Altındal Yerişkin, S. (2019). The investigation of effects of (Fe2O4-PVP) organic-layer, surface states, and serial resistance on the electrical characteristics and the sources of them. Journal of Materials Science: Materials in Electronics, 30, 17032-17039. doi:10.1007/s10854-019-02045-x
Ashajyothi, S., & Reddy, V. R. (2021). Influence of tin oxide (SnO2) interlayer on the electrical and reverse current conduction mechanism of Au/n-InP Schottky junction and its microstructural properties. Thin Solid Films, 740, 139001. doi:10.1016/j.tsf.2021.139001
Baydilli, E. E., Tan, S. O., Tecimer, H. U., & Altındal, S. (2020). Detection of current transport mechanisms for graphene-doped-PVA interlayered metal/semiconductor structures. Physica B Condens Matter, 598, 412457. doi:10.1016/j.physb.2020.412457
Bohlin, K. E. (1986). Generalized Norde plot including determination of the ideality factor. Journal of Applied Physics, 60(3), 1223-1224. doi:10.1063/1.337372
Cheung, S. K., & Cheung, N. W. (1986). Extraction of Schottky diode parameters from forward current‐voltage characteristics. Applied Physics Letters, 49(2), 85-87. doi:10.1063/1.97359
Çaldıran, Z. (2020). Fabrication of Schottky barrier diodes with the lithium fluoride interface layer and electrical characterization in a wide temperature range. Journal of Alloys and Compounds, 816, 152601. doi:10.1016/j.jallcom.2019.152601
Çiçek, O., Tecimer, H. U., Tan, S. O., Tecimer, H., Altındal, Ş., & Uslu, İ. (2016). Evaluation of electrical and photovoltaic behaviours as comparative of Au/n-GaAs (MS) diodes with and without pure and graphene (Gr)-doped polyvinyl alcohol (PVA) interfacial layer under dark and illuminated conditions. Composites Part B: Engineering, 98, 260-268. doi:10.1016/j.compositesb.2016.05.042
Deniz, A. R., Taş, A. İ., Çaldıran, Z., İncekara, Ü., Biber, M., Aydoğan, Ş., & Türüt, A. (2022). Effects of PEDOT:PSS and crystal violet interface layers on current-voltage performance of Schottky barrier diodes as a function of temperature and variation of diode capacitance with frequency. Current Applied Physics, 39, 173-182. doi:10.1016/j.cap.2022.03.017
Evcin Baydilli, E., Altındal, S., Tecimer, H., Kaymaz, A., & Uslu Tecimer, H. (2020). The determination of the temperature and voltage dependence of the main device parameters of Au/7%Gr-doped PVA/n-GaAs-type Schottky Diode (SD). Journal of Materials Science: Materials in Electronics, 31, 17147-17157. doi:10.1007/s10854-020-03799-5
Helal, H., Benamara, Z., Arbia, M. B., Khettou, A., Rabehi, A., Kacha, A. H., & Amrani, M. (2020). A study of current-voltage and capacitance-voltage characteristics of Au/n-GaAs and Au/GaN/n-GaAs Schottky diodes in wide temperature range. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 33(4), e2714. doi:10.1002/jnm.2714
Norde, H. (1979). A modified forward I ‐ V plot for Schottky diodes with high serial resistance. Journal of Applied Physics, 50(7), 5052-5053. doi:10.1063/1.325607
Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V., & Firsov, A. A. (2004). Electric Field Effect in Atomically Thin Carbon Films, 306(5696), 666-669. doi:10.1126/science.1102896
Özdemir, A. F., Göksu, T., Yıldırım, N., Turut., A. (2021). Effects of measurement temperature and metal thickness on Schottky diode characteristics. Physica B Condens Matter, 616, 413125. doi:10.1016/j.physb.2021.413125
Pehlivanoglu, S. A. (2021). Fabrication of p-Si/n-NiO:Zn photodiodes and current/capacitance-voltage characterizations. Physica B Condens Matter, 603, 412482. doi:10.1016/j.physb.2020.412482
Rhoderick, E. H. (1978). Metal-Semiconductor Contacts. Clarendon Press Oxford.
Sadao, A. (2005). Properties of Group-IV, III-V and II-VI Semiconductors. Hoboken (USA) Wiley&Sons.
