Research Article
BibTex RIS Cite
Year 2022, Volume: 9 Issue: 4, 562 - 569, 31.12.2022
https://doi.org/10.54287/gujsa.1214668

Abstract

Supporting Institution

Gazi Üniversitesi BAP

Project Number

FDK-2021-7400

References

  • Banijamali, S. M., Palizdar, Y., Nekouee, K. A., Najafi, S., & Shariat Razavi, M. (2022). Effect of B4C reinforcement and hot rolling on microstructure and mechanical properties of WE43 magnesium matrix composite. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 236(9), 1854-1868. doi:10.1177/14644207221085939
  • Ghasali, E., Alizadeh, M., Niazmand, M., & Ebadzadeh, T. (2017a). Fabrication of magnesium-boron carbide metal matrix composite by powder metallurgy route: comparison between microwave and spark plasma sintering. Journal of Alloys and Compounds, 697, 200-207. doi:10.1016/j.jallcom.2016.12.146
  • Ghasali, E., Yazdani-rad, R., Asadian, K., & Ebadzadeh, T. (2017b). Production of Al-SiC-TiC hybrid composites using pure and 1056 aluminum powders prepared through microwave and conventional heating methods. Journal of Alloys and Compounds, 690, 512-518. doi:10.1016/j.jallcom.2016.08.145
  • Moheimani, S. K., Keshtgar, A., Khademzadeh, S., Tayebi, M., Rajaee, A., & Saboori, A. (2021). Tribological behaviour of AZ31 magnesium alloy reinforced by bimodal size B4C after precipitation hardening. Journal of Magnesium and Alloys, 10(11), 3267-3280. doi:10.1016/j.jma.2021.05.016
  • Nimityongskul, S., Jones, M., Choi, H., Lakes, R., Kou, S., & Li, X. (2010). Grain refining mechanisms in Mg–Al alloys with Al4C3 microparticles. Materials Science and Engineering: A, 527(7-8), 2104-2111. doi:10.1016/j.msea.2009.12.030
  • Saheb, N., Iqbal, Z., Khalil, A., Hakeem, A. S., Al Aqeeli, N., Laoui, T., Al-Qutub, A., & Kirchner, R. (2012). Spark plasma sintering of metals and metal matrix nanocomposites: a review. Journal of Nanomaterials, 2012, 983470. doi:10.1155/2012/983470
  • Shuai, C., He, C., Peng, S., Qi, F., Wang, G., Min, A., Yang, W., & Wang, W. (2021). Mechanical alloying of immiscible metallic systems: process, microstructure, and mechanism. Advanced Engineering Materials, 23(4), 2001098. doi:10.1002/adem.202001098
  • Tang, B., Li, J., Wang, Y., Luo, H., Ye, J., Chen, X., Chen, X., Zheng, K., & Pan, F. (2022). Mechanical properties and microstructural characteristics of Ti/WE43 composites. Vacuum, 206, 111534. doi:10.1016/j.vacuum.2022.111534
  • Taşcı, U., Gökmeşe, H., & Bostan, B (2013). AA 2014 Al Matrisli B4C Parçacık Takviyeli Kompozitlerin Mikro Yapı ve Aşınma Davranışının İncelenmesi. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji, 1(4), 161-168.
  • Yadav, M., Kumaraswamidhas, L. A., & Singh, S. K. (2022). Investigation of solid particle erosion behavior of Al-Al2O3 and Al-ZrO2 metal matrix composites fabricated through powder metallurgy technique. Tribology International, 172, 107636. doi:10.1016/j.triboint.2022.107636

Investigation of Microstructure and Tribological behavior of WE43/nano B4C Composites Produced by Spark Plasma Sintering

Year 2022, Volume: 9 Issue: 4, 562 - 569, 31.12.2022
https://doi.org/10.54287/gujsa.1214668

Abstract

In this study, composite samples of WE43 (Mg-4Y-3RE-Zr) reinforced with nano-B4C particles in different ratios (0.5 and 2 wt.%) were prepared by spark plasma sintering (SPS). The powders were mixed in a 3-dimensional ball mill at 300 rpm. The mixed powders were then hot pressed under 35 MPa pressure at 525 °C for 6 min. XRD and FESEM-EDS instruments were used to characterize the composite samples. Microhardness and wear tests were performed to designate the mechanical properties. It was found that the highest hardness occurred in the composite sample with 2% nano-B4C composites. It was also found that tribological properties improved with the increase of nano-B4C content.

