://WOS:A1983RF96300005" />
Research Article
BibTex RIS Cite

Year 2025, Volume: 38 Issue: 2, 973 - 984, 01.06.2025
https://doi.org/10.35378/gujs.1532985

Abstract

References

  • [1] Rettig, W., Marschner, F., "Population of excited charge-transfer states and molecular-conformation in n-phenylpyrroles", Nouveau Journal De Chimie-New Journal of Chemistry, 7: 425-431, (1983). <Go to ISI>://WOS:A1983RF96300005
  • [2] Sarkar, A., Chakravorti, S., "A Study on the spectroscopy and photophysics of n-phenyl pyrrole and n phenyl pyrazole", Chemical Physics Letters, 235: 195-201, (1995). DOI:https://doi.org/10.1016/0009-2614(95)00111-G
  • [3] Belau, L., Haas, Y., Rettig, W., "Jet cooled spectra of pyrrolobenzene and of pyrrolobenzonitrile:The nature of the excited states", Chemical Physics Letter, 364: 157-163, (2002). DOI:https://doi.org/10.1016/S0009-2614(02)01316-7
  • [4] Proppe, B., Merchan, M., Serrano-Andres, L., "Theoretical study of the twisted intramolecular charge transfer in 1-phenylpyrrole", Journal of Physical Chemistry A, 104: 1608-1616, (2000). DOI:https://doi.org/10.1021/jp993627g
  • [5] Murali, S., Changenet-Barret, P., Ley, C., Plaza, P., Rettig, W., Martin, M.M., et al., "Photophysical properties of pyrrolobenzenes with different linking and substitution pattern: The transition between charge transfer states with large (MICT) and small (TICT) resonance interaction", Chemical Physics Letter , 411: 192-197, (2005). DOI: https://doi.org/10.1016/j.cplett.2005.06.019
  • [6] Neubauer, A., Murali, S., Rettig, W., "Charge transfer control by substituents: Donor pyrroles and fluoro anilines", International Journal of Photoenergy, 7: 121-124, (2005). DOI: https://doi.org/10.1155/S1110662x05000188
  • [7] Schweke, D., Haas, Y., "The fluorescence of n-phenylpyrrole in an argon/acetonitrile matrix", Journal of Physical Chemistry A, 107: 9554-9560, (2003). DOI: https://doi.org/10.1021/jp035959y
  • [8] Zborowski, K., Alkorta, I., Elguero, J., "Substitution effects in phenyl and N-pyrrole derivatives along the periodic table", Structural Chemistry, 18: 797-805, (2007). DOI:https://doi.org/10.1007/s11224007-9245-z
  • [9] Neubauer, A., Bendig, J., Rettig, W., "Control of charge transfer by conformational and electronic effects: Donor-donor and donor-acceptor phenyl pyrroles", Chemical Physics, 358: 235-244, (2009). DOI: https://doi.org/10.1016/j.chemphys.2009.02.008
  • [10] Santos, A.F.L.O.M., da Silva, M.A.V.R., "Experimental and computational thermochemistry of 1- phenylpyrrole and 1-(4-methylphenyl)pyrrole", Journal of Chemical Thermodynamics, 42: 734-741, (2010). DOI: https://doi.org/10.1016/j.jct.2010.01.009
  • [11] Santos, A.F.L.O.M., da Silva, M.A.V.R. "Energetics of 1-(aminophenyl) pyrroles: A joint calori- metric and computational study," Journal of Chemical Thermodynamics, 43: 1480-1487, (2011). DOI:https://doi.org/10.1016/j.jct.2011.04.022
  • [12] Santos, A.F.L.O.M., da Silva, M.A.V.R.," The influence of methyl groups on the torsion angle and on the energetics of 1-phenylpyrrole derivatives: a thermodynamic and computational study", Structural Chemistry, 24: 1981-1992, (2013). DOI: https://doi.org/10.1007/s11224-013-0288-z
  • [13] Galvan, I.F., Martin, M.E., Munoz-Losa, A., Sanchez, M.L., Aguilar, M.A., "Solvent effects on the structure and spectroscopy of the emitting states of 1-phenylpyrrole", Journal of Chemical Theory and Computation, 7: 1850-1857, (2011). DOI: https://doi.org/10.1021/ct2001182
  • [14] Aleman, C., Domingo, V.M., Julia, L., "A computational study of neutral and charged pyrroles. Functionalization of 1-phenylpyrrole and 2,5-dimethyl-1-phenylpyrrole with electron donating methylsulfanyl groups", Journal of Physical Chemistry A, 105: 5266-5271, (2001). DOI: https://doi.org/DOI10.1021/jp004265b
  • [15] Yoshihara, T., Druzhinin, S.I., Demeter, A., Kocher, N., Stalke, D., Zachariasse, K.A., "Kinetics of intramolecular charge transfer with N-phenylpyrrole in alkyl cyanides", Journal of Physical Chemistry A, 109: 1497-1509, (2005). DOI: https://doi.org/10.1021/jp046586j
  • [16] Pirsa, S., Alizadeh, M., Ghahremannejad, N., "Application of nano-sized poly n-phenyl pyrrole coated polyester fiber to headspace microextraction of some volatile organic compounds and analysis by gas chromatography", Current Analytical Chemistry, 12: 457-464, (2016). DOI:https://doi.org/10.2174/1573411012666151009195422
