Optimization of Green Synthesis Parameters of Silver Nanoparticles with Factorial Design for Dye Removal
Year 2023,
Volume: 10 Issue: 3, 327 - 340, 29.09.2023
Gülçin Demirel Bayık
,
Busenur Baykal
Abstract
In this study production of silver nanoparticles (AgNPs) from collard greens were optimized by the design of experiments (DOE). A 24 full factorial design was employed to evaluate the effects on two responses. The optimized values for AgNP production were 1:7 leaf to water, 1:4 extract to AgNO3, 5 molar AgNO3, and a leaf size of <1 mm. For dye removal efficiency, the optimized values were changed to 1:15 of leaf to water and 1:10 of extract to AgNO3, while the other two parameters remained the same. SEM (scanning electron microscopy) showed that optimizing the process for dye removal led to smaller AgNP production with increased surface area, resulting in higher absorbency. ANOVA (analysis of variance) tables were used to interpret each parameter's main and effects on interaction. Additionally, reaction rate kinetics were estimated, and dye removal showed a slightly higher R-square of pseudo second-order than NP production, which fits the pseudo first-order reaction model.
Supporting Institution
Zonguldak Bulent Ecevit University
Project Number
2021-77047330-01
References
- Abdelghany, T. M., Al-Rajhi, A. M. H., Al Abboud, M. A., Alawlaqi, M. M., Ganash Magdah, A., Helmy, E. A. M., & Mabrouk, A. S. (2018). Recent Advances in Green Synthesis of Silver Nanoparticles and Their Applications: About Future Directions. A Review. BioNanoScience, 8(1), 5-16. doi:10.1007/s12668-017-0413-3
- Akter, M., Rahman, Md. M., Ullah, A. K. M. A., Sikder, Md. T., Hosokawa, T., Saito, T., & Kurasaki, M. (2018). Brassica rapa var. japonica Leaf Extract Mediated Green Synthesis of Crystalline Silver Nanoparticles and Evaluation of Their Stability, Cytotoxicity and Antibacterial Activity. Journal of Inorganic and Organometallic Polymers and Materials, 28(4), 1483-1493. doi:10.1007/s10904-018-0818-7
- Bala, A., & Rani, G. (2020). A review on phytosynthesis, affecting factors and characterization techniques of silver nanoparticles designed by green approach. International Nano Letters, 10(3), 159-176. doi:10.1007/s40089-020-00309-7
- Bhargavi, R. J., Maheshwari, U., & Gupta, S. (2015). Synthesis and use of alumina nanoparticles as an adsorbent for the removal of Zn(II) and CBG dye from wastewater. International Journal of Industrial Chemistry, 6(1), 31-41. doi:10.1007/s40090-014-0029-1
- Çimen, B., Şengül, S., Ergüt, M., & Özer, A. (2019). Green Synthesis and Characterization of CuO Nanoparticles: Telon Blue AGLF and Methylene Blue Adsorption. Sinop University Journal of Natural Sciences, 4(1), 1-20. doi:10.33484/sinopfbd.315643
- David, L., & Moldovan, B. (2020). Green Synthesis of Biogenic Silver Nanoparticles for Efficient Catalytic Removal of Harmful Organic Dyes. Nanomaterials, 10(2), 202. doi:10.3390/nano10020202
- Golli, R., Thummaneni, C., Pabbathi, D. D., Srungarapu, T., Jayasri, G., & Vangalapati, M. (2023). Silver nanoparticles synthesized by Brassica oleracea (Broccoli) acting as antifungal agent against Candida albicans. In: M. Seenuvasan, & D. M. Sangeetha (Eds.), Proceedings of the Second Global Conference on Recent Advances in Sustainable Materials 2022. Materials Today: Proceedings, (vol. 80, part 2, pp. 1495-1500). doi:10.1016/j.matpr.2023.01.284
- Imanzadeh, G., & Hadi, R. (2018). Brassica Oleraceae, A Versatile Plant For Green Synthesis of Silver Nanoparticles. Iranian Chemical Communication, 6(1), 70-77.
