Research Article
BibTex RIS Cite

Effect of Diluent Amount on Properties of Porous NiAl

Year 2022, , 429 - 438, 31.12.2022
https://doi.org/10.54287/gujsa.1174783

Abstract

Porous NiAl parts were formed by using Ni and Al elemental powders, preformed NiAl as diluent and NaCl particles as space holder (SH). The aim of utilizing preformed NiAl (30%-40%) as a diluent was to preserve the shape of the products. The amounts of the SH NaCl particles in NiAl were 25-50-75 vol.% and their sizes were in 300-500 µm range. Porous NiAl samples were prepared by volume combustion synthesis (VCS). The adiabatic temperatures of the Ni+Al mixtures having 30 and 40% diluent NiAl were calculated as 1638.9 and 1460.8°C, respectively. Formation of NiAl phase was verified by XRD analyses. In the green pellets, the total porosity amount was higher than the added NaCl amount. Also it was slightly higher in the product pellets than in the green pellets before VCS. Compressive strength and microhardness values of the samples which contained 30% diluent NiAl were higher than the samples which contained 40% diluent. Average compressive strength values of the products that were obtained by 25% NaCl and 30 and 40% diluent NiAl additions were 112.0±29.5 and 66.0±20.5 MPa, respectively.

Supporting Institution

Akdeniz Üniversitesi

Project Number

FDK-2021-5653

Thanks

Authors thank to Akdeniz University Scientific Research Projects Coordination Unit for supporting this study with Project No: FDK-2021-5653.

References

  • Arifvianto, B., & Zhou, J. (2014). Fabrication of metallic biomedical scaffolds with the space holder method: a review. Materials, 7(5), 3588-3622. doi:10.3390/ma7053588
  • Banhart, J. (2001). Manufacture, characterisation and application of cellular metals and metal foams. Progress in Materials Science, 46(6), 559-632. doi:10.1016/S0079-6425(00)00002-5
  • Cai, X., Li, Z., Jiao, X., Wang, J., Kang, X., Feng, P., Akhtar, F., & Wang, X. (2021). Preparation of porous NiAl intermetallic with controllable shape and pore structure by rapid thermal explosion with space holder. Metals and Materials International, 27(10), 4216-4224. doi:10.1007/s12540-020-00904-5
  • Camurlu, H. E., & Maglia, F. (2009). Self-propagating high-temperature synthesis of ZrB2 or TiB2 reinforced Ni–Al composite powder. Journal of Alloys and Compounds, 478(1-2), 721-725. doi:10.1016/j.jallcom.2008.11.139
  • Jiang, Y., He, Y., & Gao, H. (2021). Recent progress in porous intermetallics: Synthesis mechanism, pore structure, and material properties. Journal of Materials Science & Technology, 74, 89-104. doi:10.1016/j.jmst.2020.10.007
  • Li, Z., Cai, X., Ren, X., Kang, X., Wang, X., Jiao, X., & Feng, P. (2019). Rapid preparation of porous Ni–Al intermetallics by thermal explosion. Combustion Science and Technology, 192(3), 486-492 doi:10.1080/00102202.2019.1576652
  • Moore, J. J., & Feng, H. J. (1995). Combustion synthesis of advanced materials: Part I. Reaction parameters. Progress in Materials Science, 39(4-5), 243-273. doi:10.1016/0079-6425(94)00011-5
  • Roine, A. (2002). Outokumpu HSC chemistry for windows. Chemical Reaction and Equilibrium Software with Extensive Ther-Mochemical Database. PDF
  • Shu, Y., Suziki, A., Takata, N., & Kobashi, M. (2019). Microstructure and mechanical property of porous nickel aluminides Fabricated by Reactive Synthesis with Space Holder Powder. MRS Advances, 4, 1515-1521. doi:10.1557/adv.2019.153
  • Su, X., Fu, F., Yan, Y., Zheng, G., Liang, T., Zhang, Q., Cheng, X., Yang, D., Chi, H., Tang, X., Zhang, Q., & Uher, C. (2014). Self-propagating high-temperature synthesis for compound thermoelectrics and new criterion for combustion processing. Nature Communications, 5, 4908. doi:10.1038/ncomms5908
  • Varma, A., Rogachev, A. S., Mukasyan, A. S., & Hwang, S. (1998). Combustion synthesis of advanced materials: principles and applications. Advances in Chemical Engineering, 24, 79-226. doi:10.1016/S0065-2377(08)60093-9
  • Wang, Z., Jiao, X., Feng, P., Wang, X., Liu, Z., & Akhtar, F. (2016). Highly porous open cellular TiAl-based intermetallics fabricated by thermal explosion with space holder process. Intermetallics, 68, 95-100. doi:10.1016/j.intermet.2015.09.010
  • Yang, X., Hu, Q., Du, J., Song, H., Zou, T., Sha, J., He, C. & Zhao, N. (2019). Compression fatigue properties of open-cell aluminum foams fabricated by space-holder method. International Journal of Fatigue, 121, 272-280. doi:10.1016/j.ijfatigue.2018.11.008
Year 2022, , 429 - 438, 31.12.2022
https://doi.org/10.54287/gujsa.1174783

