Research Article
BibTex RIS Cite
Year 2022, Volume: 9 Issue: 2, 96 - 103, 30.06.2022
https://doi.org/10.54287/gujsa.1100870

Abstract

References

  • Ahmad, H., Zhao, L., Liu, C., Cai, C., & Ma, F. (2021). Ultrasound assisted dispersive solid phase microextraction of inorganic arsenic from food and water samples using CdS nanoflowers combined with ICP-OES determination. Food Chemistry, 338, 128028. doi:10.1016/j.foodchem.2020.128028
  • Andreae, M. O. (1977). Determination of arsenic species in natural waters. Analytical Chemistry, 49(6), 820-825. doi:10.1021/ac50014a037
  • Bahadar, H., Mostafalou, S. & Abdollahi, M. (2014). Growing burden of diabetes in Pakistan and the possible roleof arsenic and pesticides. Journal of Diabetes & Metabolic Disorders, 13, 117. doi:10.1186/s40200-014-0117-y
  • Bordajandi, L. R., Gómez, G., Fernández, M. A., Abad, E., Rivera, J., & González, M. J. (2003). Study on PCBs, PCDD/Fs, organochlorine pesticides, heavy metals and arsenic content in freshwaterfish species from the River Turia (Spain). Chemosphere, 53(2), 163-171. doi:10.1016/S0045-6535(03)00417-X
  • Baksh, H., Buledi, J. A., Khand, N. H., Solangi, A. R., Mallah, A., Sherazi, S. T., & Abro, M. I. (2020). Ultra-selective determination of carbofuran by electrochemical sensor based on nickel oxide nanoparticles stabilized by ionic liquid. Monatshefte für Chemie - Chemical Monthly, 151(11), 1689-1696. doi:10.1007/s00706-020-02704-4
  • Caetano, K. dos S., da Rosa, D. S., Pizzolato, T. M., dos Santos, P. A. M., Hinrichs, R., Benvenutti, E. V., Dias, S. L. P., Arenas, L. T., & Costa, T. M. H. (2020). MWCNT/zirconia porous composite applied as electrochemical sensor for determination of methyl parathion. Microporous and Mesoporous Materials, 309, 110583. doi:10.1016/j.micromeso.2020.110583
  • Campos, V. (2003). Trace Elements in Pesticides. Communications in Soil Science and Plant Analysis, 34(9-10), 1261-1268. doi:10.1081/CSS-120020442
  • Chauhan, S., & Flora, S. J. (2010). Arsenic and fluoride: two major ground water pollutants. Indian J. Exp.Biol., 48(7), 666-688.
  • Christian, G. D., Feldman, F. J. (1970). Atomic absorption spectroscopy; Applications in agriculture, biology, and medicine. New York, John Wiley.
  • Chu, R. C., Barron, G. P., & Baumgartner, P. A. W. (1972). Arsenic determination at sub-microgram levels by arsine evolution and flameless atomic absorption spectrophotometric technique. Analytical Chemistry, 44(8), 1476-1479. doi:10.1021/ac60316a042
  • Clement, W. H., & Faust, S. D. (1973). A new convenient method for determining arsenic (+3) innatural waters. Environmental Letters, 5(3), 155-164. doi:10.1080/00139307309435522
  • Demir, E., & Silah, H. (2020). Development of a New Analytical Method for Determination of Veterinary Drug Oxyclozanide by Electrochemical Sensor and Its Application to Pharmaceutical Formulation. Chemosensors, 8(2), 25.doi:10.3390/chemosensors8020025
  • Demir, E., Silah, H., & Aydogdu, N. (2021). Electrochemical Analysis of Pesticide in Food Samples. In: H. Kaya & H. Kafadar (Eds.), Medicine and Health, (pp. 213-234), Efe Academy Publishing.
  • Dong, W., Zhang, Y., & Quan, X. (2020). Health risk assessment of heavy metals and pesticides: A case study in the main drinking water source in Dalian, China. Chemosphere, 242, 125113. doi:10.1016/j.chemosphere.2019.125113
  • Fishman, M., & Spencer, R. (1977). Automated atomic absorption spectrometric determination of total arsenic in water and streambed materials. Analytical Chemistry, 49(11), 1599-1602.doi:10.1021/ac50019a035
