Attia, N. F., Jung, M., Park, J., Jang, H., Lee, K., & Oh, H. (2020). Flexible nanoporous activated carbon cloth for achieving high H2, CH4, and CO2 storage capacities and selective CO2/CH4 separation. Chemical Engineering Journal, 379, 122367. doi:10.1016/j.cej.2019.122367
Braun, E., Lee, Y., Moosavi, S. M., Barthel, S., Mercado, R., Baburin, I. A., Proserpio, D. M., & Smit, B. (2018). Generating carbon schwarzites via zeolite-templating. Proceedings of the National Academy of Sciences of the United States of America, 115(35), E8116-E8124. doi:10.1073/pnas.1805062115
Dal-Cin, M. M., Kumar, A., & Layton, L. (2008). Revisiting the experimental and theoretical upper bounds of light pure gas selectivity–permeability for polymeric membranes. Journal of Membrane Science, 323(2), 299-308. doi:10.1016/j.memsci.2008.06.027
Deniz, C. U. (2022). Computational screening of zeolite templated carbons for hydrogen storage. Computational Materials Science, 202, 110950. doi:10.1016/j.commatsci.2021.110950
Dubbeldam, D., Calero, S., Ellis, D. E., & Snurr, R. Q. (2016). RASPA: Molecular simulation software for adsorption and diffusion in flexible nanoporous materials. Molecular Simulation, 42(2), 81-101. doi:10.1080/08927022.2015.1010082
Dubbeldam, D., Calero, S., & Vlugt, T. J. H. (2018). iRASPA: GPU-accelerated visualization software for materials scientists. Molecular Simulation, 44(8), 653-676. doi:10.1080/08927022.2018.1426855
Kosinov, N., Gascon, J., Kapteijn, F., & Hensen, E. J. M. (2016). Recent developments in zeolite membranes for gas separation. Journal of Membrane Science, 499, 65-79. doi:10.1016/j.memsci.2015.10.049
Li, X.-D., Yang, P., Huang, X.-Y., Liu, X.-Y., Yu, J.-X., & Chen, Z. (2022). Computational simulation study on adsorption and separation of CH4/H2 in five higher-valency covalent organic frameworks. Materials Today Communications, 33, 104374. doi:10.1016/j.mtcomm.2022.104374
Lithoxoos, G. P., Labropoulos, A., Peristeras, L. D., Kanellopoulos, N., Samios, J., & Economou, I. G. (2010). Adsorption of N2, CH4, CO and CO2 gases in single walled carbon nanotubes: A combined experimental and Monte Carlo molecular simulation study. Journal of Supercritical Fluids, 55(2), 510-523. doi:10.1016/j.supflu.2010.09.017
Majumdar, S., Maurya, M., & Singh, J. K. (2018). Adsorptive Separation of CO2 from Multicomponent Mixtures of Flue Gas in Carbon Nanotube Arrays: A Grand Canonical Monte Carlo Study. Energy & Fuels, 32(5), 6090-6097. doi:10.1021/acs.energyfuels.8b00649
Mert, H., Deniz, C. U., & Baykasoglu, C. (2020). Monte Carlo simulations of hydrogen adsorption in fullerene pillared graphene nanocomposites. Molecular Simulation, 46(8), 650-659. doi:10.1080/08927022.2020.1758696
Michels, A., de Graaff, W., & Ten Seldam, C. A. (1960). Virial coefficients of hydrogen and deuterium at temperatures between −175°C and +150°C. Conclusions from the second virial coefficient with regards to the intermolecular potential. Physica, 26(6), 393-408. doi:10.1016/0031-8914(60)90029-X
Niaz, S., Manzoor, T., & Pandith, A. H. (2015). Hydrogen storage: Materials, methods and perspectives. Renewable and Sustainable Energy Reviews, 50, 457-469. doi:10.1016/j.rser.2015.05.011
Nishihara, H., & Kyotani, T. (2018). Zeolite-templated carbons-three-dimensional microporous graphene frameworks. Chemical Communications, 54(45), 5648-5673. doi:10.1039/c8cc01932k
Ozturk, Z., Baykasoglu, C., Celebi, A. T., Kirca, M., Mugan, A., & To, A. C. (2015). Hydrogen storage in heat welded random CNT network structures. International Journal of Hydrogen Energy, 40(1), 403-411. doi:10.1016/j.ijhydene.2014.10.148
Peng, X., Zhou, J., Wang, W., & Cao, D. (2010). Computer simulation for storage of methane and capture of carbon dioxide in carbon nanoscrolls by expansion of interlayer spacing. Carbon, 48(13), 3760-3768. doi:10.1016/j.carbon.2010.06.038
Sha, H., & Faller, R. (2016). Molecular simulation of adsorption and separation of pure noble gases and noble gas mixtures on single wall carbon nanotubes. Computational Materials Science, 114, 160-166. doi:10.1016/j.commatsci.2015.12.031
