Research Article
BibTex RIS Cite
Year 2019, Volume: 6 Issue: 1, 9 - 24, 29.03.2019

Abstract

References

  • [1] Oztoprak, N., Yeni, C.E. and Kiral, B.G., "Fatigue and monotonic tensile behaviors of friction stir welded AA6061/SiC/20p-T1 composite joints at various tool rotation speeds" Mater. Res. Express 5 066547 (2018).
  • [2] Khalkhali, A., Ebrahimi-Nejad, S. and Malek, N.G., "Comprehensive optimization of friction stir weld parameters of lap joint AA1100 plates using artificial neural networks and modified NSGA-II" Mater. Res. Express 5 066508 (2018).
  • [3] Pirizadeh. M., Azdast, T., Rash Ahmadi, S., Mamaghani Shishavan, S. and Bagheri, A., "Friction stir welding of thermoplastics using a newly designed tool" Mater. & Des., 54: 342-347, (2014).
  • [4] Khalilpourazarya, S., Behnagha, R., A., Mahdavinejadb, R. and Payama, N., "Dissimilar friction stir lap welding of Al-Mg to CuZn34: Application of grey relational analysis for optimizing process parameters" j. Comput. Appl. Res. Mech. Eng., 4: 81-88, (2014).
  • [5] Cao, X.J. and Jahazi, M., "Friction stir welding of dissimilar AA 2024-T3 to AZ31B-H24 alloys" Materials Science Forum: Trans Tech Publ, 46: 3661-3666, (2010).
  • [6] Zhao, Y., Jiang, S., Yang, S., Lu, Z. and Yan, K., "Influence of cooling conditions on joint properties and microstructures of aluminum and magnesium dissimilar alloys by friction stir welding" Int. J. Adv. Manuf. Technol, 83: 673-679, (2016).
  • [7] Nia, A.A. and Shirazi, A.," Effects of different friction stir welding conditions on the microstructure and mechanical properties of copper plates" Int. J. Miner. Metal. Mater, 23: 799-809, (2016).
  • [8] Kumar, H., Khan, M.Z., and Vashista, M. "Microstructure, mechanical and electrical characterization of zirconia reinforced copper based surface composite by friction stir processing" Mater. Res. Express 5 086505 (2018).
  • [9] Sun, Y.F. and Fujii, H., "Investigation of the welding parameter dependent microstructure and mechanical properties of friction stir welded pure copper" Mater. Sci. Eng. A, 527: 6879-6886, (2010).
  • [10] Khodaverdizadeh, H., Mahmoudi, A., Heidarzadeh, A., and Nazari, E., "Effect of friction stir welding (FSW) parameters on strain hardening behavior of pure copper joints" Mater. Des., 35: 330-334, (2012).
  • [11] Shi, P., Wang, Q., Xu, Y. and Luo, W., "Corrosion behavior of bulk nanocrystalline copper in ammonia solution" Mater. Letters, 65: 857-859, (2011).
  • [12] Pehkonen, S.O., Palit, A. and Zhang, X., "Effect of specific water quality parameters on copper corrosion" Corros, 58: 156-165, (2002).
  • [13] Shim, J.J., and Kim, J.G., "Copper corrosion in potable water distribution systems: influence of copper products on the corrosion behavior" Mater. Letters: 58: 2002-2006, (2004).
  • [14] Boulay, N. and Edwards, M., "Role of temperature, chlorine, and organic matter in copper corrosion by-product release in soft water" Water res., 35: 683-690, (2001).
  • [15] Hwang, Y.M., Kang, Z.W., Chiou, Y.C. and Hsu, H.H., "Experimental study on temperature distributions within the workpiece during friction stir welding of aluminum alloys" Int. J. Mach. Too. Manuf., 48: 778-787, (2008).