  • [17] Tarkuc, S., Sahmetlioglu, E., Tanyeli, C., Akhmedov, I.M., Toppare, L., "A soluble conducting polymer:1-phenyl-2,5-di(2-thienyl)-1H-pyrrole and its electrochromic application", Electrochimica Acta, 51: 5412-5419, (2006). DOI: https://doi.org/10.1016/j.electacta.2006.02.011
  • [18] Tuzun, N.S., Bayata, F., Sarac, A.S., "An experimental and quantum mechanical study on electrochemical properties of N-substituted pyrroles", Journal of Molecular Structure-Theochem, 857: 95-104, (2008). DOI: https://doi.org/10.1016/j.theochem.2008.02.007
  • [19] Ayranci, R., Ak, M., "Synthesis of a novel, fluorescent, electroactive and metal ion sensitive thienylpyrrole derivate", New Journal of Chemistry, 40: 8053-8059, (2016). DOI:https://doi.org/10.1039/c6nj02006b
  • [20] Carbas, B.B., Ergin, N.M., Yildiz, H.B., Kivrak, A., Demet, A.E., "Electrochromic properties of a polydithienylpyrrole derivative with N-phenyl pyrrole subunit", Materials Chemistry and Physics, 293: 1-9, (2023). DOI:https://doi.org/10.1016/j.matchemphys.2022.126916
  • [21] Sarac, A.S., Sezgin, S., Ates, M., Turhan, C.M., "Electrochemical impedance spectroscopy and morphological analyses of pyrrole, phenylpyrrole and methoxyphenylpyrrole on carbon fiber microelectrodes", Surface & Coatings Technology, 202: 3997-4005, (2008). DOI: https://doi.org/10.1016/j.surfcoat.2008.02.007
  • [22] Liu, F.G., Wang, H.R., Yang, Y.H., Xu, H.J., Zhang, M.L., Zhang, A.R., et al., "Nonlinear optical chromophores containing a novel pyrrole-based bridge: optimization of electro-optic activity and thermal stability by modifying the bridge", Journal of Materials Chemistry C, 2: 7785-7795, (2014). DOI: https://doi.org/10.1039/c4tc00900b
  • [23] Peterson, B.N., Alfieri, M.E., Hood, D.J., Hettwer, C.D., Costantino, D.V., Tabor, D.P., et al., "Solvent-mediated charge transfer dynamics of a model brown carbon aerosol chromophore: Photophysics of 1-phenylpyrrole induced by water solvation", Journal of Physical Chemistry A, 126: 4313-4325, (2022). DOI: https://doi.org/10.1021/acs.jpca.2c00585
  • [24] Figueira, C.A., Lopes, P.S., Gomes, C.S.B., Veiros, L.F., Gomes, P.T., "Exploring the influence of steric hindrance and electronic nature of substituents in the supramolecular arrangements of 5 (substituted phenyl)-2-formylpyrroles", Crystengcomm, 17: 6406-6419, (2015). DOI:https://doi.org/10.1039/c5ce00927h
  • [25] Jones, T.H., Flournoy, R.C., Torres, J.A., Snelling, R.R., Spande, T.F., Garraffo, H.M., "3-Methyl- 4- phenylpyrrole from the Ants Anochetus kempfi and Anochetus mayri", Journal of Natural Products, 62: 1343-1345, (1999). DOI: https://doi.org/10.1021/np990245t
  • [26] Brandhorst, T.T., Kean, I.R.L., Lawry, S.M., Wiesner, D.L., Klein, B.S., "Phenylpyrrole fungicides act on triosephosphate isomerase to induce methylglyoxal stress and alter hybrid histidine kinase activity", Scientific Reports, 9, (2019). DOI: https://doi.org/10.1038/s41598-019-41564-9
  • [27] Kilani, J., Fillinger, S., "Phenylpyrroles: 30 Years, two molecules and (nearly) resistance", Frontiers in Microbiology, 7, (2016). DOI: https://doi.org/10.3389/fmicb.2016.02014
  • [28] Biswas, N., Ghosh, S., Bag, A., "p-di-pyrrole Benzene derivatives - A new class of highly active HIV-1CA inhibitors", Acta Scientific Pharmaceutical Sciences, 5: 92-100, (2021).
  • [29] Meindl, K., Henn, J., Kocher, N., Leusser, D., Zachariasse, K.A., Sheldrick, G.M., et al., "Experimental charge density studies of disordered n-phenylpyrrole and n-(4-fluorophenyl)pyrrole", Journal of Physical Chemistry A, 113: 9684-9691, (2009). DOI:https://doi.org/10.1021/jp9026157
  • [30] Okuyama, K., Numata, Y., Odawara, S., Suzuka, I., "Electronic spectra of jet-cooled 1 phenylpyrrole: Large-amplitude torsional motion and twisted intramolecular charge-transfer phenomenon", Journal of Chemical Physics, 109: 7185-7196, (1998). DOI:https://doi.org/10.1063/1.477355
  • [31] Trofimov, B.A., Stepanova, Z.V., Sobenina, L.N., Mikhaleva, A.I., Sinegovskaya, L.M., Potekhin, K.A., et al., "2-(2-Benzoylethynyl)-5-phenylpyrrole: fixation of cis- and trans-rotamers in a crystal state", Mendeleev Communications, 15: 229-32, (2005). DOI:https://doi.org/10.1070/MC2005v015n06ABEH002190