- Iravani, S. (2011). Green synthesis of metal nanoparticles using plants. Green Chemistry, 13(10), 2638-2650. doi:10.1039/C1GC15386B
- Jeevanandam, J., Chan, Y. S., & Danquah, M. K. (2016). Biosynthesis of metal and metal oxide nanoparticles. ChemBioEng Reviews, 3(2), 55-67. doi:10.1002/cben.201500018
- Jiang, C., Wang, X., Qin, D., Da, W., Hou, B., Hao, C., & Wu, J. (2019). Construction of magnetic lignin-based adsorbent and its adsorption properties for dyes. Journal of Hazardous Materials, 369, 50-61. doi:10.1016/j.jhazmat.2019.02.021
- Kumar Das, P., Mohanty, C., Krishna Purohit, G., Mishra, S., & Palo, S. (2022). Nanoparticle assisted environmental remediation: Applications, toxicological implications and recommendations for a sustainable environment. Environmental Nanotechnology, Monitoring & Management, 18, 100679. doi:10.1016/j.enmm.2022.100679
- Lee, H. U., Lee, S. C., Lee, Y.-C., Vrtnik, S., Kim, C., Lee, S., Lee, Y. B., Nam, B., Lee, J. W., Park, S. Y., Lee, S. M., & Lee, J. (2013). Sea-urchin-like iron oxide nanostructures for water treatment. Journal of Hazardous Materials, 262, 130-136. doi:10.1016/j.jhazmat.2013.08.014
- Liu, X., Tian, J., Li, Y., Sun, N., Mi, S., Xie, Y., & Chen, Z. (2019). Enhanced dyes adsorption from wastewater via Fe3O4 nanoparticles functionalized activated carbon. Journal of Hazardous Materials, 373, 397-407. doi:10.1016/j.jhazmat.2019.03.103
- Min, K. H., Shin, J. W., Ki, M.-R., & Pack, S. P. (2023). Green synthesis of silver nanoparticles on biosilica diatomite: Well-dispersed particle formation and reusability. Process Biochemistry, 125, 232-238. doi:10.1016/j.procbio.2022.12.018
- Moussavi, G., & Mahmoudi, M. (2009). Removal of azo and anthraquinone reactive dyes from industrial wastewaters using MgO nanoparticles. Journal of Hazardous Materials, 168(2–3), 806-812. doi:10.1016/j.jhazmat.2009.02.097
- Ngoc, P. K., Mac, T. K., Nguyen, H. T., Viet, D. T., Thanh, T. D., Van Vinh, P., Phan, B. T., Duong, A. T., & Das, R. (2022). Superior organic dye removal by CoCr2O4 nanoparticles: Adsorption kinetics and isotherm. Journal of Science: Advanced Materials and Devices, 7(2), 100438. doi:10.1016/j.jsamd.2022.100438
- Nie, P., Zhao, Y., & Xu, H. (2023). Synthesis, applications, toxicity and toxicity mechanisms of silver nanoparticles: A review. Ecotoxicology and Environmental Safety, 253, 114636. doi:10.1016/j.ecoenv.2023.114636
- Noginov, M. A., Zhu, G., Bahoura, M., Adegoke, J., Small, C., Ritzo, B. A., Drachev, V. P., & Shalaev, V. M. (2007). The effect of gain and absorption on surface plasmons in metal nanoparticles. Applied Physics B: Lasers and Optics, 86(3), 455-460. doi:10.1007/s00340-006-2401-0
- Rastogi, A., Zivcak, M., Sytar, O., Kalaji, H. M., He, X., Mbarki, S., & Brestic, M. (2017). Impact of Metal and Metal Oxide Nanoparticles on Plant: A Critical Review. Frontiers in Chemistry, 5, 78. doi:10.3389/fchem.2017.00078
- Rajput, S., Kumar, D., & Agrawal, V. (2020). Green synthesis of silver nanoparticles using Indian Belladonna extract and their potential antioxidant, anti-inflammatory, anticancer and larvicidal activities. Plant Cell Reports, 39(7), 921-939. doi:10.1007/s00299-020-02539-7
- Parmar, A., Kaur, G., Kapil, S., Sharma, V., Choudhary, M. K., & Sharma, S. (2019). Novel biogenic silver nanoparticles as invigorated catalytic and antibacterial tool: A cleaner approach towards environmental remediation and combating bacterial invasion. Materials Chemistry and Physics, 238, 121861. doi:10.1016/j.matchemphys.2019.121861