  • García, M., Aguirre, M. A., & Canals, A. (2017). Determination of As, Se, and Hg in fuel samples by in-chamber chemical vapor generation ICP OES using a flow Blurring multinebulizer. Analytical and Bioanalytical Chemistry, 409, 5481-5490. doi:10.1007/s00216-017-0484-6
  • Gonzálvez, A., Armenta, S., & De La Guardia, M. (2008). Trace elements composition of curry inductivity coupled plasma optical emission spectrometry (ICP-OES). Food Additives & Contaminants: Part B, 1(2), 114-121. doi:10.1080/02652030802520845
  • IARC (International Agency for Research on Cancer). (2004). Some Drinking-water Disinfectants and Contaminants, including Arsenic. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, No. 84, Lyon, France.
  • Idris, A. O., Mafa, J. P., Mabuba, N., & Arotiba, O. A. (2017). Nanogold modified glassy carbon electrode for the electrochemical detection of arsenic in water. Russian Journal of Electrochemistry, 53, 170-177. doi:10.1134/S1023193517020082
  • Kalayci, S. (2020). Hirfanlı baraj gölünde eser elementlerin ICP-OES ile tayini. GU J Sci, Part C, 8(2), 451-457. doi:10.29109/gujsc.718105
  • Kalayci, S., & Muhammet, S. M. (2022). Determination of some trace elements in dried red plum using Inductively coupled plasma optical emission spectroscopy (ICP-OES). Iranian Journal of Chemistry and Chemical Engineering (in Press). doi:10.30492/ijcce.2022.529125.4700
  • Li, Y., Ye, F., Wang, A., Wang, D., Yang, B., Zheng, Q., Sun, G., & Gao, X. (2016). Chronic Arsenic Poisoning Probably Caused by Arsenic-Based Pesticides: Findingsfrom an Investigation Study of a Household. International Journal of Environmental Research and Public Health, 13(1), 133. doi:10.3390/ijerph13010133
  • Maduka, H. C. C. (2006). Water pollution and man’s health. The Internet Journal of Gastroenterology, 4(1), 1-8. https://ispub.com/IJGE/4/1/5128
  • Massadeh, A. M., Al-Massaedh, A. T. (2018). Determination of heavy metals in canned fruits and vegetables sold in Jordan market. Environmental Science and Pollution Research, 25, 1914-1920. doi:10.1007/s11356-017-0611-0
  • Proch, J., & Niedzielski, P. (2020). In–spray chamber hydride generation by multi–mode sample introduction system (MSIS) as an interface in the hyphenated system of high performance liquid chromatography and inductivity coupled plasma optical emission spectrometry (HPLC/HG–ICP–OES) in arsenic species determination. Talanta, 208, 120395. doi:10.1016/j.talanta.2019.120395
  • Raju, N. J. (2022). Arsenic in the geo-environment: A review of sources, geochemical processes, toxicity and removal technologies. Environmental Research, 203, 111782. doi:10.1016/j.envres.2021.111782
  • Somer, G., & Almas, Z. (2006). Differential pulse polarographic determination of trace quantities of arsenic using catalytic hydrogen wave and its application. Journal of Electroanalytical Chemistry, 593(1-2), 179-184. doi:10.1016/j.jelechem.2006.03.047
  • Somer, G., & Kalayci, S. (2014). A new and sensitivity method for determination of trace arsenic using differential pulse polarography. Canadian Journal of Chemistry, 92(3), 221-227.doi:10.1139/cjc-2013-0350
  • Tarla, D. N., Erickson, L. E., Hettiarachchi, G. M., Amadi, S. I., Galkaduwa, M., Davis, L. C., Nurzhanova, A., & Pidlisnyuk, V. (2020). Phytoremediation and bioremediation of pesticide-contaminated soil. Applied Sciences, 10(4), 1217. doi:10.3390/app10041217
  • USEPA (US Environmental Protection Agency). (1999). Arsenic in Drinking Water: Analytical Methods. Washington, DC.