  • [32] Galasso, V., De Alti, G., "MO calculations on the preferred conformation and electronic structure of phenyl-derivatives of pyrrole, furan and thiophene", Tetrahedron, 27: 4947-51, (1971). DOI:https://doi.org/10.1016/S0040-4020(01)98200-6
  • [33] Fabian, W., "Conformational behavior of phenylpyrroles - A semiempirical molecular-orbital study", Zeitschrift Fur Naturforschung Section A-A Journal of Physical Sciences, 42: 641-4, (1987). DOI:https://doi.org/DOI 10.1515/zna-1987-0621
  • [34] Rottmannova, L., Punyain, K., Rimarcik, J., Lukes, V., Klein, E., Kelterer, A.M., "Theoretical study of 2-phenylpyrrole molecule using various quantum-chemical approaches", Acta Chimica Slovaca, 5: 21-8, (2012). DOI: https://doi.org/10.2478/v10188-012-0004-4
  • [35] Lumbroso, H., Bertin, D.M., Marschner, F., "A dipole-moment study on gradually hindered N phenylpyrroles", Journal of Molecular Structure, 178: 187-200, (1988). DOI:https://doi.org/10.1016/0022-2860(88)85017-8
  • [36] Thomas, J.A., Young, J.W., Fleisher, A.J., Alvarez-Valtierra, L., Pratt, D.W., "Stark-effect studies of 1-phenylpyrrole in the gas phase. Dipole reversal upon electronic excitation", Journal of Physical Chemistry Letters, 1: 2017-9, (2010). DOI: https://doi.org/10.1021/jz100653j
  • [37] Ghiasi, R., Rahimi, M., Siavoshani, A.Y., "Stability, electronic and optical properties of irida- naphthalene and irida-azulene: A computational investigation", Russian Journal of Physical Chemistry A, 97: 2189-97, (2023). DOI: https://doi.org/10.1134/S0036024423100187
  • [38] Ghiasi, R., Pasdar, H., "Computational study of substituent effect in para substituted platinabenzene complexes", Russian Journal of Physical Chemistry A, 87: 973-8, (2013). DOI:https://doi.org/10.1134/S0036024413060368
  • [39] Becke, A.D., "Density-functional thermochemistry .3. The role of exact exchange", Journal of Chemical Physics, 98: 5648-5652, (1993). DOI: https://doi.org/Doi 10.1063/1.464913
  • [40] Lee, C.T., Yang, W.T., Parr, R.G., "Development of the Colle-Salvetti correlation-energy formula into a functional of the electron-density", Physical Review B, 37: 785-789, (1988). DOI: https://doi.org/10.1103/PhysRevB.37.785
  • [41] Hariharan, P.C., Pople, J.A., "Influence of polarization functions on molecular-orbital hydrogenation energies", Theoretical Chemistry Accounts, 28: 213-222, (1973). DOI:https://doi.org/10.1007/BF00533485
  • [42] Ditchfield, R., Hehre, W.J., and , Pople, J.A., "Self-consistent molecular orbital methods. 9. Extended Gaussian-type basis for molecular-orbital studies of organic molecules", Journal of Chemical Physics, 54: (1971). DOI: https://doi.org/10.1063/1.1674902
  • [43] Frisch, M.J., Frisch, M., Trucks, G., Schlegel, K., Scuseria, G., Robb, M., et al., Gaussian 03, Revision C.02, Gaussian, Inc., Pittsburgh, PA,. (2003).
  • [44] Sert, Y., El-Hiti, G.A., Gökce, H., Ucun, F., Abdel-Wahab, B.F., Kariuki, B.M., "DFT, molecular docking and experimental FT-IR, laser-raman, NMR and UV investigations on a potential anticancer agent containing triazole ring system", Journal of Molecular Structure, 1211, (2020). DOI: https://doi.org/10.1016/j.molstruc.2020.128077
  • [45] Sakr, M.A.S., Mohamed, A.A., Abou Kana, M.T.H., Elwahy, A.H.M., El-Daly, S.A., Ebeid, E.Z.M., "Synthesis, characterization, DFT and TD-DFT study of novel bis(5,6-diphenyl-1,2,4-triazines) ", Journal of Molecular Structure, 1226, (2021). DOI:https://doi.org/10.1016/j.molstruc.2020.129345
  • [46] Hadji, D., Champagne, B., "First Principles Investigation of the Polazirability and First Hyper polarizability of Anhyride Derivatives", Chemistry Africa, 2: 443-53, (2019). DOI:https://doi.org/10.1007/s42250-019-00060-3
  • [47] Olejniczak, M., Pecul, M., Champagne, B., Botek, E., "Theoretical investigation on the linear and nonlinear susceptibilities of urea crystal", Journal of Chemical Physics, 128, (2008). DOI:https://doi.org/10.1063/1.2938376
  • [48] Adant, C., Dupuis, M., Bredas, J.L., "Ab-Initio study of the nonlinear-optical properties of urea – Electron correlation and dispersion effects", International Journal of Quantum Chemistry, 56 (S29): 497-507, (1995).

