Elektrikli Araç Şarj İstasyonlarının Konumlandırılması ve Enerji Şebekesi Üzerine Etkisi Konulu Derleme Çalışması
Year 2021,
Volume: 8 Issue: 2, 218 - 233, 28.06.2021
Mustafa Nurmuhammed
,
Teoman Karadağ
Abstract
Dünyanın birçok ülkesinde satış rakamları hızla büyüyen elektrikli araçlar, son on yılda otomotiv sektöründe yükselen bir trende sahiptir. Elektrikli araçların yaygınlaşmasında önemli bir yere sahip olan hızlı şarj istasyonları çok kısa sürede elektrikli araçları hızlı bir şekilde şarj edebilmektedir. Günümüz elektrikli araçlarında daha büyük kapasitelerde bataryalar mevcut olup ilk çıkan elektrik araçlara nazaran şarj kapasitesi ciddi ölçüde artmıştır. Birçok elektrikli aracın aynı anda veya öngörülemeyen zaman dilimlerinde şarj olması elektrik arz ve talebinde çok büyük farklara neden olmaktadır. Bu farklar dikkate alınmadan şarj istasyonlarının kurulumu gerçekleştiğinde yüksek hızlarda şarj olan araçlar şebekede gerilim dengesizliğine ve güç kayıplarına neden olup enerji şebekesini olumsuz etkileyebilmektedir. Hem şebekede alınacak önlemler ve yatırım kararları hem de hızlı şarj istasyonlarının şebekeye olası olumsuz etkisi nedeniyle doğru yerde konumlandırılmaları büyük önem taşımaktadır. Bu çalışmayla, elektrikli araç şarj sistemleri ve bu sistemlerin enerji şebekesi üzerine etkileri ile ilgili son on yılda öne çıkan çalışmalar detaylı olarak incelenmiştir. Sonuç olarak şarj istasyonlarının enerji şebekesine etkisinin azaltılarak en uygun noktaya konumlandırılması ile ilgili veriler çalışmayla sunulmuştur.
References
- ATSO, Antalya Ticaret ve Sanayi Odası (2015). 2015 yılı Aylık Ekonomik Göstergeler. www.atso.org.tr/icerik/3/66/aylik-ekonomik-gostergeler.html
- Apostolaki-Iosifidou, E., Codani, P., & Kempton, W. (2017). Measurement of power loss during electric vehicle charging and discharging. Energy, 127, 730-742. doi:10.1016/j.energy.2017.03.015
- Ashique, R. H., Salam, Z., Bin Abdul Aziz, M. J., & Bhatti, A. R. (2017). Integrated photovoltaic-grid dc fast charging system for electric vehicle: A review of the architecture and control. Renewable and Sustainable Energy Reviews, 69, 1243-1257. doi:10.1016/j.rser.2016.11.245
- Awasthi, A., Venkitusamy, K., Padmanaban, S., Selvamuthukumaran, R., Blaabjerg, F., & Singh, A. K. (2017). Optimal planning of electric vehicle charging station at the distribution system using hybrid optimization algorithm. Energy, 133, 70-78. doi:10.1016/j.energy.2017.05.094
- Balcells, J., & García, J. (2010). Impact of plug-in electric vehicles on the supply grid. In: Proceedings of the 2010 IEEE Vehicle Power and Propulsion Conference (VPPC), 1-4. doi:10.1109/VPPC.2010.5729217
- Bass, R., Harley, R., Lambert, F., Rajasekaran, V., & Pierce, J. (2001). Residential harmonic loads and EV charging. In: Proceedings of the 2001 IEEE Power Engineering Society Winter Meeting, Volume 3, 803-808. doi:10.1109/PESW.2001.916965
- Bompard, E., Ragazzi, E., & Tenconi, A. (2012). Electric Vehicles and Power Grids: Challenges and Opportunities. In: Calabrese, G. (Eds.) The Greening of the Automotive Industry (pp. 207-224). doi:10.1057/9781137018908_12
- Chan, C. C. (2013). The rise & Fall of electric vehicles in 1828-1930: Lessons learned. In: Proceedings of the IEEE, 101(1), 206-212. doi:10.1109/JPROC.2012.2228370
- Chen, T. D., Kockelman, K. M., & Khan, M. (2013). Locating Electric Vehicle Charging Stations: Parking-Based Assignment Method for Seattle, Washington. Transportation Research Record, 2385(1), 28-36. doi:10.3141/2385-04
- Clement-Nyns, K., Haesen, E., & Driesen, J. (2009). Analysis of the Impact of Plug-In Hybrid Electric Vehicles on Residential Distribution Grids by using Quadratic and Dynamic Programming. World Electric Vehicle Journal, 3(2), 214-224. doi:10.3390/wevj3020214
- Clement-Nyns, K., Haesen, E., & Driesen, J. (2011). The impact of vehicle-to-grid on the distribution grid. Electric Power Systems Research, 81(1), 185-192. doi:10.1016/j.epsr.2010.08.007
- Denholm, P., & Short, W. (2006, October). An Evaluation of Utility System Impacts and Benefits of Optimally Dispatched Plug-In Hybrid Electric Vehicles. Technical Report, NREL/TP-620-40293. www.nrel.gov/docs/fy07osti/40293.pdf
- Diaz, C., Ruiz, F., & Patino, D. (2018). Smart Charge of an Electric Vehicles Station: A Model Predictive Control Approach. In: Proceedings of the 2018 IEEE Conference on Control Technology and Applications (CCTA), 54-59. doi:10.1109/CCTA.2018.8511498
- Dragičević, T., Sučić, S., Vasquez, J. C., & Guerrero, J. M. (2014). Flywheel-based distributed bus signalling strategy for the public fast charging station. IEEE Transactions on Smart Grid, 5(6), 2825-2835. doi:10.1109/TSG.2014.2325963
- Erbaş, M., Kabak, M., Özceylan, E., & Çetinkaya, C. (2018). Optimal siting of electric vehicle charging stations: A GIS-based fuzzy Multi-Criteria Decision Analysis. Energy, 163, 1017-1031. doi:10.1016/j.energy.2018.08.140
- Etezadi-Amoli, M., Choma, K., & Stefani, J. (2010). Rapid-Charge Electric-Vehicle Stations. IEEE Transactions On Power Delivery, 25(3), 1883-1887. doi:10.1109/TPWRD.2010.2047874
- Frade, I., Ribeiro, A., Gonçalves, G., & Antunes, A. P. (2011). Optimal location of charging stations for electric vehicles in a neighborhood in Lisbon, Portugal. Transportation Research Record, 2252(1), 91-98. doi:10.3141/2252-12
- Gagarin, A., & Corcoran, P. (2018). Multiple domination models for placement of electric vehicle charging stations in road networks. Computers and Operations Research, 96, 69-79. doi:10.1016/j.cor.2018.03.014