- Silva, L. P., Reis, I. G., & Bonatto, C. C. (2015). Green Synthesis of Metal Nanoparticles by Plants: Current Trends and Challenges. In: V. A. Basiuk & E. V Basiuk (Eds.), Green Processes for Nanotechnology: From Inorganic to Bioinspired Nanomaterials, (pp. 259-275). Springer. doi:10.1007/978-3-319-15461-9_9
- Sithara, R., Selvakumar, P., Arun, C., Anandan, S., & Sivashanmugam, P. (2017). Economical synthesis of silver nanoparticles using leaf extract of Acalypha hispida and its application in the detection of Mn(II) ions. Journal of Advanced Research, 8(6), 561-568. doi:10.1016/j.jare.2017.07.001
- Uddin, M. K., & Baig, U. (2019). Synthesis of Co3O4 nanoparticles and their performance towards methyl orange dye removal: Characterisation, adsorption and response surface methodology. Journal of Cleaner Production, 211, 1141-1153. doi:10.1016/j.jclepro.2018.11.232
- VenkataRao, P., SaiTarun, G., Govardhani, Ch., Manasa, B., Joy, P. J., & Vangalapati, M. (2020). Biosorption of congo red dye from aqueous solutions using synthesized silver nano particles of Grevillea robusta : Kinetic studies. In: S. K. Singh, E. T. Akinlabi, K. Kumar, J. P. Davim, & K. K. Saxena (Eds.), Proceedings of the 10th International Conference of Materials Processing and Characterization. Materials Today: Proceedings, (vol. 26, part 2, pp. 3009-3014). doi:10.1016/j.matpr.2020.02.626
- Venugobal, J., & Anandalakshmi, K. (2016). Green Synthesis of Silver Nanoparticles Using Commiphora caudata Leaves Extract and the Study of Bactericidal Efficiency. Journal of Cluster Science, 27(5), 1683-1699. doi:10.1007/s10876-016-1032-9
- Vidhu, V. K., & Philip, D. (2014). Catalytic degradation of organic dyes using biosynthesized silver nanoparticles. Micron, 56, 54-62. doi:10.1016/j.micron.2013.10.006
- Wang, J., Zhang, Q., Shao, X., Ma, J., & Tian, G. (2018). Properties of magnetic carbon nanomaterials and application in removal organic dyes. Chemosphere, 207, 377-384. doi:10.1016/j.chemosphere.2018.05.109
- Yaghoobi, M., Asjadi, F., & Sanikhani, M. (2023). A facile one-step green hydrothermal synthesis of paramagnetic Fe3O4 nanoparticles with highly efficient dye removal. Journal of the Taiwan Institute of Chemical Engineers, 144, 104774. doi:10.1016/j.jtice.2023.104774
- Zhang, F., Chen, X., Wu, F., & Ji, Y. (2016). High adsorption capability and selectivity of ZnO nanoparticles for dye removal. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 509, 474-483. doi:10.1016/j.colsurfa.2016.09.059
Year 2023,
Volume: 10 Issue: 3, 327 - 340, 29.09.2023
Gülçin Demirel Bayık
,
Busenur Baykal
Project Number
2021-77047330-01
References
- Abdelghany, T. M., Al-Rajhi, A. M. H., Al Abboud, M. A., Alawlaqi, M. M., Ganash Magdah, A., Helmy, E. A. M., & Mabrouk, A. S. (2018). Recent Advances in Green Synthesis of Silver Nanoparticles and Their Applications: About Future Directions. A Review. BioNanoScience, 8(1), 5-16. doi:10.1007/s12668-017-0413-3
- Akter, M., Rahman, Md. M., Ullah, A. K. M. A., Sikder, Md. T., Hosokawa, T., Saito, T., & Kurasaki, M. (2018). Brassica rapa var. japonica Leaf Extract Mediated Green Synthesis of Crystalline Silver Nanoparticles and Evaluation of Their Stability, Cytotoxicity and Antibacterial Activity. Journal of Inorganic and Organometallic Polymers and Materials, 28(4), 1483-1493. doi:10.1007/s10904-018-0818-7
- Bala, A., & Rani, G. (2020). A review on phytosynthesis, affecting factors and characterization techniques of silver nanoparticles designed by green approach. International Nano Letters, 10(3), 159-176. doi:10.1007/s40089-020-00309-7