van den Berg, A. W. C., & Areán, C. O. (2008). Materials for hydrogen storage: current research trends and perspectives. Chemical Communications, 6, 668-681. doi:10.1039/B712576N
Vlugt, T. J. H., García-Pérez, E., Dubbeldam, D., Ban, S., & Calero, S. (2008). Computing the Heat of Adsorption using Molecular Simulations: The Effect of Strong Coulombic Interactions. Journal of Chemical Theory and Computation, 4(7), 1107-1118. doi:10.1021/ct700342k
Wang, H., & Cao, D. (2015). Diffusion and Separation of H2, CH4, CO2, and N2 in Diamond-Like Frameworks. The Journal of Physical Chemistry C, 119(11), 6324-6330. doi:10.1021/jp512275p
Yuan, J., Liu, X., Li, X., & Yu, J. (2021). Computer simulations for the adsorption and separation of CH4/H2/CO2/N2 gases by hybrid ultramicroporous materials. Materials Today Communications, 26, 101987. doi:10.1016/j.mtcomm.2020.101987
Zhang, Q., Uchaker, E., Candelaria, S. L., & Cao, G. (2013). Nanomaterials for energy conversion and storage. Chemical Society Reviews, 42(7), 3127-3171. doi:10.1039/C3CS00009E
Zhou B., Li W., & Zhang J. (2017). The Journal of Physical Chemistry C, 121(37), 20197-20204. doi:10.1021/acs.jpcc.7b07108
A Computational Study of the Adsorptive Separation of Methane and Hydrogen in Zeolite Templated Carbons
Combustion of conventional energy sources produces pollutants such as SOx, NOx, and CO; the use of hydrogen and methane can eliminate these harmful emissions. In fuel cell technology and other uses, hydrogen must be refined by extracting methane from the methane/hydrogen combination, produced via dry or steam reforming. This study investigates the adsorption and separation capabilities of recently discovered zeolite-templated carbons (ZTCs) for binary mixtures consisting of hydrogen and methane. To assess the adsorption and separation performances of these carbon-based nanostructures, grand canonical Monte Carlo (GCMC) simulations were used. The simulation results revealed that AFY (|(C6H15N)3(H2O)7|[Co3Al5P8O32]) and RWY (|(C6H18N4)16| [Ga32Ge16S96]) structures could be viable alternatives for applications involving adsorptive gas separation based on selectivity and the CH4 uptake capacity. The selectivity of AFY was calculated to be 176, while its capacity to uptake CH4 was found to be 2.57 mmol/g, the selectivity of RWY was calculated to be 132, and its CH4 uptake was 3.49 mmol/g.
Attia, N. F., Jung, M., Park, J., Jang, H., Lee, K., & Oh, H. (2020). Flexible nanoporous activated carbon cloth for achieving high H2, CH4, and CO2 storage capacities and selective CO2/CH4 separation. Chemical Engineering Journal, 379, 122367. doi:10.1016/j.cej.2019.122367
Braun, E., Lee, Y., Moosavi, S. M., Barthel, S., Mercado, R., Baburin, I. A., Proserpio, D. M., & Smit, B. (2018). Generating carbon schwarzites via zeolite-templating. Proceedings of the National Academy of Sciences of the United States of America, 115(35), E8116-E8124. doi:10.1073/pnas.1805062115
Dal-Cin, M. M., Kumar, A., & Layton, L. (2008). Revisiting the experimental and theoretical upper bounds of light pure gas selectivity–permeability for polymeric membranes. Journal of Membrane Science, 323(2), 299-308. doi:10.1016/j.memsci.2008.06.027
Deniz, C. U. (2022). Computational screening of zeolite templated carbons for hydrogen storage. Computational Materials Science, 202, 110950. doi:10.1016/j.commatsci.2021.110950
Dubbeldam, D., Calero, S., Ellis, D. E., & Snurr, R. Q. (2016). RASPA: Molecular simulation software for adsorption and diffusion in flexible nanoporous materials. Molecular Simulation, 42(2), 81-101. doi:10.1080/08927022.2015.1010082
Dubbeldam, D., Calero, S., & Vlugt, T. J. H. (2018). iRASPA: GPU-accelerated visualization software for materials scientists. Molecular Simulation, 44(8), 653-676. doi:10.1080/08927022.2018.1426855