- Galiveeti, H. R., Goswami, A. K., & Dev Choudhury, N. B. (2018). Impact of plug-in electric vehicles and distributed generation on reliability of distribution systems. Engineering Science and Technology, an International Journal, 21(1), 50-59. doi:10.1016/j.jestch.2018.01.005
- Galus, M. D., Vayá, M. G., Krause, T., & Andersson, G. (2013). The role of electric vehicles in smart grids. Wiley Interdisciplinary Reviews: Energy and Environment, 2(4), 384-400. doi:10.1002/wene.56
- ODD, Otomotiv Distribütörleri Derneği (2019). Genel Değerlendirme Aralık 2019. www.odd.org.tr/web_2837_1/neuralnetwork.aspx?type=35
- ODD, Otomotiv Distribütörleri Derneği (2020). Genel Değerlendirme Aralık 2020. www.odd.org.tr/web_2837_1/neuralnetwork.aspx?type=35
- Geth, F., Leemput, N., Van Roy, J., Buscher, J., Ponnette, R., & Driesen, J. (2012). Voltage droop charging of electric vehicles in a residential distribution feeder. In: Proceedings of the 3rd IEEE PES Innovative Smart Grid Technologies Europe (ISGT Europe), 1-8. doi:10.1109/ISGTEurope.2012.6465692
- Green, R. C., Wang, L., & Alam, M. (2011). The impact of plug-in hybrid electric vehicles on distribution networks: A review and outlook. Renewable and Sustainable Energy Reviews, 15(1), 544-553. doi:10.1016/j.rser.2010.08.015
- IEC, International Electrotechnical Commission (2012) IEC White Paper: Grid integration of large-capacity Renewable Energy sources and use of large-capacity Electrical Energy Storage by Market Strategy Board Project Team, 101p. webstore.iec.ch/publication/22375
- ENERGY, Office of Energy Efficiency & Renewable Energy (2019). Summary Report on EVs at Scale and the U.S. Electric Power System. www.energy.gov/eere/vehicles/downloads/summary-report-evs-scale-and-us-electric-power-system-2019
- Güneş, D., Tekdemir, İ. G., Karaarslan, M. Ş., & Alboyacı, B. (2018). Elektrikli araç şarj istasyonu yüklerinin güvenilirlik indisleri üzerine etkilerinin incelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 33(3), 1073-1084. doi:10.17341/gazimmfd.416408
- Guo, J., Zhao, H., Shen, Z., Wang, A., Cao, L., Hu, E., Wang, Z., & Song, X. (2018). Research on Harmonic Characteristics and Harmonic Counteraction Problem of EV Charging Station. In: Proceedings of the 2nd IEEE Conference on Energy Internet and Energy System Integration (EI2), 1-5. doi:10.1109/EI2.2018.8582095
- Guo, S., & Zhao, H. (2015). Optimal site selection of electric vehicle charging station by using fuzzy TOPSIS based on sustainability perspective. Applied Energy, 158, 390-402. doi:10.1016/j.apenergy.2015.08.082
- Harighi, T., & Bayindir, R. (2019). Load Estimation Use in Electric Vehicle Charge Station Coordination in Different Node and Definite Area. In: Proceedings of the 6th IEEE International Conference on Smart Grid (IcSmartGrids), 264-271. doi:10.1109/ISGWCP.2018.8634506
- Harighi, T., Padmanaban, S., Bayindir, R., Hossain, E., & Holm-Nielsen, J. B. (2019). Electric vehicle charge stations location analysis and determination-Ankara (Turkey) case study. Energies, 12(18), 3472. doi:10.3390/en12183472
- Herron, D. (2017). Charging levels - Level 1, Level 2, DC Fast Charging, etc. In: Range Confidence: Charge Fast, Drive Far, with your Electric Car (Ch. 11-1). greentransportation.info/ev-charging/range-confidence/chap4-charging/4-charging-levels.html
- Hu, D., Zhang, J., & Zhang, Q. (2019). Optimization design of electric vehicle charging stations based on the forecasting data with service balance consideration. Applied Soft Computing, 75, 215-226. doi:10.1016/j.asoc.2018.07.063
- Huang, M., Huang, S., & Jiang, J. (2008). Harmonic study of electric vehicle chargers. Journal of Beijing Jiaotong University, 32(5), 85-88. jdxb.bjtu.edu.cn/EN/Y2008/V32/I5/85
- IEA, International Energy Agency (2020, June). Global EV Outlook 2020: Entering the decade of electric drive? Technology report. www.iea.org/reports/global-ev-outlook-2020
- GCC, Green Car Congress (2020). IONITY orders 324 350kW EV chargers from ABB for second phase of expansion. Retrieved August 31, 2020, www.greencarcongress.com/2020/01/20200110-abb.html
- Irle, R. (2020). Global Plug-in Vehicle Sales Reached over 3,2 Million in 2020. www.ev-volumes.com/country/total-world-plug-in-vehicle-volumes/
- Jordán, J., Palanca, J., Del Val, E., Julian, V., & Botti, V. (2018). A multi-agent system for the dynamic emplacement of electric vehicle charging stations. Applied Sciences, 8(2), 313. doi:10.3390/app8020313
- Kane, M. (2020, November n.d.-a). Passenger Plug-In Electric Car Sales In Europe In Q1-Q3 2020 By Country. insideevs.com/news/452914/plugin-car-sales-europe-q1q3-2020-country/
- Kempton, W., & Tomić, J. (2005). Vehicle-to-grid power implementation: From stabilizing the grid to supporting large-scale renewable energy. Journal of Power Sources, 144(1), 280-294. doi:10.1016/j.jpowsour.2004.12.022
- Khalkhali, K., Abapour, S., Moghaddas-Tafreshi, S. M., & Abapour, M. (2015). Application of data envelopment analysis theorem in plug-in hybrid electric vehicle charging station planning. IET Generation, Transmission and Distribution, 9(7), 666-676. doi:10.1049/iet-gtd.2014.0554
- Kong, W., Luo, Y., Feng, G., Li, K., & Peng, H. (2019). Optimal location planning method of fast charging station for electric vehicles considering operators, drivers, vehicles, traffic flow and power grid. Energy, 186, 115826. doi:10.1016/j.energy.2019.07.156
- Lam, A. Y. S., Leung, Y. W., & Chu, X. (2014). Electric vehicle charging station placement: Formulation, complexity, and solutions. IEEE Transactions on Smart Grid, 5(6), 2846-2856. doi:10.1109/TSG.2014.2344684
- Li, C. T., Ahn, C., Peng, H., & Sun, J. (2012). Integration of plug-in electric vehicle charging and wind energy scheduling on electricity grid. In: Proceedings of the 2012 IEEE PES Innovative Smart Grid Technologies (ISGT), 1-7. doi:10.1109/ISGT.2012.6175617