Sato, K., & Yasumura, Y. (1985). Study of forward I ‐ V plot for Schottky diodes with high serial resistance. Journal of Applied Physics, 58(9), 3655-3657. doi:10.1063/1.335750
Sevgili, Ö., Orak, İ., & Tiras, K. S. (2022). The examination of the electrical properties of Al/Mg2Si/p-Si Schottky diodes with an ecofriendly interfacial layer depending on temperature and frequency. Physica E: Low-dimensional Systems and Nanostructures, 144, 115380. doi:10.1016/j.physe.2022.115380
Taşyürek, L. B., Aydoğan, Ş., Sevim, M., & Çaldıran, Z. (2022). Analysis of the temperature dependent electrical parameters of the heterojunction obtained with Au nanoparticles decorated perovskite strontium titanate nanocubes. Journal of Alloys and Compounds, 914, 165140. doi: 10.1016/j.jallcom.2022.165140
Uslu, H., Altındal, S., Aydemir, U., Dökme, I., & Afandiyeva, I. M. (2010). The interface states and serial resistance effects on the forward and reverse bias I-V, C-V and G/ω-V characteristics of Al-TiW-Pd 2Si/n-Si Schottky barrier diodes. Journal of Alloys and Compounds, 503(1), 96-102. doi:10.1016/j.jallcom.2010.04.210
Werner, J. H., & Güttler, H. H. (1991). Barrier inhomogeneities at Schottky contacts. Journal of Applied Physics, 69(3), 1522-1533. doi:10.1063/1.347243
The Comparison of the Temperature Susceptibility of the Serial Resistance Effect of Au/n-GaAs Type M/S Structures
To enable comparison with the literature, this study seeks to assess the temperature susceptibility of serial resistance (Rs) features of the Au/n-GaAs type M/S structure, which is acceptable the benchmark sample. The serial resistance features of the sample were computed separately withal principal of Ohm, Norde, and Cheungs' functions. The current-voltage (I-V) data used in order to compute were evaluated at the voltage values between +2V and -2 V and temperature values between 120K and 360K in 60K steps. Each computation method was also compared one another other. As a result, the fact that the Rs values computed using principal of Ohm, Norde functions and Cheungs' functions tended to reduce with rising temperature, as anticipated by the literature results. In addition, it was determined that, with only tiny variations, the temperature susceptibility of Rs is consistent across all computation methods. In addition, as a result of the comparison with the literature, it was concluded serial resistance is less of an issue when a polymer interfacial layer is present at the metal-semiconductor contact region. The Rs parameter of the M/S structure is, in essence, a sensitive function of temperature and input voltage.
Altındal Yerişkin, S. (2019). The investigation of effects of (Fe2O4-PVP) organic-layer, surface states, and serial resistance on the electrical characteristics and the sources of them. Journal of Materials Science: Materials in Electronics, 30, 17032-17039. doi:10.1007/s10854-019-02045-x
Ashajyothi, S., & Reddy, V. R. (2021). Influence of tin oxide (SnO2) interlayer on the electrical and reverse current conduction mechanism of Au/n-InP Schottky junction and its microstructural properties. Thin Solid Films, 740, 139001. doi:10.1016/j.tsf.2021.139001
Baydilli, E. E., Tan, S. O., Tecimer, H. U., & Altındal, S. (2020). Detection of current transport mechanisms for graphene-doped-PVA interlayered metal/semiconductor structures. Physica B Condens Matter, 598, 412457. doi:10.1016/j.physb.2020.412457
Bohlin, K. E. (1986). Generalized Norde plot including determination of the ideality factor. Journal of Applied Physics, 60(3), 1223-1224. doi:10.1063/1.337372
Cheung, S. K., & Cheung, N. W. (1986). Extraction of Schottky diode parameters from forward current‐voltage characteristics. Applied Physics Letters, 49(2), 85-87. doi:10.1063/1.97359
Çaldıran, Z. (2020). Fabrication of Schottky barrier diodes with the lithium fluoride interface layer and electrical characterization in a wide temperature range. Journal of Alloys and Compounds, 816, 152601. doi:10.1016/j.jallcom.2019.152601