A Computational Study of Structural, Electronic, and Nonlinear Optical Properties of Phenylpyrroles

Year 2025, Volume: 38 Issue: 2, 973 - 984, 01.06.2025
https://doi.org/10.35378/gujs.1532985

Abstract

In this study, three structural isomers of phenylpyrrole:1-, 2-, and 3-phenylpyrrole were investigated by using the B3LYP/6-31++G(d,p) level to get the information about their geometry, electronic and nonlinear optical properties. The change in the torsional angle between the pyrrole and phenyl rings was used to investigate the conformational analysis. In addition, we have calculated the electronic properties such as electric dipole moment, frontier orbital energies and energy gap (E_g). Also, we have determined linear, and nonlinear optical (NLO) properties in terms of polarizability and first hyperpolarizability.

Ethical Statement

No conflict of interest was declared by the authors.

References

  • [1] Rettig, W., Marschner, F., "Population of excited charge-transfer states and molecular-conformation in n-phenylpyrroles", Nouveau Journal De Chimie-New Journal of Chemistry, 7: 425-431, (1983). <Go to ISI>://WOS:A1983RF96300005
  • [2] Sarkar, A., Chakravorti, S., "A Study on the spectroscopy and photophysics of n-phenyl pyrrole and n phenyl pyrazole", Chemical Physics Letters, 235: 195-201, (1995). DOI:https://doi.org/10.1016/0009-2614(95)00111-G
  • [3] Belau, L., Haas, Y., Rettig, W., "Jet cooled spectra of pyrrolobenzene and of pyrrolobenzonitrile:The nature of the excited states", Chemical Physics Letter, 364: 157-163, (2002). DOI:https://doi.org/10.1016/S0009-2614(02)01316-7
  • [4] Proppe, B., Merchan, M., Serrano-Andres, L., "Theoretical study of the twisted intramolecular charge transfer in 1-phenylpyrrole", Journal of Physical Chemistry A, 104: 1608-1616, (2000). DOI:https://doi.org/10.1021/jp993627g
  • [5] Murali, S., Changenet-Barret, P., Ley, C., Plaza, P., Rettig, W., Martin, M.M., et al., "Photophysical properties of pyrrolobenzenes with different linking and substitution pattern: The transition between charge transfer states with large (MICT) and small (TICT) resonance interaction", Chemical Physics Letter , 411: 192-197, (2005). DOI: https://doi.org/10.1016/j.cplett.2005.06.019
  • [6] Neubauer, A., Murali, S., Rettig, W., "Charge transfer control by substituents: Donor pyrroles and fluoro anilines", International Journal of Photoenergy, 7: 121-124, (2005). DOI: https://doi.org/10.1155/S1110662x05000188
  • [7] Schweke, D., Haas, Y., "The fluorescence of n-phenylpyrrole in an argon/acetonitrile matrix", Journal of Physical Chemistry A, 107: 9554-9560, (2003). DOI: https://doi.org/10.1021/jp035959y
  • [8] Zborowski, K., Alkorta, I., Elguero, J., "Substitution effects in phenyl and N-pyrrole derivatives along the periodic table", Structural Chemistry, 18: 797-805, (2007). DOI:https://doi.org/10.1007/s11224007-9245-z
  • [9] Neubauer, A., Bendig, J., Rettig, W., "Control of charge transfer by conformational and electronic effects: Donor-donor and donor-acceptor phenyl pyrroles", Chemical Physics, 358: 235-244, (2009). DOI: https://doi.org/10.1016/j.chemphys.2009.02.008
  • [10] Santos, A.F.L.O.M., da Silva, M.A.V.R., "Experimental and computational thermochemistry of 1- phenylpyrrole and 1-(4-methylphenyl)pyrrole", Journal of Chemical Thermodynamics, 42: 734-741, (2010). DOI: https://doi.org/10.1016/j.jct.2010.01.009