- Li, C. T., Ahn, C., Peng, H., & Sun, J. (2013). Synergistic control of plug-in vehicle charging and wind power scheduling. IEEE Transactions on Power Systems, 28(2), 1113-1121. doi:10.1109/TPWRS.2012.2211900
- Li, S., Huang, Y., & Mason, S. J. (2016). A multi-period optimization model for the deployment of public electric vehicle charging stations on network. Transportation Research Part C: Emerging Technologies, 65, 128-143. doi:10.1016/j.trc.2016.01.008
- Liao, F., Molin, E., & van Wee, B. (2017). Consumer preferences for electric vehicles: a literature review. Transport Reviews, 37(3), 252-275. doi:10.1080/01441647.2016.1230794
- Lin, B., & Wu, W. (2018). Why people want to buy electric vehicle: An empirical study in first-tier cities of China. Energy Policy, 112, 233-241. doi:10.1016/j.enpol.2017.10.026
- Lin, R., Ye, Z., Guo, Z., & Wu, B. (2020). Hydrogen station location optimization based on multiple data sources. International Journal of Hydrogen Energy, 45(17), 10270-10279. doi:10.1016/j.ijhydene.2019.10.069
- Lin, S., He, Z., Zang, T., & Qian, Q. (2010). Impact of plug-in hybrid electric vehicles on distribution systems. In: Proceedings of the 2010 International Conference on Power System Technology: Technological Innovations Making Power Grid Smarter (POWERCON), 1-5. doi:10.1109/POWERCON.2010.5666121
- Lin, Y., Zhang, K., Shen, Z. J. M., Ye, B., & Miao, L. (2019). Multistage large-scale charging station planning for electric buses considering transportation network and power grid. Transportation Research Part C: Emerging Technologies, 107, 423-443. 10.1016/j.trc.2019.08.009
- Liu, J., Zhang, T., Zhu, J., & Ma, T. (2018). Allocation optimization of electric vehicle charging station (EVCS) considering with charging satisfaction and distributed renewables integration. Energy, 164, 560-574. doi:10.1016/j.energy.2018.09.028
- Liu, L., Kong, F., Liu, X., Peng, Y., & Wang, Q. (2015). A review on electric vehicles interacting with renewable energy in smart grid. Renewable and Sustainable Energy Reviews, 51, 648-661. doi:10.1016/j.rser.2015.06.036
- Liu, Z., Xie, Y., Feng, D., Zhou, Y., Shi, S., & Fang, C. (2019). Load forecasting model and day-ahead operation strategy for city-located EV quick charge stations. In: Proceedings of the 8th Renewable Power Generation Conference (RPG), IET Conference Publications (CP764), 1-6. doi:10.1049/cp.2019.0492
- Liu, Z., Wen, F., & Ledwich, G. (2013). Optimal planning of electric-vehicle charging stations in distribution systems. IEEE Transactions on Power Delivery, 28(1), 102-110. doi:10.1109/TPWRD.2012.2223489
- Lo, E. W. C., Sustanto, D., & Fok, C. C. (1999). Harmonic load flow study for electric vehicle chargers. In: Proceedings of the International Conference on Power Electronics and Drive Systems (PEDS), Volume 2, 495-500. doi:10.1109/peds.1999.794613
- Lopes, J. A. P., Soares, F. J., & Almeida, P. M. R. (2011). Integration of electric vehicles in the electric power system. In: Proceedings of the IEEE, 99(1), 168-183. doi:10.1109/JPROC.2010.2066250
- Lund, H., & Kempton, W. (2008). Integration of renewable energy into the transport and electricity sectors through V2G. Energy Policy, 36(9), 3578-3587. doi:10.1016/j.enpol.2008.06.007
- Ma, G., Jiang, L., Chen, Y., Dai, C., & Ju, R. (2017). Study on the impact of electric vehicle charging load on nodal voltage deviation. Archives of Electrical Engineering, 66(3), 495-505. doi:10.1515/aee-2017-0037
- McPhail, D. (2014). Evaluation of ground energy storage assisted electric vehicle DC fast charger for demand charge reduction and providing demand response. Renewable Energy, 67, 103-108. doi:10.1016/j.renene.2013.11.023
- Moslehi, K., & Kumar, R. (2010). A reliability perspective of the smart grid. IEEE Transactions on Smart Grid, 1(1), 57-64. doi:10.1109/TSG.2010.2046346
- Mozafar, M. R., Moradi, M. H., & Amini, M. H. (2017). A simultaneous approach for optimal allocation of renewable energy sources and electric vehicle charging stations in smart grids based on improved GA-PSO algorithm. Sustainable Cities and Society, 32, 627-637. doi:10.1016/j.scs.2017.05.007
- Mwasilu, F., Justo, J. J., Kim, E. K., Do, T. D., & Jung, J. W. (2014). Electric vehicles and smart grid interaction: A review on vehicle to grid and renewable energy sources integration. Renewable and Sustainable Energy Reviews, 34, 501-516. doi:10.1016/j.rser.2014.03.031
- SUNPOWER (2011). Nissan LEAFTM Charges up With SunPower. Retrieved November 10, 2020, newsroom.sunpower.com/press-releases?item=122812
- Orr, J. A., Emanuel, A. E., & Oberg, K. W. (1982). Current Harmonics Generated By a Cluster of Electric Vehicle Battery Chargers. IEEE Power Engineering Review, PER-2(3), 30-31. doi:10.1109/mper.1982.5520328
- Pashajavid, E., & Golkar, M. A. (2013). Optimal placement and sizing of plug in electric vehicles charging stations within distribution networks with high penetration of photovoltaic panels. Journal of Renewable and Sustainable Energy, 5(5). doi:10.1063/1.4822257
- Phonrattanasak, P., & Leeprechanon, N. (2012). Optimal Location of Fast Charging Station on Residential Distribution Grid. International Journal of Innovation, Management and Technology, 3(6), 675-681. www.ijimt.org/show-40-537-1.html
- Phonrattanasak, P., & Leeprechanon, N. (2014). Optimal placement of EV fast charging stations considering the impact on electrical distribution and traffic condition. In: Proceedings of the 2014 International Conference and Utility Exhibition on Green Energy for Sustainable Development (ICUE), 1-6.