Investigation of Arsenic Content in Field Pesticides Using Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES)

Year 2022, Volume: 9 Issue: 2, 96 - 103, 30.06.2022
https://doi.org/10.54287/gujsa.1100870

Abstract

In this study, Arsenic, which is found in the structure of field medicines, was determined by ICP-OES. For arsenic analysis, Turkey was elected four different commonly used pesticides. These pesticides were commercially named A, B, C, and D samples. These samples were solubilized using the appropriate procedure by microwave digestion method. For arsenic determination, 188.980 nm wavelength measurements were made. The determination of the known acid first with ICP-OES was measured at high sensitivity. Arsenic amounts were measured as approximately 0.46 to 0.81 µg/g as the 95% confidence level in the samples and the average of 5 measurements. The validation process of this method was done according to the reference article. The results of the experiment were made with the electrochemical method, differential pulse polarography (DPP), and the results were found to be in agreement.

References

  • Ahmad, H., Zhao, L., Liu, C., Cai, C., & Ma, F. (2021). Ultrasound assisted dispersive solid phase microextraction of inorganic arsenic from food and water samples using CdS nanoflowers combined with ICP-OES determination. Food Chemistry, 338, 128028. doi:10.1016/j.foodchem.2020.128028
  • Andreae, M. O. (1977). Determination of arsenic species in natural waters. Analytical Chemistry, 49(6), 820-825. doi:10.1021/ac50014a037
  • Bahadar, H., Mostafalou, S. & Abdollahi, M. (2014). Growing burden of diabetes in Pakistan and the possible roleof arsenic and pesticides. Journal of Diabetes & Metabolic Disorders, 13, 117. doi:10.1186/s40200-014-0117-y
  • Bordajandi, L. R., Gómez, G., Fernández, M. A., Abad, E., Rivera, J., & González, M. J. (2003). Study on PCBs, PCDD/Fs, organochlorine pesticides, heavy metals and arsenic content in freshwaterfish species from the River Turia (Spain). Chemosphere, 53(2), 163-171. doi:10.1016/S0045-6535(03)00417-X
  • Baksh, H., Buledi, J. A., Khand, N. H., Solangi, A. R., Mallah, A., Sherazi, S. T., & Abro, M. I. (2020). Ultra-selective determination of carbofuran by electrochemical sensor based on nickel oxide nanoparticles stabilized by ionic liquid. Monatshefte für Chemie - Chemical Monthly, 151(11), 1689-1696. doi:10.1007/s00706-020-02704-4
  • Caetano, K. dos S., da Rosa, D. S., Pizzolato, T. M., dos Santos, P. A. M., Hinrichs, R., Benvenutti, E. V., Dias, S. L. P., Arenas, L. T., & Costa, T. M. H. (2020). MWCNT/zirconia porous composite applied as electrochemical sensor for determination of methyl parathion. Microporous and Mesoporous Materials, 309, 110583. doi:10.1016/j.micromeso.2020.110583
  • Campos, V. (2003). Trace Elements in Pesticides. Communications in Soil Science and Plant Analysis, 34(9-10), 1261-1268. doi:10.1081/CSS-120020442
  • Chauhan, S., & Flora, S. J. (2010). Arsenic and fluoride: two major ground water pollutants. Indian J. Exp.Biol., 48(7), 666-688.
  • Christian, G. D., Feldman, F. J. (1970). Atomic absorption spectroscopy; Applications in agriculture, biology, and medicine. New York, John Wiley.
  • Chu, R. C., Barron, G. P., & Baumgartner, P. A. W. (1972). Arsenic determination at sub-microgram levels by arsine evolution and flameless atomic absorption spectrophotometric technique. Analytical Chemistry, 44(8), 1476-1479. doi:10.1021/ac60316a042
  • Clement, W. H., & Faust, S. D. (1973). A new convenient method for determining arsenic (+3) innatural waters. Environmental Letters, 5(3), 155-164. doi:10.1080/00139307309435522
  • Demir, E., & Silah, H. (2020). Development of a New Analytical Method for Determination of Veterinary Drug Oxyclozanide by Electrochemical Sensor and Its Application to Pharmaceutical Formulation. Chemosensors, 8(2), 25.doi:10.3390/chemosensors8020025
  • Demir, E., Silah, H., & Aydogdu, N. (2021). Electrochemical Analysis of Pesticide in Food Samples. In: H. Kaya & H. Kafadar (Eds.), Medicine and Health, (pp. 213-234), Efe Academy Publishing.
  • Dong, W., Zhang, Y., & Quan, X. (2020). Health risk assessment of heavy metals and pesticides: A case study in the main drinking water source in Dalian, China. Chemosphere, 242, 125113. doi:10.1016/j.chemosphere.2019.125113