  • [11] Santos, A.F.L.O.M., da Silva, M.A.V.R. "Energetics of 1-(aminophenyl) pyrroles: A joint calori- metric and computational study," Journal of Chemical Thermodynamics, 43: 1480-1487, (2011). DOI:https://doi.org/10.1016/j.jct.2011.04.022
  • [12] Santos, A.F.L.O.M., da Silva, M.A.V.R.," The influence of methyl groups on the torsion angle and on the energetics of 1-phenylpyrrole derivatives: a thermodynamic and computational study", Structural Chemistry, 24: 1981-1992, (2013). DOI: https://doi.org/10.1007/s11224-013-0288-z
  • [13] Galvan, I.F., Martin, M.E., Munoz-Losa, A., Sanchez, M.L., Aguilar, M.A., "Solvent effects on the structure and spectroscopy of the emitting states of 1-phenylpyrrole", Journal of Chemical Theory and Computation, 7: 1850-1857, (2011). DOI: https://doi.org/10.1021/ct2001182
  • [14] Aleman, C., Domingo, V.M., Julia, L., "A computational study of neutral and charged pyrroles. Functionalization of 1-phenylpyrrole and 2,5-dimethyl-1-phenylpyrrole with electron donating methylsulfanyl groups", Journal of Physical Chemistry A, 105: 5266-5271, (2001). DOI: https://doi.org/DOI10.1021/jp004265b
  • [15] Yoshihara, T., Druzhinin, S.I., Demeter, A., Kocher, N., Stalke, D., Zachariasse, K.A., "Kinetics of intramolecular charge transfer with N-phenylpyrrole in alkyl cyanides", Journal of Physical Chemistry A, 109: 1497-1509, (2005). DOI: https://doi.org/10.1021/jp046586j
  • [16] Pirsa, S., Alizadeh, M., Ghahremannejad, N., "Application of nano-sized poly n-phenyl pyrrole coated polyester fiber to headspace microextraction of some volatile organic compounds and analysis by gas chromatography", Current Analytical Chemistry, 12: 457-464, (2016). DOI:https://doi.org/10.2174/1573411012666151009195422
  • [17] Tarkuc, S., Sahmetlioglu, E., Tanyeli, C., Akhmedov, I.M., Toppare, L., "A soluble conducting polymer:1-phenyl-2,5-di(2-thienyl)-1H-pyrrole and its electrochromic application", Electrochimica Acta, 51: 5412-5419, (2006). DOI: https://doi.org/10.1016/j.electacta.2006.02.011
  • [18] Tuzun, N.S., Bayata, F., Sarac, A.S., "An experimental and quantum mechanical study on electrochemical properties of N-substituted pyrroles", Journal of Molecular Structure-Theochem, 857: 95-104, (2008). DOI: https://doi.org/10.1016/j.theochem.2008.02.007
  • [19] Ayranci, R., Ak, M., "Synthesis of a novel, fluorescent, electroactive and metal ion sensitive thienylpyrrole derivate", New Journal of Chemistry, 40: 8053-8059, (2016). DOI:https://doi.org/10.1039/c6nj02006b
  • [20] Carbas, B.B., Ergin, N.M., Yildiz, H.B., Kivrak, A., Demet, A.E., "Electrochromic properties of a polydithienylpyrrole derivative with N-phenyl pyrrole subunit", Materials Chemistry and Physics, 293: 1-9, (2023). DOI:https://doi.org/10.1016/j.matchemphys.2022.126916
  • [21] Sarac, A.S., Sezgin, S., Ates, M., Turhan, C.M., "Electrochemical impedance spectroscopy and morphological analyses of pyrrole, phenylpyrrole and methoxyphenylpyrrole on carbon fiber microelectrodes", Surface & Coatings Technology, 202: 3997-4005, (2008). DOI: https://doi.org/10.1016/j.surfcoat.2008.02.007
  • [22] Liu, F.G., Wang, H.R., Yang, Y.H., Xu, H.J., Zhang, M.L., Zhang, A.R., et al., "Nonlinear optical chromophores containing a novel pyrrole-based bridge: optimization of electro-optic activity and thermal stability by modifying the bridge", Journal of Materials Chemistry C, 2: 7785-7795, (2014). DOI: https://doi.org/10.1039/c4tc00900b