- Poursistani, M. R., Abedi, M., Hajilu, N., & Gharehpetian, G. B. (2015). Impacts of plug-in electric vehicles smart charging on distribution networks. In: Proceedings of the 2014 International Congress on Technology, Communication and Knowledge (ICTCK), 1-6. doi:10.1109/ICTCK.2014.7033499
- Raposo, J., Rodrigues, A., Silva, C., & Dentinho, T. (2015). A multi-criteria decision aid methodology to design electric vehicles public charging networks. AIP Advances, 5(5), 057123. doi:10.1063/1.4921087
- Rigas, E. S., Ramchurn, S. D., & Bassiliades, N. (2015). Managing Electric Vehicles in the Smart Grid Using Artificial Intelligence: A Survey. IEEE Transactions on Intelligent Transportation Systems, 16(4), 1619-1635. doi:10.1109/TITS.2014.2376873
- SAE International (2017) SAE Electric Vehicle and Plug in Hybrid Electric Vehicle Conductive Charge Coupler. Standard J1772_201710. www.sae.org/standards/content/j1772_201710/
- Sehar, F., Pipattanasomporn, M., & Rahman, S. (2017). Demand management to mitigate impacts of plug-in electric vehicle fast charge in buildings with renewables. Energy, 120, 642-651. doi:10.1016/j.energy.2016.11.118
- Shao, S., Pipattanasomporn, M., & Rahman, S. (2009). Challenges of PHEV penetration to the residential distribution network. In: Proceedings of the 2009 IEEE Power and Energy Society General Meeting (PES), 1-8. doi:10.1109/PES.2009.5275806
- Shao, S., Pipattanasomporn, M., & Rahman, S. (2011). Demand Response as a Load Shaping Tool in an Intelligent Grid With Electric Vehicles. IEEE Transactions on Smart Grid, 2(4), 624-631. doi:10.1109/TSG.2011.2164583
- Shi, R., & Lee, K. Y. (2015). Multi-Objective Optimization of Electric Vehicle Fast Charging Stations with SPEA-II. IFAC-PapersOnLine, 48(30), 535-540. doi:10.1016/j.ifacol.2015.12.435
- Singh, M., Kar, I., & Kumar, P. (2010). Influence of EV on grid power quality and optimizing the charging schedule to mitigate voltage imbalance and reduce power loss. In: Proceedings of the 14th International Power Electronics and Motion Control Conference (EPE-PEMC), 196-203. doi:10.1109/EPEPEMC.2010.5606657
- Sortomme, E., & El-Sharkawi, M. A. (2011). Optimal charging strategies for unidirectional vehicle-to-grid. IEEE Transactions on Smart Grid, 2(1), 131-138. doi:10.1109/TSG.2010.2090910
- Speirs, R. (2020). How Long Will It Take To Charge My EV? www.evnex.com/articles/ev-charging-times
- Staats, P. T., Grady, W. M., Arapostathis, A., & Thallam, R. S. (1997). A statistical method for predicting the net harmonic currents generated by a concentration of electric vehicle battery chargers. IEEE Transactions on Power Delivery, 12(3), 1258-1266. doi:10.1109/61.637002
- Suganya, S., Raja, S. C., & Venkatesh, P. (2017). Simultaneous coordination of distinct plug-in Hybrid Electric Vehicle charging stations: A modified Particle Swarm Optimization approach. Energy, 138, 92-102. doi:10.1016/j.energy.2017.07.036
- Sultana, U., Khairuddin, A. B., Sultana, B., Rasheed, N., Qazi, S. H., & Malik, N. R. (2018). Placement and sizing of multiple distributed generation and battery swapping stations using grasshopper optimizer algorithm. Energy, 165, 408-421. doi:10.1016/j.energy.2018.09.083
- T.C. Kültür ve Turizm Bakanlığı Yatırım ve İşletmeler Genel Müdürlüğü. (2019). 2019 Ocak Eylül Turizm İstatistikleri. https://yigm.ktb.gov.tr/Eklenti/67862,turizmistatistikleri2019-306112019pdf.pdf
- Tan, K. M., Ramachandaramurthy, V. K., & Yong, J. Y. (2016). Integration of electric vehicles in smart grid: A review on vehicle to grid technologies and optimization techniques. Renewable and Sustainable Energy Reviews, 53, 720-732. doi:10.1016/j.rser.2015.09.012
- Tang, Z., Guo, C., Hou, P., & Fan, Y. (2013). Optimal Siting of Electric Vehicle Charging Stations Based on Voronoi Diagram and FAHP Method. Energy and Power Engineering, 5, 1404-1409. doi:10.4236/epe.2013.54b266
- TEİAŞ, Türkiye Elektrik İletim AŞ (2018). Türkiye ve Kişi Başına Kurulu Güç - Brüt Üretim - Arz - Net Tüketiminin Yıllar İtibariyle Gelişimi. https://www.teias.gov.tr/tr-TR/turkiye-elektrik-uretim-iletim-istatistikleri
- Tekdemir, I. G., Alboyaci, B., Gunes, D., & Sengul, M. (2017). A probabilistic approach for evaluation of electric vehicles’ effects on distribution systems. In: Proceedings of the 4th International Conference on Electrical and Electronics Engineering (ICEEE), 143-147. doi:10.1109/ICEEE2.2017.7935809
- Tomić, J., & Kempton, W. (2007). Using fleets of electric-drive vehicles for grid support. Journal of Power Sources, 168(2), 459-468. doi:10.1016/j.jpowsour.2007.03.010
- Ucer, E., Kisacikoglu, M. C., & Cafer Gurbuz, A. (2018). Learning EV Integration Impact on a Low Voltage Distribution Grid. In: Proceedings of the 2018 IEEE Power and Energy Society General Meeting (PESGM), 1-5. doi:10.1109/PESGM.2018.8586208
- Vaya, M. G., & Andersson, G. (2013). Integrating renewable energy forecast uncertainty in smart-charging approaches for plug-in electric vehicles. In: Proceedings of the 2013 IEEE Grenoble Conference, 1-6. doi:10.1109/PTC.2013.6652150
- Vazifeh, M. M., Zhang, H., Santi, P., & Ratti, C. (2019). Optimizing the deployment of electric vehicle charging stations using pervasive mobility data. Transportation Research Part A: Policy and Practice, 121, 75-91. doi:10.1016/j.tra.2019.01.002
- Wang, Y. W. (2007). An optimal location choice model for recreation-oriented scooter recharge stations. Transportation Research Part D: Transport and Environment, 12(3), 231-237. doi:10.1016/j.trd.2007.02.002
- Wu, Y., Yang, M., Zhang, H., Chen, K., & Wang, Y. (2016). Optimal site selection of electric vehicle charging stations based on a cloud model and the PROMETHEE method. Energies, 9(3), 157. doi:10.3390/en9030157
- Yang, J., Dong, J., & Hu, L. (2017). A data-driven optimization-based approach for siting and sizing of electric taxi charging stations. Transportation Research Part C: Emerging Technologies, 77(2), 462-477. doi:10.1016/j.trc.2017.02.014
- Yang, Z., Li, K., Foley, A., & Zhang, C. (2014). Optimal scheduling methods to integrate plug-in electric vehicles with the power system: A review. IFAC Proceedings Volumes, 47(3), 8594-8603. doi:10.3182/20140824-6-za-1003.01804
- You, P. S., & Hsieh, Y. C. (2014). A hybrid heuristic approach to the problem of the location of vehicle charging stations. Computers & Industrial Engineering, 70, 195-204. doi:10.1016/j.cie.2014.02.001
- Zhao, H., & Li, N. (2016). Optimal siting of charging stations for electric vehicles based on fuzzy Delphi and hybrid multi-criteria decision making approaches from an extended sustainability perspective. Energies, 9(4), 270. doi:10.3390/en9040270
- Zhao, L. S., & Yuan, H. M. (2018). The impact of quick charge on power quality of high-voltage grid. In: 3rd Asia Conference on Power and Electrical Engineering. IOP Conference Series: Materials Science and Engineering, 366, 012033. doi:10.1088/1757-899X/366/1/012033
- URL-1 (n.d.). IONITY. Our Background. Retrieved August 31, 2020, ionity.eu/en/about.html
- URL-2 (n.d.). EV Charging Station Map. Retrieved August 31, 2020, www.plugshare.com/
- URL-3 (n.d.). IONITY. Our Network. Retrieved August 31, 2020, ionity.eu/en/where-and-how.html
- URL-4 (n.d.). Supercharging. Retrieved December 1, 2020, www.tesla.com/support/supercharging
- URL-5 (n.d.). Charge on the Road. Retrieved August 31, 2020, www.tesla.com/en_EU/supercharger
- URL-6 (2016). Tesla and SolarCity. www.tesla.com/blog/tesla-and-solarcity
A Review on Locating the Electric Vehicle Charging Stations and Their Effect on the Energy Network
Year 2021,
Volume: 8 Issue: 2, 218 - 233, 28.06.2021
Mustafa Nurmuhammed
,
Teoman Karadağ
Abstract
Electric vehicles, whose sales figures are growing rapidly in many countries of the world, have had a rising trend in the automotive industry in the last decade. Having an important place in the widespread use of electric vehicles, fast charging stations can quickly recharge electric vehicles in a very short time. Today's electric vehicles have larger battery capacities and their charging capacities have increased significantly compared to the first electric vehicles. Charging many electric vehicles at the same time or in unforeseen time periods causes huge differences in electricity supply and demand. When the charging stations are installed without considering these differences, vehicles charging at high speeds can cause voltage imbalance and power losses and adversely affect the energy network. It is of great importance that both the precautions and investment decisions to be taken in the network and the fast charging stations are located in the right place due to their possible adverse impact on the network. With this study, the prominent studies in the last decade on electric vehicle charging systems and the effects of these systems on the energy network have been examined in detail. As a result, data on the locating charging stations to the most appropriate point by reducing their effect on the energy network is presented.