Project Number

FDK-2021-7400

References

  • Banijamali, S. M., Palizdar, Y., Nekouee, K. A., Najafi, S., & Shariat Razavi, M. (2022). Effect of B4C reinforcement and hot rolling on microstructure and mechanical properties of WE43 magnesium matrix composite. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 236(9), 1854-1868. doi:10.1177/14644207221085939
  • Ghasali, E., Alizadeh, M., Niazmand, M., & Ebadzadeh, T. (2017a). Fabrication of magnesium-boron carbide metal matrix composite by powder metallurgy route: comparison between microwave and spark plasma sintering. Journal of Alloys and Compounds, 697, 200-207. doi:10.1016/j.jallcom.2016.12.146
  • Ghasali, E., Yazdani-rad, R., Asadian, K., & Ebadzadeh, T. (2017b). Production of Al-SiC-TiC hybrid composites using pure and 1056 aluminum powders prepared through microwave and conventional heating methods. Journal of Alloys and Compounds, 690, 512-518. doi:10.1016/j.jallcom.2016.08.145
  • Moheimani, S. K., Keshtgar, A., Khademzadeh, S., Tayebi, M., Rajaee, A., & Saboori, A. (2021). Tribological behaviour of AZ31 magnesium alloy reinforced by bimodal size B4C after precipitation hardening. Journal of Magnesium and Alloys, 10(11), 3267-3280. doi:10.1016/j.jma.2021.05.016
  • Nimityongskul, S., Jones, M., Choi, H., Lakes, R., Kou, S., & Li, X. (2010). Grain refining mechanisms in Mg–Al alloys with Al4C3 microparticles. Materials Science and Engineering: A, 527(7-8), 2104-2111. doi:10.1016/j.msea.2009.12.030
  • Saheb, N., Iqbal, Z., Khalil, A., Hakeem, A. S., Al Aqeeli, N., Laoui, T., Al-Qutub, A., & Kirchner, R. (2012). Spark plasma sintering of metals and metal matrix nanocomposites: a review. Journal of Nanomaterials, 2012, 983470. doi:10.1155/2012/983470
  • Shuai, C., He, C., Peng, S., Qi, F., Wang, G., Min, A., Yang, W., & Wang, W. (2021). Mechanical alloying of immiscible metallic systems: process, microstructure, and mechanism. Advanced Engineering Materials, 23(4), 2001098. doi:10.1002/adem.202001098
  • Tang, B., Li, J., Wang, Y., Luo, H., Ye, J., Chen, X., Chen, X., Zheng, K., & Pan, F. (2022). Mechanical properties and microstructural characteristics of Ti/WE43 composites. Vacuum, 206, 111534. doi:10.1016/j.vacuum.2022.111534
  • Taşcı, U., Gökmeşe, H., & Bostan, B (2013). AA 2014 Al Matrisli B4C Parçacık Takviyeli Kompozitlerin Mikro Yapı ve Aşınma Davranışının İncelenmesi. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji, 1(4), 161-168.
  • Yadav, M., Kumaraswamidhas, L. A., & Singh, S. K. (2022). Investigation of solid particle erosion behavior of Al-Al2O3 and Al-ZrO2 metal matrix composites fabricated through powder metallurgy technique. Tribology International, 172, 107636. doi:10.1016/j.triboint.2022.107636
There are 10 citations in total.

Details

Primary Language English
Journal Section Metallurgical and Materials Engineering
Authors

Ufuk Taşcı 0000-0002-8577-443X

Bulent Bostan 0000-0002-6114-875X

Project Number FDK-2021-7400
Publication Date December 31, 2022
Submission Date December 5, 2022
Published in Issue Year 2022 Volume: 9 Issue: 4

Cite

APA Taşcı, U., & Bostan, B. (2022). Investigation of Microstructure and Tribological behavior of WE43/nano B4C Composites Produced by Spark Plasma Sintering. Gazi University Journal of Science Part A: Engineering and Innovation, 9(4), 562-569. https://doi.org/10.54287/gujsa.1214668