  • [23] Peterson, B.N., Alfieri, M.E., Hood, D.J., Hettwer, C.D., Costantino, D.V., Tabor, D.P., et al., "Solvent-mediated charge transfer dynamics of a model brown carbon aerosol chromophore: Photophysics of 1-phenylpyrrole induced by water solvation", Journal of Physical Chemistry A, 126: 4313-4325, (2022). DOI: https://doi.org/10.1021/acs.jpca.2c00585
  • [24] Figueira, C.A., Lopes, P.S., Gomes, C.S.B., Veiros, L.F., Gomes, P.T., "Exploring the influence of steric hindrance and electronic nature of substituents in the supramolecular arrangements of 5 (substituted phenyl)-2-formylpyrroles", Crystengcomm, 17: 6406-6419, (2015). DOI:https://doi.org/10.1039/c5ce00927h
  • [25] Jones, T.H., Flournoy, R.C., Torres, J.A., Snelling, R.R., Spande, T.F., Garraffo, H.M., "3-Methyl- 4- phenylpyrrole from the Ants Anochetus kempfi and Anochetus mayri", Journal of Natural Products, 62: 1343-1345, (1999). DOI: https://doi.org/10.1021/np990245t
  • [26] Brandhorst, T.T., Kean, I.R.L., Lawry, S.M., Wiesner, D.L., Klein, B.S., "Phenylpyrrole fungicides act on triosephosphate isomerase to induce methylglyoxal stress and alter hybrid histidine kinase activity", Scientific Reports, 9, (2019). DOI: https://doi.org/10.1038/s41598-019-41564-9
  • [27] Kilani, J., Fillinger, S., "Phenylpyrroles: 30 Years, two molecules and (nearly) resistance", Frontiers in Microbiology, 7, (2016). DOI: https://doi.org/10.3389/fmicb.2016.02014
  • [28] Biswas, N., Ghosh, S., Bag, A., "p-di-pyrrole Benzene derivatives - A new class of highly active HIV-1CA inhibitors", Acta Scientific Pharmaceutical Sciences, 5: 92-100, (2021).
  • [29] Meindl, K., Henn, J., Kocher, N., Leusser, D., Zachariasse, K.A., Sheldrick, G.M., et al., "Experimental charge density studies of disordered n-phenylpyrrole and n-(4-fluorophenyl)pyrrole", Journal of Physical Chemistry A, 113: 9684-9691, (2009). DOI:https://doi.org/10.1021/jp9026157
  • [30] Okuyama, K., Numata, Y., Odawara, S., Suzuka, I., "Electronic spectra of jet-cooled 1 phenylpyrrole: Large-amplitude torsional motion and twisted intramolecular charge-transfer phenomenon", Journal of Chemical Physics, 109: 7185-7196, (1998). DOI:https://doi.org/10.1063/1.477355
  • [31] Trofimov, B.A., Stepanova, Z.V., Sobenina, L.N., Mikhaleva, A.I., Sinegovskaya, L.M., Potekhin, K.A., et al., "2-(2-Benzoylethynyl)-5-phenylpyrrole: fixation of cis- and trans-rotamers in a crystal state", Mendeleev Communications, 15: 229-32, (2005). DOI:https://doi.org/10.1070/MC2005v015n06ABEH002190
  • [32] Galasso, V., De Alti, G., "MO calculations on the preferred conformation and electronic structure of phenyl-derivatives of pyrrole, furan and thiophene", Tetrahedron, 27: 4947-51, (1971). DOI:https://doi.org/10.1016/S0040-4020(01)98200-6
  • [33] Fabian, W., "Conformational behavior of phenylpyrroles - A semiempirical molecular-orbital study", Zeitschrift Fur Naturforschung Section A-A Journal of Physical Sciences, 42: 641-4, (1987). DOI:https://doi.org/DOI 10.1515/zna-1987-0621
  • [34] Rottmannova, L., Punyain, K., Rimarcik, J., Lukes, V., Klein, E., Kelterer, A.M., "Theoretical study of 2-phenylpyrrole molecule using various quantum-chemical approaches", Acta Chimica Slovaca, 5: 21-8, (2012). DOI: https://doi.org/10.2478/v10188-012-0004-4