References
- ATSO, Antalya Ticaret ve Sanayi Odası (2015). 2015 yılı Aylık Ekonomik Göstergeler. www.atso.org.tr/icerik/3/66/aylik-ekonomik-gostergeler.html
- Apostolaki-Iosifidou, E., Codani, P., & Kempton, W. (2017). Measurement of power loss during electric vehicle charging and discharging. Energy, 127, 730-742. doi:10.1016/j.energy.2017.03.015
- Ashique, R. H., Salam, Z., Bin Abdul Aziz, M. J., & Bhatti, A. R. (2017). Integrated photovoltaic-grid dc fast charging system for electric vehicle: A review of the architecture and control. Renewable and Sustainable Energy Reviews, 69, 1243-1257. doi:10.1016/j.rser.2016.11.245
- Awasthi, A., Venkitusamy, K., Padmanaban, S., Selvamuthukumaran, R., Blaabjerg, F., & Singh, A. K. (2017). Optimal planning of electric vehicle charging station at the distribution system using hybrid optimization algorithm. Energy, 133, 70-78. doi:10.1016/j.energy.2017.05.094
- Balcells, J., & García, J. (2010). Impact of plug-in electric vehicles on the supply grid. In: Proceedings of the 2010 IEEE Vehicle Power and Propulsion Conference (VPPC), 1-4. doi:10.1109/VPPC.2010.5729217
- Bass, R., Harley, R., Lambert, F., Rajasekaran, V., & Pierce, J. (2001). Residential harmonic loads and EV charging. In: Proceedings of the 2001 IEEE Power Engineering Society Winter Meeting, Volume 3, 803-808. doi:10.1109/PESW.2001.916965
- Bompard, E., Ragazzi, E., & Tenconi, A. (2012). Electric Vehicles and Power Grids: Challenges and Opportunities. In: Calabrese, G. (Eds.) The Greening of the Automotive Industry (pp. 207-224). doi:10.1057/9781137018908_12
- Chan, C. C. (2013). The rise & Fall of electric vehicles in 1828-1930: Lessons learned. In: Proceedings of the IEEE, 101(1), 206-212. doi:10.1109/JPROC.2012.2228370
- Chen, T. D., Kockelman, K. M., & Khan, M. (2013). Locating Electric Vehicle Charging Stations: Parking-Based Assignment Method for Seattle, Washington. Transportation Research Record, 2385(1), 28-36. doi:10.3141/2385-04
- Clement-Nyns, K., Haesen, E., & Driesen, J. (2009). Analysis of the Impact of Plug-In Hybrid Electric Vehicles on Residential Distribution Grids by using Quadratic and Dynamic Programming. World Electric Vehicle Journal, 3(2), 214-224. doi:10.3390/wevj3020214
- Clement-Nyns, K., Haesen, E., & Driesen, J. (2011). The impact of vehicle-to-grid on the distribution grid. Electric Power Systems Research, 81(1), 185-192. doi:10.1016/j.epsr.2010.08.007
- Denholm, P., & Short, W. (2006, October). An Evaluation of Utility System Impacts and Benefits of Optimally Dispatched Plug-In Hybrid Electric Vehicles. Technical Report, NREL/TP-620-40293. www.nrel.gov/docs/fy07osti/40293.pdf
- Diaz, C., Ruiz, F., & Patino, D. (2018). Smart Charge of an Electric Vehicles Station: A Model Predictive Control Approach. In: Proceedings of the 2018 IEEE Conference on Control Technology and Applications (CCTA), 54-59. doi:10.1109/CCTA.2018.8511498
- Dragičević, T., Sučić, S., Vasquez, J. C., & Guerrero, J. M. (2014). Flywheel-based distributed bus signalling strategy for the public fast charging station. IEEE Transactions on Smart Grid, 5(6), 2825-2835. doi:10.1109/TSG.2014.2325963
- Erbaş, M., Kabak, M., Özceylan, E., & Çetinkaya, C. (2018). Optimal siting of electric vehicle charging stations: A GIS-based fuzzy Multi-Criteria Decision Analysis. Energy, 163, 1017-1031. doi:10.1016/j.energy.2018.08.140
- Etezadi-Amoli, M., Choma, K., & Stefani, J. (2010). Rapid-Charge Electric-Vehicle Stations. IEEE Transactions On Power Delivery, 25(3), 1883-1887. doi:10.1109/TPWRD.2010.2047874
- Frade, I., Ribeiro, A., Gonçalves, G., & Antunes, A. P. (2011). Optimal location of charging stations for electric vehicles in a neighborhood in Lisbon, Portugal. Transportation Research Record, 2252(1), 91-98. doi:10.3141/2252-12
- Gagarin, A., & Corcoran, P. (2018). Multiple domination models for placement of electric vehicle charging stations in road networks. Computers and Operations Research, 96, 69-79. doi:10.1016/j.cor.2018.03.014
- Galiveeti, H. R., Goswami, A. K., & Dev Choudhury, N. B. (2018). Impact of plug-in electric vehicles and distributed generation on reliability of distribution systems. Engineering Science and Technology, an International Journal, 21(1), 50-59. doi:10.1016/j.jestch.2018.01.005
- Galus, M. D., Vayá, M. G., Krause, T., & Andersson, G. (2013). The role of electric vehicles in smart grids. Wiley Interdisciplinary Reviews: Energy and Environment, 2(4), 384-400. doi:10.1002/wene.56
- ODD, Otomotiv Distribütörleri Derneği (2019). Genel Değerlendirme Aralık 2019. www.odd.org.tr/web_2837_1/neuralnetwork.aspx?type=35
- ODD, Otomotiv Distribütörleri Derneği (2020). Genel Değerlendirme Aralık 2020. www.odd.org.tr/web_2837_1/neuralnetwork.aspx?type=35
- Geth, F., Leemput, N., Van Roy, J., Buscher, J., Ponnette, R., & Driesen, J. (2012). Voltage droop charging of electric vehicles in a residential distribution feeder. In: Proceedings of the 3rd IEEE PES Innovative Smart Grid Technologies Europe (ISGT Europe), 1-8. doi:10.1109/ISGTEurope.2012.6465692