- Bhargavi, R. J., Maheshwari, U., & Gupta, S. (2015). Synthesis and use of alumina nanoparticles as an adsorbent for the removal of Zn(II) and CBG dye from wastewater. International Journal of Industrial Chemistry, 6(1), 31-41. doi:10.1007/s40090-014-0029-1
- Çimen, B., Şengül, S., Ergüt, M., & Özer, A. (2019). Green Synthesis and Characterization of CuO Nanoparticles: Telon Blue AGLF and Methylene Blue Adsorption. Sinop University Journal of Natural Sciences, 4(1), 1-20. doi:10.33484/sinopfbd.315643
- David, L., & Moldovan, B. (2020). Green Synthesis of Biogenic Silver Nanoparticles for Efficient Catalytic Removal of Harmful Organic Dyes. Nanomaterials, 10(2), 202. doi:10.3390/nano10020202
- Golli, R., Thummaneni, C., Pabbathi, D. D., Srungarapu, T., Jayasri, G., & Vangalapati, M. (2023). Silver nanoparticles synthesized by Brassica oleracea (Broccoli) acting as antifungal agent against Candida albicans. In: M. Seenuvasan, & D. M. Sangeetha (Eds.), Proceedings of the Second Global Conference on Recent Advances in Sustainable Materials 2022. Materials Today: Proceedings, (vol. 80, part 2, pp. 1495-1500). doi:10.1016/j.matpr.2023.01.284
- Imanzadeh, G., & Hadi, R. (2018). Brassica Oleraceae, A Versatile Plant For Green Synthesis of Silver Nanoparticles. Iranian Chemical Communication, 6(1), 70-77.
- Iravani, S. (2011). Green synthesis of metal nanoparticles using plants. Green Chemistry, 13(10), 2638-2650. doi:10.1039/C1GC15386B
- Jeevanandam, J., Chan, Y. S., & Danquah, M. K. (2016). Biosynthesis of metal and metal oxide nanoparticles. ChemBioEng Reviews, 3(2), 55-67. doi:10.1002/cben.201500018
- Jiang, C., Wang, X., Qin, D., Da, W., Hou, B., Hao, C., & Wu, J. (2019). Construction of magnetic lignin-based adsorbent and its adsorption properties for dyes. Journal of Hazardous Materials, 369, 50-61. doi:10.1016/j.jhazmat.2019.02.021
- Kumar Das, P., Mohanty, C., Krishna Purohit, G., Mishra, S., & Palo, S. (2022). Nanoparticle assisted environmental remediation: Applications, toxicological implications and recommendations for a sustainable environment. Environmental Nanotechnology, Monitoring & Management, 18, 100679. doi:10.1016/j.enmm.2022.100679
- Lee, H. U., Lee, S. C., Lee, Y.-C., Vrtnik, S., Kim, C., Lee, S., Lee, Y. B., Nam, B., Lee, J. W., Park, S. Y., Lee, S. M., & Lee, J. (2013). Sea-urchin-like iron oxide nanostructures for water treatment. Journal of Hazardous Materials, 262, 130-136. doi:10.1016/j.jhazmat.2013.08.014
- Liu, X., Tian, J., Li, Y., Sun, N., Mi, S., Xie, Y., & Chen, Z. (2019). Enhanced dyes adsorption from wastewater via Fe3O4 nanoparticles functionalized activated carbon. Journal of Hazardous Materials, 373, 397-407. doi:10.1016/j.jhazmat.2019.03.103
- Min, K. H., Shin, J. W., Ki, M.-R., & Pack, S. P. (2023). Green synthesis of silver nanoparticles on biosilica diatomite: Well-dispersed particle formation and reusability. Process Biochemistry, 125, 232-238. doi:10.1016/j.procbio.2022.12.018
- Moussavi, G., & Mahmoudi, M. (2009). Removal of azo and anthraquinone reactive dyes from industrial wastewaters using MgO nanoparticles. Journal of Hazardous Materials, 168(2–3), 806-812. doi:10.1016/j.jhazmat.2009.02.097
- Ngoc, P. K., Mac, T. K., Nguyen, H. T., Viet, D. T., Thanh, T. D., Van Vinh, P., Phan, B. T., Duong, A. T., & Das, R. (2022). Superior organic dye removal by CoCr2O4 nanoparticles: Adsorption kinetics and isotherm. Journal of Science: Advanced Materials and Devices, 7(2), 100438. doi:10.1016/j.jsamd.2022.100438
- Nie, P., Zhao, Y., & Xu, H. (2023). Synthesis, applications, toxicity and toxicity mechanisms of silver nanoparticles: A review. Ecotoxicology and Environmental Safety, 253, 114636. doi:10.1016/j.ecoenv.2023.114636