  • [35] Lumbroso, H., Bertin, D.M., Marschner, F., "A dipole-moment study on gradually hindered N phenylpyrroles", Journal of Molecular Structure, 178: 187-200, (1988). DOI:https://doi.org/10.1016/0022-2860(88)85017-8
  • [36] Thomas, J.A., Young, J.W., Fleisher, A.J., Alvarez-Valtierra, L., Pratt, D.W., "Stark-effect studies of 1-phenylpyrrole in the gas phase. Dipole reversal upon electronic excitation", Journal of Physical Chemistry Letters, 1: 2017-9, (2010). DOI: https://doi.org/10.1021/jz100653j
  • [37] Ghiasi, R., Rahimi, M., Siavoshani, A.Y., "Stability, electronic and optical properties of irida- naphthalene and irida-azulene: A computational investigation", Russian Journal of Physical Chemistry A, 97: 2189-97, (2023). DOI: https://doi.org/10.1134/S0036024423100187
  • [38] Ghiasi, R., Pasdar, H., "Computational study of substituent effect in para substituted platinabenzene complexes", Russian Journal of Physical Chemistry A, 87: 973-8, (2013). DOI:https://doi.org/10.1134/S0036024413060368
  • [39] Becke, A.D., "Density-functional thermochemistry .3. The role of exact exchange", Journal of Chemical Physics, 98: 5648-5652, (1993). DOI: https://doi.org/Doi 10.1063/1.464913
  • [40] Lee, C.T., Yang, W.T., Parr, R.G., "Development of the Colle-Salvetti correlation-energy formula into a functional of the electron-density", Physical Review B, 37: 785-789, (1988). DOI: https://doi.org/10.1103/PhysRevB.37.785
  • [41] Hariharan, P.C., Pople, J.A., "Influence of polarization functions on molecular-orbital hydrogenation energies", Theoretical Chemistry Accounts, 28: 213-222, (1973). DOI:https://doi.org/10.1007/BF00533485
  • [42] Ditchfield, R., Hehre, W.J., and , Pople, J.A., "Self-consistent molecular orbital methods. 9. Extended Gaussian-type basis for molecular-orbital studies of organic molecules", Journal of Chemical Physics, 54: (1971). DOI: https://doi.org/10.1063/1.1674902
  • [43] Frisch, M.J., Frisch, M., Trucks, G., Schlegel, K., Scuseria, G., Robb, M., et al., Gaussian 03, Revision C.02, Gaussian, Inc., Pittsburgh, PA,. (2003).
  • [44] Sert, Y., El-Hiti, G.A., Gökce, H., Ucun, F., Abdel-Wahab, B.F., Kariuki, B.M., "DFT, molecular docking and experimental FT-IR, laser-raman, NMR and UV investigations on a potential anticancer agent containing triazole ring system", Journal of Molecular Structure, 1211, (2020). DOI: https://doi.org/10.1016/j.molstruc.2020.128077
  • [45] Sakr, M.A.S., Mohamed, A.A., Abou Kana, M.T.H., Elwahy, A.H.M., El-Daly, S.A., Ebeid, E.Z.M., "Synthesis, characterization, DFT and TD-DFT study of novel bis(5,6-diphenyl-1,2,4-triazines) ", Journal of Molecular Structure, 1226, (2021). DOI:https://doi.org/10.1016/j.molstruc.2020.129345
  • [46] Hadji, D., Champagne, B., "First Principles Investigation of the Polazirability and First Hyper polarizability of Anhyride Derivatives", Chemistry Africa, 2: 443-53, (2019). DOI:https://doi.org/10.1007/s42250-019-00060-3
  • [47] Olejniczak, M., Pecul, M., Champagne, B., Botek, E., "Theoretical investigation on the linear and nonlinear susceptibilities of urea crystal", Journal of Chemical Physics, 128, (2008). DOI:https://doi.org/10.1063/1.2938376
  • [48] Adant, C., Dupuis, M., Bredas, J.L., "Ab-Initio study of the nonlinear-optical properties of urea – Electron correlation and dispersion effects", International Journal of Quantum Chemistry, 56 (S29): 497-507, (1995).
There are 48 citations in total.