- Green, R. C., Wang, L., & Alam, M. (2011). The impact of plug-in hybrid electric vehicles on distribution networks: A review and outlook. Renewable and Sustainable Energy Reviews, 15(1), 544-553. doi:10.1016/j.rser.2010.08.015
- IEC, International Electrotechnical Commission (2012) IEC White Paper: Grid integration of large-capacity Renewable Energy sources and use of large-capacity Electrical Energy Storage by Market Strategy Board Project Team, 101p. webstore.iec.ch/publication/22375
- ENERGY, Office of Energy Efficiency & Renewable Energy (2019). Summary Report on EVs at Scale and the U.S. Electric Power System. www.energy.gov/eere/vehicles/downloads/summary-report-evs-scale-and-us-electric-power-system-2019
- Güneş, D., Tekdemir, İ. G., Karaarslan, M. Ş., & Alboyacı, B. (2018). Elektrikli araç şarj istasyonu yüklerinin güvenilirlik indisleri üzerine etkilerinin incelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 33(3), 1073-1084. doi:10.17341/gazimmfd.416408
- Guo, J., Zhao, H., Shen, Z., Wang, A., Cao, L., Hu, E., Wang, Z., & Song, X. (2018). Research on Harmonic Characteristics and Harmonic Counteraction Problem of EV Charging Station. In: Proceedings of the 2nd IEEE Conference on Energy Internet and Energy System Integration (EI2), 1-5. doi:10.1109/EI2.2018.8582095
- Guo, S., & Zhao, H. (2015). Optimal site selection of electric vehicle charging station by using fuzzy TOPSIS based on sustainability perspective. Applied Energy, 158, 390-402. doi:10.1016/j.apenergy.2015.08.082
- Harighi, T., & Bayindir, R. (2019). Load Estimation Use in Electric Vehicle Charge Station Coordination in Different Node and Definite Area. In: Proceedings of the 6th IEEE International Conference on Smart Grid (IcSmartGrids), 264-271. doi:10.1109/ISGWCP.2018.8634506
- Harighi, T., Padmanaban, S., Bayindir, R., Hossain, E., & Holm-Nielsen, J. B. (2019). Electric vehicle charge stations location analysis and determination-Ankara (Turkey) case study. Energies, 12(18), 3472. doi:10.3390/en12183472
- Herron, D. (2017). Charging levels - Level 1, Level 2, DC Fast Charging, etc. In: Range Confidence: Charge Fast, Drive Far, with your Electric Car (Ch. 11-1). greentransportation.info/ev-charging/range-confidence/chap4-charging/4-charging-levels.html
- Hu, D., Zhang, J., & Zhang, Q. (2019). Optimization design of electric vehicle charging stations based on the forecasting data with service balance consideration. Applied Soft Computing, 75, 215-226. doi:10.1016/j.asoc.2018.07.063
- Huang, M., Huang, S., & Jiang, J. (2008). Harmonic study of electric vehicle chargers. Journal of Beijing Jiaotong University, 32(5), 85-88. jdxb.bjtu.edu.cn/EN/Y2008/V32/I5/85
- IEA, International Energy Agency (2020, June). Global EV Outlook 2020: Entering the decade of electric drive? Technology report. www.iea.org/reports/global-ev-outlook-2020
- GCC, Green Car Congress (2020). IONITY orders 324 350kW EV chargers from ABB for second phase of expansion. Retrieved August 31, 2020, www.greencarcongress.com/2020/01/20200110-abb.html
- Irle, R. (2020). Global Plug-in Vehicle Sales Reached over 3,2 Million in 2020. www.ev-volumes.com/country/total-world-plug-in-vehicle-volumes/
- Jordán, J., Palanca, J., Del Val, E., Julian, V., & Botti, V. (2018). A multi-agent system for the dynamic emplacement of electric vehicle charging stations. Applied Sciences, 8(2), 313. doi:10.3390/app8020313
- Kane, M. (2020, November n.d.-a). Passenger Plug-In Electric Car Sales In Europe In Q1-Q3 2020 By Country. insideevs.com/news/452914/plugin-car-sales-europe-q1q3-2020-country/
- Kempton, W., & Tomić, J. (2005). Vehicle-to-grid power implementation: From stabilizing the grid to supporting large-scale renewable energy. Journal of Power Sources, 144(1), 280-294. doi:10.1016/j.jpowsour.2004.12.022
- Khalkhali, K., Abapour, S., Moghaddas-Tafreshi, S. M., & Abapour, M. (2015). Application of data envelopment analysis theorem in plug-in hybrid electric vehicle charging station planning. IET Generation, Transmission and Distribution, 9(7), 666-676. doi:10.1049/iet-gtd.2014.0554
- Kong, W., Luo, Y., Feng, G., Li, K., & Peng, H. (2019). Optimal location planning method of fast charging station for electric vehicles considering operators, drivers, vehicles, traffic flow and power grid. Energy, 186, 115826. doi:10.1016/j.energy.2019.07.156
- Lam, A. Y. S., Leung, Y. W., & Chu, X. (2014). Electric vehicle charging station placement: Formulation, complexity, and solutions. IEEE Transactions on Smart Grid, 5(6), 2846-2856. doi:10.1109/TSG.2014.2344684
- Li, C. T., Ahn, C., Peng, H., & Sun, J. (2012). Integration of plug-in electric vehicle charging and wind energy scheduling on electricity grid. In: Proceedings of the 2012 IEEE PES Innovative Smart Grid Technologies (ISGT), 1-7. doi:10.1109/ISGT.2012.6175617
- Li, C. T., Ahn, C., Peng, H., & Sun, J. (2013). Synergistic control of plug-in vehicle charging and wind power scheduling. IEEE Transactions on Power Systems, 28(2), 1113-1121. doi:10.1109/TPWRS.2012.2211900
- Li, S., Huang, Y., & Mason, S. J. (2016). A multi-period optimization model for the deployment of public electric vehicle charging stations on network. Transportation Research Part C: Emerging Technologies, 65, 128-143. doi:10.1016/j.trc.2016.01.008