Kosinov, N., Gascon, J., Kapteijn, F., & Hensen, E. J. M. (2016). Recent developments in zeolite membranes for gas separation. Journal of Membrane Science, 499, 65-79. doi:10.1016/j.memsci.2015.10.049
Li, X.-D., Yang, P., Huang, X.-Y., Liu, X.-Y., Yu, J.-X., & Chen, Z. (2022). Computational simulation study on adsorption and separation of CH4/H2 in five higher-valency covalent organic frameworks. Materials Today Communications, 33, 104374. doi:10.1016/j.mtcomm.2022.104374
Lithoxoos, G. P., Labropoulos, A., Peristeras, L. D., Kanellopoulos, N., Samios, J., & Economou, I. G. (2010). Adsorption of N2, CH4, CO and CO2 gases in single walled carbon nanotubes: A combined experimental and Monte Carlo molecular simulation study. Journal of Supercritical Fluids, 55(2), 510-523. doi:10.1016/j.supflu.2010.09.017
Majumdar, S., Maurya, M., & Singh, J. K. (2018). Adsorptive Separation of CO2 from Multicomponent Mixtures of Flue Gas in Carbon Nanotube Arrays: A Grand Canonical Monte Carlo Study. Energy & Fuels, 32(5), 6090-6097. doi:10.1021/acs.energyfuels.8b00649
Mert, H., Deniz, C. U., & Baykasoglu, C. (2020). Monte Carlo simulations of hydrogen adsorption in fullerene pillared graphene nanocomposites. Molecular Simulation, 46(8), 650-659. doi:10.1080/08927022.2020.1758696
Michels, A., de Graaff, W., & Ten Seldam, C. A. (1960). Virial coefficients of hydrogen and deuterium at temperatures between −175°C and +150°C. Conclusions from the second virial coefficient with regards to the intermolecular potential. Physica, 26(6), 393-408. doi:10.1016/0031-8914(60)90029-X
Niaz, S., Manzoor, T., & Pandith, A. H. (2015). Hydrogen storage: Materials, methods and perspectives. Renewable and Sustainable Energy Reviews, 50, 457-469. doi:10.1016/j.rser.2015.05.011
Nishihara, H., & Kyotani, T. (2018). Zeolite-templated carbons-three-dimensional microporous graphene frameworks. Chemical Communications, 54(45), 5648-5673. doi:10.1039/c8cc01932k
Ozturk, Z., Baykasoglu, C., Celebi, A. T., Kirca, M., Mugan, A., & To, A. C. (2015). Hydrogen storage in heat welded random CNT network structures. International Journal of Hydrogen Energy, 40(1), 403-411. doi:10.1016/j.ijhydene.2014.10.148
Peng, X., Zhou, J., Wang, W., & Cao, D. (2010). Computer simulation for storage of methane and capture of carbon dioxide in carbon nanoscrolls by expansion of interlayer spacing. Carbon, 48(13), 3760-3768. doi:10.1016/j.carbon.2010.06.038
Sha, H., & Faller, R. (2016). Molecular simulation of adsorption and separation of pure noble gases and noble gas mixtures on single wall carbon nanotubes. Computational Materials Science, 114, 160-166. doi:10.1016/j.commatsci.2015.12.031
van den Berg, A. W. C., & Areán, C. O. (2008). Materials for hydrogen storage: current research trends and perspectives. Chemical Communications, 6, 668-681. doi:10.1039/B712576N
Vlugt, T. J. H., García-Pérez, E., Dubbeldam, D., Ban, S., & Calero, S. (2008). Computing the Heat of Adsorption using Molecular Simulations: The Effect of Strong Coulombic Interactions. Journal of Chemical Theory and Computation, 4(7), 1107-1118. doi:10.1021/ct700342k
Wang, H., & Cao, D. (2015). Diffusion and Separation of H2, CH4, CO2, and N2 in Diamond-Like Frameworks. The Journal of Physical Chemistry C, 119(11), 6324-6330. doi:10.1021/jp512275p
Yuan, J., Liu, X., Li, X., & Yu, J. (2021). Computer simulations for the adsorption and separation of CH4/H2/CO2/N2 gases by hybrid ultramicroporous materials. Materials Today Communications, 26, 101987. doi:10.1016/j.mtcomm.2020.101987
Zhang, Q., Uchaker, E., Candelaria, S. L., & Cao, G. (2013). Nanomaterials for energy conversion and storage. Chemical Society Reviews, 42(7), 3127-3171. doi:10.1039/C3CS00009E
Zhou B., Li W., & Zhang J. (2017). The Journal of Physical Chemistry C, 121(37), 20197-20204. doi:10.1021/acs.jpcc.7b07108
Deniz, C. U. (2022). A Computational Study of the Adsorptive Separation of Methane and Hydrogen in Zeolite Templated Carbons. Gazi University Journal of Science Part A: Engineering and Innovation, 9(4), 545-553. https://doi.org/10.54287/gujsa.1205356