  • [16] Xue, P., Xiao, B.L., Zhang, Q. and Ma, Z.Y., "Achieving friction stir welded pure copper joints with nearly equal strength to the parent metal via additional rapid cooling" Scripta Mater., 64: 1051-1054, (2011).
  • [17] Imam, M., Biswas, K. and Racherla, V., "On use of weld zone temperatures for online monitoring of weld quality in friction stir welding of naturally aged aluminium alloys" Mater. Des., 52: 730-739, (2013).
  • [18] Buffa, G., Ducato, A., and Fratini, L., "Numerical procedure for residual stresses prediction in friction stir welding" Finit. Elem. in Anal. Des., 47: 470-476, (2011).
  • [19] Jacquin, D., De Meester, B., Simar, A., Deloison, D., Montheillet, F. and Desrayaud, C., "A simple Eulerian thermomechanical modeling of friction stir welding" J. Mat. Process. Technol., 211: 57-65, (2011).
  • [20] Al-Badour, F., Merah, N., Shuaib, A., and Bazoune, A., "Coupled Eulerian Lagrangian finite element modeling of friction stir welding processes" J. Mater. Process. Technol., 213: 1433-1439, (2013).
  • [21] Javadi, Y., Sadeghi, S. and Najafabadi, M.A., "Taguchi optimization and ultrasonic measurement of residual stresses in the friction stir welding" Mater. Des., 55: 27-34, (2014).
  • [22] Ugender, S., "Influence of tool pin profile and rotational speed on the formation of friction stir welding zone in AZ31 magnesium alloy" J. Magnesium Alloy., 6: 205-213, (2018).
  • [23] Alavi Nia, A. and Shirazi, A., "An investigation into the effect of welding parameters on fatigue crack growth rate and fracture toughness in friction stir welded copper sheets" Proc. Ins. Mech. Eng. Part L: J. Mater. Des. Appl., 232: 191-203, (2015).
  • [24] Zhao. Y., Wang, Q., Chen, H., and Yan, K., "Microstructure and mechanical properties of spray formed 7055 aluminum alloy by underwater friction stir welding" Mater. Des., 56: 725-730, (2014).
  • [25] Vigh, L.G., and Okura, I., "Fatigue behaviour of Friction Stir Welded aluminium bridge deck segment" Mater. Des., 44: 119-127, (2013).
  • [26] ASTM E8-16a "Standard Test Methods for Tension Testing of Metallic Materials: ASTM International" (2009).
  • [27] Mishra, R.S. and Ma, Z.Y., "Friction stir welding and processing" Mater. Sci. Eng. R 50 1-78 (2005).
  • [28] Blau, P.J., "Friction science and technology: from concepts to applications" CRC press (2008).
  • [29] Incropera, F.P., DeWitt, D.P., Bergman, T.L. and Lavine, A.S., "Foundations of heat transfer" Wiley Textbooks (2012).
  • [30] Jin, L.Z. and Sandstrom, R., "Numerical simulation of residual stresses for friction stir welds in copper canisters" J. Manuf. Process, 14: 71-81, (2012).
  • [31] Sun, T., Roy, M.J., Strong, D., Withers, P.J. and Prangnell, P.B., "Comparison of residual stress distributions in conventional and stationary shoulder high-strength aluminum alloy friction stir welds" J. Mater. Process. Technol., 242: 92-100, (2017).
  • [32] Zapata, J., Toro, M. and Lopez, D., "Residual stresses in friction stir dissimilar welding of aluminum alloys" J. Mater. Process. Technol., 229: 121-127, (2016).