- Liao, F., Molin, E., & van Wee, B. (2017). Consumer preferences for electric vehicles: a literature review. Transport Reviews, 37(3), 252-275. doi:10.1080/01441647.2016.1230794
- Lin, B., & Wu, W. (2018). Why people want to buy electric vehicle: An empirical study in first-tier cities of China. Energy Policy, 112, 233-241. doi:10.1016/j.enpol.2017.10.026
- Lin, R., Ye, Z., Guo, Z., & Wu, B. (2020). Hydrogen station location optimization based on multiple data sources. International Journal of Hydrogen Energy, 45(17), 10270-10279. doi:10.1016/j.ijhydene.2019.10.069
- Lin, S., He, Z., Zang, T., & Qian, Q. (2010). Impact of plug-in hybrid electric vehicles on distribution systems. In: Proceedings of the 2010 International Conference on Power System Technology: Technological Innovations Making Power Grid Smarter (POWERCON), 1-5. doi:10.1109/POWERCON.2010.5666121
- Lin, Y., Zhang, K., Shen, Z. J. M., Ye, B., & Miao, L. (2019). Multistage large-scale charging station planning for electric buses considering transportation network and power grid. Transportation Research Part C: Emerging Technologies, 107, 423-443. 10.1016/j.trc.2019.08.009
- Liu, J., Zhang, T., Zhu, J., & Ma, T. (2018). Allocation optimization of electric vehicle charging station (EVCS) considering with charging satisfaction and distributed renewables integration. Energy, 164, 560-574. doi:10.1016/j.energy.2018.09.028
- Liu, L., Kong, F., Liu, X., Peng, Y., & Wang, Q. (2015). A review on electric vehicles interacting with renewable energy in smart grid. Renewable and Sustainable Energy Reviews, 51, 648-661. doi:10.1016/j.rser.2015.06.036
- Liu, Z., Xie, Y., Feng, D., Zhou, Y., Shi, S., & Fang, C. (2019). Load forecasting model and day-ahead operation strategy for city-located EV quick charge stations. In: Proceedings of the 8th Renewable Power Generation Conference (RPG), IET Conference Publications (CP764), 1-6. doi:10.1049/cp.2019.0492
- Liu, Z., Wen, F., & Ledwich, G. (2013). Optimal planning of electric-vehicle charging stations in distribution systems. IEEE Transactions on Power Delivery, 28(1), 102-110. doi:10.1109/TPWRD.2012.2223489
- Lo, E. W. C., Sustanto, D., & Fok, C. C. (1999). Harmonic load flow study for electric vehicle chargers. In: Proceedings of the International Conference on Power Electronics and Drive Systems (PEDS), Volume 2, 495-500. doi:10.1109/peds.1999.794613
- Lopes, J. A. P., Soares, F. J., & Almeida, P. M. R. (2011). Integration of electric vehicles in the electric power system. In: Proceedings of the IEEE, 99(1), 168-183. doi:10.1109/JPROC.2010.2066250
- Lund, H., & Kempton, W. (2008). Integration of renewable energy into the transport and electricity sectors through V2G. Energy Policy, 36(9), 3578-3587. doi:10.1016/j.enpol.2008.06.007
- Ma, G., Jiang, L., Chen, Y., Dai, C., & Ju, R. (2017). Study on the impact of electric vehicle charging load on nodal voltage deviation. Archives of Electrical Engineering, 66(3), 495-505. doi:10.1515/aee-2017-0037
- McPhail, D. (2014). Evaluation of ground energy storage assisted electric vehicle DC fast charger for demand charge reduction and providing demand response. Renewable Energy, 67, 103-108. doi:10.1016/j.renene.2013.11.023
- Moslehi, K., & Kumar, R. (2010). A reliability perspective of the smart grid. IEEE Transactions on Smart Grid, 1(1), 57-64. doi:10.1109/TSG.2010.2046346
- Mozafar, M. R., Moradi, M. H., & Amini, M. H. (2017). A simultaneous approach for optimal allocation of renewable energy sources and electric vehicle charging stations in smart grids based on improved GA-PSO algorithm. Sustainable Cities and Society, 32, 627-637. doi:10.1016/j.scs.2017.05.007
- Mwasilu, F., Justo, J. J., Kim, E. K., Do, T. D., & Jung, J. W. (2014). Electric vehicles and smart grid interaction: A review on vehicle to grid and renewable energy sources integration. Renewable and Sustainable Energy Reviews, 34, 501-516. doi:10.1016/j.rser.2014.03.031
- SUNPOWER (2011). Nissan LEAFTM Charges up With SunPower. Retrieved November 10, 2020, newsroom.sunpower.com/press-releases?item=122812
- Orr, J. A., Emanuel, A. E., & Oberg, K. W. (1982). Current Harmonics Generated By a Cluster of Electric Vehicle Battery Chargers. IEEE Power Engineering Review, PER-2(3), 30-31. doi:10.1109/mper.1982.5520328
- Pashajavid, E., & Golkar, M. A. (2013). Optimal placement and sizing of plug in electric vehicles charging stations within distribution networks with high penetration of photovoltaic panels. Journal of Renewable and Sustainable Energy, 5(5). doi:10.1063/1.4822257
- Phonrattanasak, P., & Leeprechanon, N. (2012). Optimal Location of Fast Charging Station on Residential Distribution Grid. International Journal of Innovation, Management and Technology, 3(6), 675-681. www.ijimt.org/show-40-537-1.html
- Phonrattanasak, P., & Leeprechanon, N. (2014). Optimal placement of EV fast charging stations considering the impact on electrical distribution and traffic condition. In: Proceedings of the 2014 International Conference and Utility Exhibition on Green Energy for Sustainable Development (ICUE), 1-6.
