Bölgesi’nin yenilebilir otlarının fonksiyonel gıdalar kapsamında değerlendirilmesi. Adıyaman Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, (44), 759-798. https://doi.org/10.14520/adyusbd.1179582
  • Sevgi, K. (2023). Kurşun ve bakır uygulamasının Cucurbita moschata Duch.’nın bazı ekofizyolojik parametreleri ve antioksidan savunma sistemi üzerine etkileri [Yayımlanmamış yüksek lisans tezi]. Bilecik Şeyh Edebali Üniversitesi.
  • Strzałka, K., Kostecka-Gugała, A., & Latowski, D. (2003). Carotenoids and environmental stress in plants: significance of carotenoid-mediated modulation of membrane physical properties. Russian Journal of Plant Physiology, 50, 168-173. https://doi.org/10.1023/A:1022960828050
  • Syuhada, N., Jahan, M. S., Khandaker, M. M., Nashriyah, M., Khairi, M., Nozulaidi, M., & Razali, M. B. (2014). Application of copper increased corn yield through enhancing physiological functions. Aust J Basic Appl Sci, 8(16), 282-6.
  • Talebzadeh, F., & Valeo, C. (2022). Evaluating the effects of environmental stress on leaf chlorophyll content as an index for tree health. In IOP Conference Series: Earth and Environmental Science (Vol. 1006, No. 1, p. 012007). IOP Publishing.
  • Trukhachev, V. I., Seregina, I. I., Belopukhov, S. L., Dmitrevskaya, I. I., Fomina, T. I., Zharkikh, O. A., & Akhmetzhanov, D. M. (2022). The effect of stressful ecological conditions on chlorophyll content in the leaves of spring wheat plants. In IOP Conference Series: Earth and Environmental Science (Vol. 981, No. 3, p. 032093). IOP Publishing.
  • Vatansever, R., Ozyigit, I. I., & Filiz, E. (2017). Genome-Wide Identification and Comparative Analysis of Copper Transporter Genes in Plants. Interdisciplinary Sciences: Computational Life Sciences, 9, 278-291. https://doi.org/10.1007/s12539-016-0150-2
  • Wu, Y., Guo, P., Zhang, X., Zhang, Y., Xie, S., & Deng, J. (2019). Effect of microplastics exposure on the photosynthesis system of freshwater algae. Journal of Hazardous Materials, 374, 219-227. https://doi.org/10.1016/j.jhazmat.2019.04.039
  • Xiao, X., Sallach, J. B., & Hodson, M. E. (2024). Microplastics and metals: Microplastics generated from biodegradable polylactic acid mulch reduce bioaccumulation of cadmium in earthworms compared to those generated from polyethylene. Ecotoxicology and environmental safety, 282, 116746. https://doi.org/10.1016/j.ecoenv.2024.116746
  • Xu, Z., Zhang, Y., Lin, L., Wang, L., Sun, W., Liu, C., Yu, G., Yu, J., Lv, Y., Chen, J., Chen, X., Fu, L., & Wang, Y. (2022). Toxic effects of microplastics in plants depend more by their surface functional groups than just accumulation contents. Sci. Total Environ. 833, 155097. https://doi.org/10.1016/j.scitotenv.2022.155097
  • Yerli, C., Çakmakcı, T., Sahin, U., & Tüfenkçi, Ş. (2020). The Effects of Heavy Metals on Soil, Plant, Water and Human Health. Tr. J. Nature Sci., 9(special issue), 103-114. https://doi.org/10.46810/tdfd.718449
  • Yıldırım, N. (2022). Possible effects of heavy metal (Cu) and simulated acid rain stresses on mRNA expression levels of FAD2 gene responsible for linoleic acid transduction of oleic acid and some ecophysiological traits in safflower (Carthamus tinctorius L.) [Unpublished master's thesis]. Amasya University.
  • Yıldız, M., Terzi, H. & Uruşak, B. (2011). Bitkilerde Krom Toksisitesi ve Hücresel Cevaplar. Erciyes Üniversitesi, Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi. 27(2):163-176.
  • Yu, H., Hou, J., Dang, Q., Cui, D., Xi, B., & Tan, W. (2020). Decrease in bioavailability of soil heavy metals caused by the presence of microplastics varies across aggregate levels. J. Hazard. Mater, 395, 122690. https://doi.org/10.1016/j. jhazmat.2020.122690
  • Yurtsever, M. (2015). Mikroplastikler’e Genel Bir Bakış. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi, 17(50), 68-83.
  • Zhang, G. S., & Liu, Y. F. (2018). The distribution of microplastics in soil aggregate fractions in southwestern China. Science of The Total Environment, 642, 12–20. https://doi.org/10.1016/j.scitotenv.2018.06.004
  • Zhang, S., Gao, W., Cai, K., Liu, T., & Wang, X. (2022). Effects of Microplastics on Growth and Physiological Characteristics of Tobacco (Nicotiana tabacum L.). Agronomy, 12(11), 2692. https://doi.org/10.3390/agronomy12112692
  • Zhuang, H., Liu, X., Ma, H., Li, R., Liu, B., Lin, Z., & Li, Z. (2023). Growth and physiological–biochemical characteristics of cucumber (Cucumis sativus L.) in the presence of different microplastics. Arabian Journal of Geosciences, 16, 194. https://doi.org/10.1007/s12517-023-11273-9
  • Zong, X., Zhang, J., Zhu, J., Zhang, L., Jiang, L., Yin, Y., & Guo, H. (2021). Effects of polystyrene microplastic on uptake and toxicity of copper and cadmium in hydroponic wheat seedlings (Triticum aestivum L.). Ecotoxicology and Environmental Safety, 217, 112217. https://doi.org/10.1016/j.ecoenv.2021.112217
There are 36 citations in total.

Details

Primary Language English
Subjects Crop and Pasture Biochemistry and Physiology
Journal Section Research Articles
Authors

Büşra Çil 0000-0003-0593-6820

Neslihan Karavin 0000-0002-7603-3832

Project Number FMB-BAP 21-0517 and FMB-BAP 22-0580
Publication Date August 30, 2025
Submission Date March 31, 2025
Acceptance Date May 25, 2025
Published in Issue Year 2025 Volume: 42 Issue: 2

Cite

APA Çil, B., & Karavin, N. (2025). Effects of microplastic and copper applications on chlorophyll and carotenoid contents in kale and tomato. Journal of Agricultural Faculty of Gaziosmanpaşa University, 42(2), 133-141. https://doi.org/10.55507/gopzfd.1668445