Investigation of Thermal History and Optimization of Thermal Stresses in Friction Stir Welded Copper Sheets

Year 2019, Volume: 6 Issue: 1, 9 - 24, 29.03.2019

Abstract

In the present study, thermal history have been determined for joined copper sheets under various welding conditions using Frigaad relation, numerically. The obtained results were compared with the experimental results and it was found that there is a good agreement between them. Also, it was found that the traverse velocity mainly affects the amount of transferred heat and the rotational speed changes the temperature of the welding process. This study cleared that in all welding conditions at first, the thermal history diagrams predicted using Frigaad relation are lower than the diagrams obtained from the experiments and then, the trend of process diagrams reverses and the simulation diagrams place higher than the experiment diagrams. In addition, Signal-to-noise analysis shows that shoulder diameter is a significant factor and plays a major role in affecting the longitudinal tensile thermal stresses.

References

  • [1] Oztoprak, N., Yeni, C.E. and Kiral, B.G., "Fatigue and monotonic tensile behaviors of friction stir welded AA6061/SiC/20p-T1 composite joints at various tool rotation speeds" Mater. Res. Express 5 066547 (2018).
  • [2] Khalkhali, A., Ebrahimi-Nejad, S. and Malek, N.G., "Comprehensive optimization of friction stir weld parameters of lap joint AA1100 plates using artificial neural networks and modified NSGA-II" Mater. Res. Express 5 066508 (2018).
  • [3] Pirizadeh. M., Azdast, T., Rash Ahmadi, S., Mamaghani Shishavan, S. and Bagheri, A., "Friction stir welding of thermoplastics using a newly designed tool" Mater. & Des., 54: 342-347, (2014).
  • [4] Khalilpourazarya, S., Behnagha, R., A., Mahdavinejadb, R. and Payama, N., "Dissimilar friction stir lap welding of Al-Mg to CuZn34: Application of grey relational analysis for optimizing process parameters" j. Comput. Appl. Res. Mech. Eng., 4: 81-88, (2014).
  • [5] Cao, X.J. and Jahazi, M., "Friction stir welding of dissimilar AA 2024-T3 to AZ31B-H24 alloys" Materials Science Forum: Trans Tech Publ, 46: 3661-3666, (2010).
  • [6] Zhao, Y., Jiang, S., Yang, S., Lu, Z. and Yan, K., "Influence of cooling conditions on joint properties and microstructures of aluminum and magnesium dissimilar alloys by friction stir welding" Int. J. Adv. Manuf. Technol, 83: 673-679, (2016).
  • [7] Nia, A.A. and Shirazi, A.," Effects of different friction stir welding conditions on the microstructure and mechanical properties of copper plates" Int. J. Miner. Metal. Mater, 23: 799-809, (2016).
  • [8] Kumar, H., Khan, M.Z., and Vashista, M. "Microstructure, mechanical and electrical characterization of zirconia reinforced copper based surface composite by friction stir processing" Mater. Res. Express 5 086505 (2018).
  • [9] Sun, Y.F. and Fujii, H., "Investigation of the welding parameter dependent microstructure and mechanical properties of friction stir welded pure copper" Mater. Sci. Eng. A, 527: 6879-6886, (2010).
  • [10] Khodaverdizadeh, H., Mahmoudi, A., Heidarzadeh, A., and Nazari, E., "Effect of friction stir welding (FSW) parameters on strain hardening behavior of pure copper joints" Mater. Des., 35: 330-334, (2012).
  • [11] Shi, P., Wang, Q., Xu, Y. and Luo, W., "Corrosion behavior of bulk nanocrystalline copper in ammonia solution" Mater. Letters, 65: 857-859, (2011).
  • [12] Pehkonen, S.O., Palit, A. and Zhang, X., "Effect of specific water quality parameters on copper corrosion" Corros, 58: 156-165, (2002).
  • [13] Shim, J.J., and Kim, J.G., "Copper corrosion in potable water distribution systems: influence of copper products on the corrosion behavior" Mater. Letters: 58: 2002-2006, (2004).
  • [14] Boulay, N. and Edwards, M., "Role of temperature, chlorine, and organic matter in copper corrosion by-product release in soft water" Water res., 35: 683-690, (2001).