Abstract

Project Number

FDK-2021-5653

References

  • Arifvianto, B., & Zhou, J. (2014). Fabrication of metallic biomedical scaffolds with the space holder method: a review. Materials, 7(5), 3588-3622. doi:10.3390/ma7053588
  • Banhart, J. (2001). Manufacture, characterisation and application of cellular metals and metal foams. Progress in Materials Science, 46(6), 559-632. doi:10.1016/S0079-6425(00)00002-5
  • Cai, X., Li, Z., Jiao, X., Wang, J., Kang, X., Feng, P., Akhtar, F., & Wang, X. (2021). Preparation of porous NiAl intermetallic with controllable shape and pore structure by rapid thermal explosion with space holder. Metals and Materials International, 27(10), 4216-4224. doi:10.1007/s12540-020-00904-5
  • Camurlu, H. E., & Maglia, F. (2009). Self-propagating high-temperature synthesis of ZrB2 or TiB2 reinforced Ni–Al composite powder. Journal of Alloys and Compounds, 478(1-2), 721-725. doi:10.1016/j.jallcom.2008.11.139
  • Jiang, Y., He, Y., & Gao, H. (2021). Recent progress in porous intermetallics: Synthesis mechanism, pore structure, and material properties. Journal of Materials Science & Technology, 74, 89-104. doi:10.1016/j.jmst.2020.10.007
  • Li, Z., Cai, X., Ren, X., Kang, X., Wang, X., Jiao, X., & Feng, P. (2019). Rapid preparation of porous Ni–Al intermetallics by thermal explosion. Combustion Science and Technology, 192(3), 486-492 doi:10.1080/00102202.2019.1576652
  • Moore, J. J., & Feng, H. J. (1995). Combustion synthesis of advanced materials: Part I. Reaction parameters. Progress in Materials Science, 39(4-5), 243-273. doi:10.1016/0079-6425(94)00011-5
  • Roine, A. (2002). Outokumpu HSC chemistry for windows. Chemical Reaction and Equilibrium Software with Extensive Ther-Mochemical Database. PDF
  • Shu, Y., Suziki, A., Takata, N., & Kobashi, M. (2019). Microstructure and mechanical property of porous nickel aluminides Fabricated by Reactive Synthesis with Space Holder Powder. MRS Advances, 4, 1515-1521. doi:10.1557/adv.2019.153
  • Su, X., Fu, F., Yan, Y., Zheng, G., Liang, T., Zhang, Q., Cheng, X., Yang, D., Chi, H., Tang, X., Zhang, Q., & Uher, C. (2014). Self-propagating high-temperature synthesis for compound thermoelectrics and new criterion for combustion processing. Nature Communications, 5, 4908. doi:10.1038/ncomms5908
  • Varma, A., Rogachev, A. S., Mukasyan, A. S., & Hwang, S. (1998). Combustion synthesis of advanced materials: principles and applications. Advances in Chemical Engineering, 24, 79-226. doi:10.1016/S0065-2377(08)60093-9
  • Wang, Z., Jiao, X., Feng, P., Wang, X., Liu, Z., & Akhtar, F. (2016). Highly porous open cellular TiAl-based intermetallics fabricated by thermal explosion with space holder process. Intermetallics, 68, 95-100. doi:10.1016/j.intermet.2015.09.010
  • Yang, X., Hu, Q., Du, J., Song, H., Zou, T., Sha, J., He, C. & Zhao, N. (2019). Compression fatigue properties of open-cell aluminum foams fabricated by space-holder method. International Journal of Fatigue, 121, 272-280. doi:10.1016/j.ijfatigue.2018.11.008
There are 13 citations in total.

Details

Primary Language English
Journal Section Metallurgical and Materials Engineering
Authors

Gülizar Sarıyer 0000-0001-7754-4549

Hasan Erdem Çamurlu 0000-0003-3170-4492

Project Number FDK-2021-5653
Publication Date December 31, 2022
Submission Date September 13, 2022
Published in Issue Year 2022

Cite

APA Sarıyer, G., & Çamurlu, H. E. (2022). Effect of Diluent Amount on Properties of Porous NiAl. Gazi University Journal of Science Part A: Engineering and Innovation, 9(4), 429-438. https://doi.org/10.54287/gujsa.1174783