Details

Primary Language English
Subjects Atomic, Molecular and Optical Physics (Other)
Journal Section Research Article
Authors

Mehmet Bahat 0000-0002-1194-2576

Yasemin Şafak Asar 0000-0002-7718-2856

Early Pub Date May 9, 2025
Publication Date June 1, 2025
Submission Date August 13, 2024
Acceptance Date January 27, 2025
Published in Issue Year 2025 Volume: 38 Issue: 2

Cite

APA Bahat, M., & Şafak Asar, Y. (2025). A Computational Study of Structural, Electronic, and Nonlinear Optical Properties of Phenylpyrroles. Gazi University Journal of Science, 38(2), 973-984. https://doi.org/10.35378/gujs.1532985
AMA Bahat M, Şafak Asar Y. A Computational Study of Structural, Electronic, and Nonlinear Optical Properties of Phenylpyrroles. Gazi University Journal of Science. June 2025;38(2):973-984. doi:10.35378/gujs.1532985
Chicago Bahat, Mehmet, and Yasemin Şafak Asar. “A Computational Study of Structural, Electronic, and Nonlinear Optical Properties of Phenylpyrroles”. Gazi University Journal of Science 38, no. 2 (June 2025): 973-84. https://doi.org/10.35378/gujs.1532985.
EndNote Bahat M, Şafak Asar Y (June 1, 2025) A Computational Study of Structural, Electronic, and Nonlinear Optical Properties of Phenylpyrroles. Gazi University Journal of Science 38 2 973–984.
IEEE M. Bahat and Y. Şafak Asar, “A Computational Study of Structural, Electronic, and Nonlinear Optical Properties of Phenylpyrroles”, Gazi University Journal of Science, vol. 38, no. 2, pp. 973–984, 2025, doi: 10.35378/gujs.1532985.
ISNAD Bahat, Mehmet - Şafak Asar, Yasemin. “A Computational Study of Structural, Electronic, and Nonlinear Optical Properties of Phenylpyrroles”. Gazi University Journal of Science 38/2 (June2025), 973-984. https://doi.org/10.35378/gujs.1532985.
JAMA Bahat M, Şafak Asar Y. A Computational Study of Structural, Electronic, and Nonlinear Optical Properties of Phenylpyrroles. Gazi University Journal of Science. 2025;38:973–984.
MLA Bahat, Mehmet and Yasemin Şafak Asar. “A Computational Study of Structural, Electronic, and Nonlinear Optical Properties of Phenylpyrroles”. Gazi University Journal of Science, vol. 38, no. 2, 2025, pp. 973-84, doi:10.35378/gujs.1532985.
Vancouver Bahat M, Şafak Asar Y. A Computational Study of Structural, Electronic, and Nonlinear Optical Properties of Phenylpyrroles. Gazi University Journal of Science. 2025;38(2):973-84.