- Noginov, M. A., Zhu, G., Bahoura, M., Adegoke, J., Small, C., Ritzo, B. A., Drachev, V. P., & Shalaev, V. M. (2007). The effect of gain and absorption on surface plasmons in metal nanoparticles. Applied Physics B: Lasers and Optics, 86(3), 455-460. doi:10.1007/s00340-006-2401-0
- Rastogi, A., Zivcak, M., Sytar, O., Kalaji, H. M., He, X., Mbarki, S., & Brestic, M. (2017). Impact of Metal and Metal Oxide Nanoparticles on Plant: A Critical Review. Frontiers in Chemistry, 5, 78. doi:10.3389/fchem.2017.00078
- Rajput, S., Kumar, D., & Agrawal, V. (2020). Green synthesis of silver nanoparticles using Indian Belladonna extract and their potential antioxidant, anti-inflammatory, anticancer and larvicidal activities. Plant Cell Reports, 39(7), 921-939. doi:10.1007/s00299-020-02539-7
- Parmar, A., Kaur, G., Kapil, S., Sharma, V., Choudhary, M. K., & Sharma, S. (2019). Novel biogenic silver nanoparticles as invigorated catalytic and antibacterial tool: A cleaner approach towards environmental remediation and combating bacterial invasion. Materials Chemistry and Physics, 238, 121861. doi:10.1016/j.matchemphys.2019.121861
- Silva, L. P., Reis, I. G., & Bonatto, C. C. (2015). Green Synthesis of Metal Nanoparticles by Plants: Current Trends and Challenges. In: V. A. Basiuk & E. V Basiuk (Eds.), Green Processes for Nanotechnology: From Inorganic to Bioinspired Nanomaterials, (pp. 259-275). Springer. doi:10.1007/978-3-319-15461-9_9
- Sithara, R., Selvakumar, P., Arun, C., Anandan, S., & Sivashanmugam, P. (2017). Economical synthesis of silver nanoparticles using leaf extract of Acalypha hispida and its application in the detection of Mn(II) ions. Journal of Advanced Research, 8(6), 561-568. doi:10.1016/j.jare.2017.07.001
- Uddin, M. K., & Baig, U. (2019). Synthesis of Co3O4 nanoparticles and their performance towards methyl orange dye removal: Characterisation, adsorption and response surface methodology. Journal of Cleaner Production, 211, 1141-1153. doi:10.1016/j.jclepro.2018.11.232
- VenkataRao, P., SaiTarun, G., Govardhani, Ch., Manasa, B., Joy, P. J., & Vangalapati, M. (2020). Biosorption of congo red dye from aqueous solutions using synthesized silver nano particles of Grevillea robusta : Kinetic studies. In: S. K. Singh, E. T. Akinlabi, K. Kumar, J. P. Davim, & K. K. Saxena (Eds.), Proceedings of the 10th International Conference of Materials Processing and Characterization. Materials Today: Proceedings, (vol. 26, part 2, pp. 3009-3014). doi:10.1016/j.matpr.2020.02.626
- Venugobal, J., & Anandalakshmi, K. (2016). Green Synthesis of Silver Nanoparticles Using Commiphora caudata Leaves Extract and the Study of Bactericidal Efficiency. Journal of Cluster Science, 27(5), 1683-1699. doi:10.1007/s10876-016-1032-9
- Vidhu, V. K., & Philip, D. (2014). Catalytic degradation of organic dyes using biosynthesized silver nanoparticles. Micron, 56, 54-62. doi:10.1016/j.micron.2013.10.006
- Wang, J., Zhang, Q., Shao, X., Ma, J., & Tian, G. (2018). Properties of magnetic carbon nanomaterials and application in removal organic dyes. Chemosphere, 207, 377-384. doi:10.1016/j.chemosphere.2018.05.109
- Yaghoobi, M., Asjadi, F., & Sanikhani, M. (2023). A facile one-step green hydrothermal synthesis of paramagnetic Fe3O4 nanoparticles with highly efficient dye removal. Journal of the Taiwan Institute of Chemical Engineers, 144, 104774. doi:10.1016/j.jtice.2023.104774
- Zhang, F., Chen, X., Wu, F., & Ji, Y. (2016). High adsorption capability and selectivity of ZnO nanoparticles for dye removal. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 509, 474-483. doi:10.1016/j.colsurfa.2016.09.059