- Poursistani, M. R., Abedi, M., Hajilu, N., & Gharehpetian, G. B. (2015). Impacts of plug-in electric vehicles smart charging on distribution networks. In: Proceedings of the 2014 International Congress on Technology, Communication and Knowledge (ICTCK), 1-6. doi:10.1109/ICTCK.2014.7033499
- Raposo, J., Rodrigues, A., Silva, C., & Dentinho, T. (2015). A multi-criteria decision aid methodology to design electric vehicles public charging networks. AIP Advances, 5(5), 057123. doi:10.1063/1.4921087
- Rigas, E. S., Ramchurn, S. D., & Bassiliades, N. (2015). Managing Electric Vehicles in the Smart Grid Using Artificial Intelligence: A Survey. IEEE Transactions on Intelligent Transportation Systems, 16(4), 1619-1635. doi:10.1109/TITS.2014.2376873
- SAE International (2017) SAE Electric Vehicle and Plug in Hybrid Electric Vehicle Conductive Charge Coupler. Standard J1772_201710. www.sae.org/standards/content/j1772_201710/
- Sehar, F., Pipattanasomporn, M., & Rahman, S. (2017). Demand management to mitigate impacts of plug-in electric vehicle fast charge in buildings with renewables. Energy, 120, 642-651. doi:10.1016/j.energy.2016.11.118
- Shao, S., Pipattanasomporn, M., & Rahman, S. (2009). Challenges of PHEV penetration to the residential distribution network. In: Proceedings of the 2009 IEEE Power and Energy Society General Meeting (PES), 1-8. doi:10.1109/PES.2009.5275806
- Shao, S., Pipattanasomporn, M., & Rahman, S. (2011). Demand Response as a Load Shaping Tool in an Intelligent Grid With Electric Vehicles. IEEE Transactions on Smart Grid, 2(4), 624-631. doi:10.1109/TSG.2011.2164583
- Shi, R., & Lee, K. Y. (2015). Multi-Objective Optimization of Electric Vehicle Fast Charging Stations with SPEA-II. IFAC-PapersOnLine, 48(30), 535-540. doi:10.1016/j.ifacol.2015.12.435
- Singh, M., Kar, I., & Kumar, P. (2010). Influence of EV on grid power quality and optimizing the charging schedule to mitigate voltage imbalance and reduce power loss. In: Proceedings of the 14th International Power Electronics and Motion Control Conference (EPE-PEMC), 196-203. doi:10.1109/EPEPEMC.2010.5606657
- Sortomme, E., & El-Sharkawi, M. A. (2011). Optimal charging strategies for unidirectional vehicle-to-grid. IEEE Transactions on Smart Grid, 2(1), 131-138. doi:10.1109/TSG.2010.2090910
- Speirs, R. (2020). How Long Will It Take To Charge My EV? www.evnex.com/articles/ev-charging-times
- Staats, P. T., Grady, W. M., Arapostathis, A., & Thallam, R. S. (1997). A statistical method for predicting the net harmonic currents generated by a concentration of electric vehicle battery chargers. IEEE Transactions on Power Delivery, 12(3), 1258-1266. doi:10.1109/61.637002
- Suganya, S., Raja, S. C., & Venkatesh, P. (2017). Simultaneous coordination of distinct plug-in Hybrid Electric Vehicle charging stations: A modified Particle Swarm Optimization approach. Energy, 138, 92-102. doi:10.1016/j.energy.2017.07.036
- Sultana, U., Khairuddin, A. B., Sultana, B., Rasheed, N., Qazi, S. H., & Malik, N. R. (2018). Placement and sizing of multiple distributed generation and battery swapping stations using grasshopper optimizer algorithm. Energy, 165, 408-421. doi:10.1016/j.energy.2018.09.083
- T.C. Kültür ve Turizm Bakanlığı Yatırım ve İşletmeler Genel Müdürlüğü. (2019). 2019 Ocak Eylül Turizm İstatistikleri. https://yigm.ktb.gov.tr/Eklenti/67862,turizmistatistikleri2019-306112019pdf.pdf
- Tan, K. M., Ramachandaramurthy, V. K., & Yong, J. Y. (2016). Integration of electric vehicles in smart grid: A review on vehicle to grid technologies and optimization techniques. Renewable and Sustainable Energy Reviews, 53, 720-732. doi:10.1016/j.rser.2015.09.012
- Tang, Z., Guo, C., Hou, P., & Fan, Y. (2013). Optimal Siting of Electric Vehicle Charging Stations Based on Voronoi Diagram and FAHP Method. Energy and Power Engineering, 5, 1404-1409. doi:10.4236/epe.2013.54b266
- TEİAŞ, Türkiye Elektrik İletim AŞ (2018). Türkiye ve Kişi Başına Kurulu Güç - Brüt Üretim - Arz - Net Tüketiminin Yıllar İtibariyle Gelişimi. https://www.teias.gov.tr/tr-TR/turkiye-elektrik-uretim-iletim-istatistikleri
- Tekdemir, I. G., Alboyaci, B., Gunes, D., & Sengul, M. (2017). A probabilistic approach for evaluation of electric vehicles’ effects on distribution systems. In: Proceedings of the 4th International Conference on Electrical and Electronics Engineering (ICEEE), 143-147. doi:10.1109/ICEEE2.2017.7935809
- Tomić, J., & Kempton, W. (2007). Using fleets of electric-drive vehicles for grid support. Journal of Power Sources, 168(2), 459-468. doi:10.1016/j.jpowsour.2007.03.010
- Ucer, E., Kisacikoglu, M. C., & Cafer Gurbuz, A. (2018). Learning EV Integration Impact on a Low Voltage Distribution Grid. In: Proceedings of the 2018 IEEE Power and Energy Society General Meeting (PESGM), 1-5. doi:10.1109/PESGM.2018.8586208
- Vaya, M. G., & Andersson, G. (2013). Integrating renewable energy forecast uncertainty in smart-charging approaches for plug-in electric vehicles. In: Proceedings of the 2013 IEEE Grenoble Conference, 1-6. doi:10.1109/PTC.2013.6652150
- Vazifeh, M. M., Zhang, H., Santi, P., & Ratti, C. (2019). Optimizing the deployment of electric vehicle charging stations using pervasive mobility data. Transportation Research Part A: Policy and Practice, 121, 75-91. doi:10.1016/j.tra.2019.01.002
- Wang, Y. W. (2007). An optimal location choice model for recreation-oriented scooter recharge stations. Transportation Research Part D: Transport and Environment, 12(3), 231-237. doi:10.1016/j.trd.2007.02.002
- Wu, Y., Yang, M., Zhang, H., Chen, K., & Wang, Y. (2016). Optimal site selection of electric vehicle charging stations based on a cloud model and the PROMETHEE method. Energies, 9(3), 157. doi:10.3390/en9030157
- Yang, J., Dong, J., & Hu, L. (2017). A data-driven optimization-based approach for siting and sizing of electric taxi charging stations. Transportation Research Part C: Emerging Technologies, 77(2), 462-477. doi:10.1016/j.trc.2017.02.014
- Yang, Z., Li, K., Foley, A., & Zhang, C. (2014). Optimal scheduling methods to integrate plug-in electric vehicles with the power system: A review. IFAC Proceedings Volumes, 47(3), 8594-8603. doi:10.3182/20140824-6-za-1003.01804
- You, P. S., & Hsieh, Y. C. (2014). A hybrid heuristic approach to the problem of the location of vehicle charging stations. Computers & Industrial Engineering, 70, 195-204. doi:10.1016/j.cie.2014.02.001
- Zhao, H., & Li, N. (2016). Optimal siting of charging stations for electric vehicles based on fuzzy Delphi and hybrid multi-criteria decision making approaches from an extended sustainability perspective. Energies, 9(4), 270. doi:10.3390/en9040270
- Zhao, L. S., & Yuan, H. M. (2018). The impact of quick charge on power quality of high-voltage grid. In: 3rd Asia Conference on Power and Electrical Engineering. IOP Conference Series: Materials Science and Engineering, 366, 012033. doi:10.1088/1757-899X/366/1/012033
- URL-1 (n.d.). IONITY. Our Background. Retrieved August 31, 2020, ionity.eu/en/about.html
- URL-2 (n.d.). EV Charging Station Map. Retrieved August 31, 2020, www.plugshare.com/
- URL-3 (n.d.). IONITY. Our Network. Retrieved August 31, 2020, ionity.eu/en/where-and-how.html
- URL-4 (n.d.). Supercharging. Retrieved December 1, 2020, www.tesla.com/support/supercharging
- URL-5 (n.d.). Charge on the Road. Retrieved August 31, 2020, www.tesla.com/en_EU/supercharger
- URL-6 (2016). Tesla and SolarCity. www.tesla.com/blog/tesla-and-solarcity