Çiçek, O., Tecimer, H. U., Tan, S. O., Tecimer, H., Altındal, Ş., & Uslu, İ. (2016). Evaluation of electrical and photovoltaic behaviours as comparative of Au/n-GaAs (MS) diodes with and without pure and graphene (Gr)-doped polyvinyl alcohol (PVA) interfacial layer under dark and illuminated conditions. Composites Part B: Engineering, 98, 260-268. doi:10.1016/j.compositesb.2016.05.042
Deniz, A. R., Taş, A. İ., Çaldıran, Z., İncekara, Ü., Biber, M., Aydoğan, Ş., & Türüt, A. (2022). Effects of PEDOT:PSS and crystal violet interface layers on current-voltage performance of Schottky barrier diodes as a function of temperature and variation of diode capacitance with frequency. Current Applied Physics, 39, 173-182. doi:10.1016/j.cap.2022.03.017
Evcin Baydilli, E., Altındal, S., Tecimer, H., Kaymaz, A., & Uslu Tecimer, H. (2020). The determination of the temperature and voltage dependence of the main device parameters of Au/7%Gr-doped PVA/n-GaAs-type Schottky Diode (SD). Journal of Materials Science: Materials in Electronics, 31, 17147-17157. doi:10.1007/s10854-020-03799-5
Helal, H., Benamara, Z., Arbia, M. B., Khettou, A., Rabehi, A., Kacha, A. H., & Amrani, M. (2020). A study of current-voltage and capacitance-voltage characteristics of Au/n-GaAs and Au/GaN/n-GaAs Schottky diodes in wide temperature range. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 33(4), e2714. doi:10.1002/jnm.2714
Norde, H. (1979). A modified forward I ‐ V plot for Schottky diodes with high serial resistance. Journal of Applied Physics, 50(7), 5052-5053. doi:10.1063/1.325607
Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V., & Firsov, A. A. (2004). Electric Field Effect in Atomically Thin Carbon Films, 306(5696), 666-669. doi:10.1126/science.1102896
Özdemir, A. F., Göksu, T., Yıldırım, N., Turut., A. (2021). Effects of measurement temperature and metal thickness on Schottky diode characteristics. Physica B Condens Matter, 616, 413125. doi:10.1016/j.physb.2021.413125
Pehlivanoglu, S. A. (2021). Fabrication of p-Si/n-NiO:Zn photodiodes and current/capacitance-voltage characterizations. Physica B Condens Matter, 603, 412482. doi:10.1016/j.physb.2020.412482
Rhoderick, E. H. (1978). Metal-Semiconductor Contacts. Clarendon Press Oxford.
Sadao, A. (2005). Properties of Group-IV, III-V and II-VI Semiconductors. Hoboken (USA) Wiley&Sons.
Sato, K., & Yasumura, Y. (1985). Study of forward I ‐ V plot for Schottky diodes with high serial resistance. Journal of Applied Physics, 58(9), 3655-3657. doi:10.1063/1.335750
Sevgili, Ö., Orak, İ., & Tiras, K. S. (2022). The examination of the electrical properties of Al/Mg2Si/p-Si Schottky diodes with an ecofriendly interfacial layer depending on temperature and frequency. Physica E: Low-dimensional Systems and Nanostructures, 144, 115380. doi:10.1016/j.physe.2022.115380
Taşyürek, L. B., Aydoğan, Ş., Sevim, M., & Çaldıran, Z. (2022). Analysis of the temperature dependent electrical parameters of the heterojunction obtained with Au nanoparticles decorated perovskite strontium titanate nanocubes. Journal of Alloys and Compounds, 914, 165140. doi: 10.1016/j.jallcom.2022.165140
Uslu, H., Altındal, S., Aydemir, U., Dökme, I., & Afandiyeva, I. M. (2010). The interface states and serial resistance effects on the forward and reverse bias I-V, C-V and G/ω-V characteristics of Al-TiW-Pd 2Si/n-Si Schottky barrier diodes. Journal of Alloys and Compounds, 503(1), 96-102. doi:10.1016/j.jallcom.2010.04.210
Werner, J. H., & Güttler, H. H. (1991). Barrier inhomogeneities at Schottky contacts. Journal of Applied Physics, 69(3), 1522-1533. doi:10.1063/1.347243
Evcin Baydilli, E. (2023). The Comparison of the Temperature Susceptibility of the Serial Resistance Effect of Au/n-GaAs Type M/S Structures. Gazi University Journal of Science Part A: Engineering and Innovation, 10(1), 9-19. https://doi.org/10.54287/gujsa.1206972