  • Fishman, M., & Spencer, R. (1977). Automated atomic absorption spectrometric determination of total arsenic in water and streambed materials. Analytical Chemistry, 49(11), 1599-1602.doi:10.1021/ac50019a035
  • García, M., Aguirre, M. A., & Canals, A. (2017). Determination of As, Se, and Hg in fuel samples by in-chamber chemical vapor generation ICP OES using a flow Blurring multinebulizer. Analytical and Bioanalytical Chemistry, 409, 5481-5490. doi:10.1007/s00216-017-0484-6
  • Gonzálvez, A., Armenta, S., & De La Guardia, M. (2008). Trace elements composition of curry inductivity coupled plasma optical emission spectrometry (ICP-OES). Food Additives & Contaminants: Part B, 1(2), 114-121. doi:10.1080/02652030802520845
  • IARC (International Agency for Research on Cancer). (2004). Some Drinking-water Disinfectants and Contaminants, including Arsenic. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, No. 84, Lyon, France.
  • Idris, A. O., Mafa, J. P., Mabuba, N., & Arotiba, O. A. (2017). Nanogold modified glassy carbon electrode for the electrochemical detection of arsenic in water. Russian Journal of Electrochemistry, 53, 170-177. doi:10.1134/S1023193517020082
  • Kalayci, S. (2020). Hirfanlı baraj gölünde eser elementlerin ICP-OES ile tayini. GU J Sci, Part C, 8(2), 451-457. doi:10.29109/gujsc.718105
  • Kalayci, S., & Muhammet, S. M. (2022). Determination of some trace elements in dried red plum using Inductively coupled plasma optical emission spectroscopy (ICP-OES). Iranian Journal of Chemistry and Chemical Engineering (in Press). doi:10.30492/ijcce.2022.529125.4700
  • Li, Y., Ye, F., Wang, A., Wang, D., Yang, B., Zheng, Q., Sun, G., & Gao, X. (2016). Chronic Arsenic Poisoning Probably Caused by Arsenic-Based Pesticides: Findingsfrom an Investigation Study of a Household. International Journal of Environmental Research and Public Health, 13(1), 133. doi:10.3390/ijerph13010133
  • Maduka, H. C. C. (2006). Water pollution and man’s health. The Internet Journal of Gastroenterology, 4(1), 1-8. https://ispub.com/IJGE/4/1/5128
  • Massadeh, A. M., Al-Massaedh, A. T. (2018). Determination of heavy metals in canned fruits and vegetables sold in Jordan market. Environmental Science and Pollution Research, 25, 1914-1920. doi:10.1007/s11356-017-0611-0
  • Proch, J., & Niedzielski, P. (2020). In–spray chamber hydride generation by multi–mode sample introduction system (MSIS) as an interface in the hyphenated system of high performance liquid chromatography and inductivity coupled plasma optical emission spectrometry (HPLC/HG–ICP–OES) in arsenic species determination. Talanta, 208, 120395. doi:10.1016/j.talanta.2019.120395
  • Raju, N. J. (2022). Arsenic in the geo-environment: A review of sources, geochemical processes, toxicity and removal technologies. Environmental Research, 203, 111782. doi:10.1016/j.envres.2021.111782
  • Somer, G., & Almas, Z. (2006). Differential pulse polarographic determination of trace quantities of arsenic using catalytic hydrogen wave and its application. Journal of Electroanalytical Chemistry, 593(1-2), 179-184. doi:10.1016/j.jelechem.2006.03.047
  • Somer, G., & Kalayci, S. (2014). A new and sensitivity method for determination of trace arsenic using differential pulse polarography. Canadian Journal of Chemistry, 92(3), 221-227.doi:10.1139/cjc-2013-0350
  • Tarla, D. N., Erickson, L. E., Hettiarachchi, G. M., Amadi, S. I., Galkaduwa, M., Davis, L. C., Nurzhanova, A., & Pidlisnyuk, V. (2020). Phytoremediation and bioremediation of pesticide-contaminated soil. Applied Sciences, 10(4), 1217. doi:10.3390/app10041217
  • USEPA (US Environmental Protection Agency). (1999). Arsenic in Drinking Water: Analytical Methods. Washington, DC.
There are 30 citations in total.

Details

Primary Language English
Journal Section Chemical Engineering
Authors

Şükrü Kalaycı 0000-0002-8643-6731

Publication Date June 30, 2022
Submission Date April 9, 2022
Published in Issue Year 2022 Volume: 9 Issue: 2

Cite

APA Kalaycı, Ş. (2022). Investigation of Arsenic Content in Field Pesticides Using Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES). Gazi University Journal of Science Part A: Engineering and Innovation, 9(2), 96-103. https://doi.org/10.54287/gujsa.1100870