  • [15] Hwang, Y.M., Kang, Z.W., Chiou, Y.C. and Hsu, H.H., "Experimental study on temperature distributions within the workpiece during friction stir welding of aluminum alloys" Int. J. Mach. Too. Manuf., 48: 778-787, (2008).
  • [16] Xue, P., Xiao, B.L., Zhang, Q. and Ma, Z.Y., "Achieving friction stir welded pure copper joints with nearly equal strength to the parent metal via additional rapid cooling" Scripta Mater., 64: 1051-1054, (2011).
  • [17] Imam, M., Biswas, K. and Racherla, V., "On use of weld zone temperatures for online monitoring of weld quality in friction stir welding of naturally aged aluminium alloys" Mater. Des., 52: 730-739, (2013).
  • [18] Buffa, G., Ducato, A., and Fratini, L., "Numerical procedure for residual stresses prediction in friction stir welding" Finit. Elem. in Anal. Des., 47: 470-476, (2011).
  • [19] Jacquin, D., De Meester, B., Simar, A., Deloison, D., Montheillet, F. and Desrayaud, C., "A simple Eulerian thermomechanical modeling of friction stir welding" J. Mat. Process. Technol., 211: 57-65, (2011).
  • [20] Al-Badour, F., Merah, N., Shuaib, A., and Bazoune, A., "Coupled Eulerian Lagrangian finite element modeling of friction stir welding processes" J. Mater. Process. Technol., 213: 1433-1439, (2013).
  • [21] Javadi, Y., Sadeghi, S. and Najafabadi, M.A., "Taguchi optimization and ultrasonic measurement of residual stresses in the friction stir welding" Mater. Des., 55: 27-34, (2014).
  • [22] Ugender, S., "Influence of tool pin profile and rotational speed on the formation of friction stir welding zone in AZ31 magnesium alloy" J. Magnesium Alloy., 6: 205-213, (2018).
  • [23] Alavi Nia, A. and Shirazi, A., "An investigation into the effect of welding parameters on fatigue crack growth rate and fracture toughness in friction stir welded copper sheets" Proc. Ins. Mech. Eng. Part L: J. Mater. Des. Appl., 232: 191-203, (2015).
  • [24] Zhao. Y., Wang, Q., Chen, H., and Yan, K., "Microstructure and mechanical properties of spray formed 7055 aluminum alloy by underwater friction stir welding" Mater. Des., 56: 725-730, (2014).
  • [25] Vigh, L.G., and Okura, I., "Fatigue behaviour of Friction Stir Welded aluminium bridge deck segment" Mater. Des., 44: 119-127, (2013).
  • [26] ASTM E8-16a "Standard Test Methods for Tension Testing of Metallic Materials: ASTM International" (2009).
  • [27] Mishra, R.S. and Ma, Z.Y., "Friction stir welding and processing" Mater. Sci. Eng. R 50 1-78 (2005).
  • [28] Blau, P.J., "Friction science and technology: from concepts to applications" CRC press (2008).
  • [29] Incropera, F.P., DeWitt, D.P., Bergman, T.L. and Lavine, A.S., "Foundations of heat transfer" Wiley Textbooks (2012).
  • [30] Jin, L.Z. and Sandstrom, R., "Numerical simulation of residual stresses for friction stir welds in copper canisters" J. Manuf. Process, 14: 71-81, (2012).
  • [31] Sun, T., Roy, M.J., Strong, D., Withers, P.J. and Prangnell, P.B., "Comparison of residual stress distributions in conventional and stationary shoulder high-strength aluminum alloy friction stir welds" J. Mater. Process. Technol., 242: 92-100, (2017).
  • [32] Zapata, J., Toro, M. and Lopez, D., "Residual stresses in friction stir dissimilar welding of aluminum alloys" J. Mater. Process. Technol., 229: 121-127, (2016).
There are 32 citations in total.

Details

Primary Language English
Journal Section Metallurgical and Materials Engineering
Authors

Alireza Asgharı This is me

Reza Pourhamıd

Ali Shırazı This is me

Publication Date March 29, 2019
Submission Date November 12, 2018
Published in Issue Year 2019 Volume: 6 Issue: 1

Cite

APA Asgharı, A., Pourhamıd, R., & Shırazı, A. (2019). Investigation of Thermal History and Optimization of Thermal Stresses in Friction Stir Welded Copper Sheets. Gazi University Journal of Science Part A: Engineering and Innovation, 6(1), 9-24.