Research Article
BibTex RIS Cite

A No-Code Automated Machine Learning Platform for the Energy Sector

Year 2024, Volume: 11 Issue: 2, 289 - 303, 29.06.2024
https://doi.org/10.54287/gujsa.1473782

Abstract

This paper presents a No-Code Automated Machine Learning (Auto-ML) platform designed specifically for the energy sector, addressing the challenges of integrating ML in diverse and complex data environments. The proposed platform automates key ML pipeline steps, including data preprocessing, feature engineering, model selection, and hyperparameter tuning, while incorporating domain-specific knowledge to handle unique industry requirements such as fluctuating energy demands and regulatory compliance. The modular architecture allows for customization and scalability, making the platform adaptable across various energy sub-sectors like renewable energy, oil and gas, and power distribution. Our findings highlight the platform's potential to democratize advanced analytical capabilities within the energy industry, enabling non-expert users to generate sophisticated data-driven insights. Preliminary results demonstrate significant improvements in data processing efficiency and predictive accuracy. The paper details the platform's architecture, including data lake and entity-relationship diagrams, and describes the design of user interfaces for data ingestion, preprocessing, model training, and deployment. This study contributes to the field by offering a practical solution to the complexities of ML in the energy sector, facilitating a shift towards more adaptive, efficient, and data-informed operations.

Supporting Institution

TUBİTAK

Project Number

3220630

References

  • Banzhaf, W. (2006). Introduction. Genetic Programming and Evolvable Machines, 7(1), 5–6. https://doi.org/10.1007/s10710-006-7015-0
  • Browne, C. B., Powley, E., Whitehouse, D., Lucas, S. M., Cowling, P. I., Rohlfshagen, P., Tavener, S., Perez, D., Samothrakis, S., & Colton, S. (2012). A Survey of Monte Carlo Tree Search Methods. IEEE Transactions on Computational Intelligence and AI in Games, 4(1), 1–43. https://doi.org/10.1109/tciaig.2012.2186810
  • Chu, X., Ilyas, I. F., Krishnan, S., & Wang, J. (2016). Data Cleaning. Proceedings of the 2016 International Conference on Management of Data. https://doi.org/10.1145/2882903.2912574
  • Chu, X., Morcos, J., Ilyas, I. F., Ouzzani, M., Papotti, P., Tang, N., & Ye, Y. (2015). KATARA. Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data. https://doi.org/10.1145/2723372.2749431
  • Cubuk, E. D., Zoph, B., Mane, D., Vasudevan, V., & Le, Q. V. (2019). AutoAugment: Learning Augmentation Strategies From Data. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). https://doi.org/10.1109/cvpr.2019.00020
  • Darren, C. (2016). Practical ML with H2O: powerful, scalable techniques for deep learning and AI. O’Reilly Media, Inc.
  • Drori, I., Krishnamurthy, Y., Rampin, R., Lourenco, R. d. P., Ono, J. P., Cho, K., Silva, C., & Freire, J. (2018). AlphaD3M: Machine Learning Pipeline Synthesis. In International Conference on Machine Learning AutoML Workshop.
  • Drori, I., Krishnamurthy, Y., de Paula Lourenco, R., Rampin, R., Kyunghyun, C., Silva, C., & Freire, J. (2019). Automatic Machine Learning by Pipeline Synthesis using Model-Based Reinforcement Learning and a Grammar. In International Conference on Machine Learning AutoML Workshop.
  • Erickson, N., Mueller, J., Shirkov, A., Zhang, H., Larroy, P., Li, M., & Smola, A. (2020). AutoGluon-Tabular: Robust and Accurate Auto-ML for Structured Data. arXiv preprint arXiv:2003.06505.
  • Feurer, M., Klein, A., Eggensperger, K., Springenberg, J. T., Blum, M., & Hutter, F. (2019). Auto-sklearn: Efficient and Robust Automated Machine Learning. The Springer Series on Challenges in Machine Learning, 113-134. https://doi.org/10.1007/978-3-030-05318-5_6
  • Gama, J. (2004). Functional Trees. Machine Learning, 55(3), 219–250. https://doi.org/10.1023/b:mach.0000027782.67192.13
  • Ge, P. (2020). Analysis on Approaches and Structures of Automated Machine Learning Frameworks. 2020 International Conference on Communications, Information System and Computer Engineering (CISCE). https://doi.org/10.1109/cisce50729.2020.00106
  • Iwendi, C., Huescas, C. G. Y., Chakraborty, C., & Mohan, S. (2022). COVID-19 health analysis and prediction using machine learning algorithms for Mexico and Brazil patients. Journal of Experimental & Theoretical Artificial Intelligence, 1–21. https://doi.org/10.1080/0952813x.2022.2058097
  • Z. H, J. M., Hossen, J., Sayeed, S., Ho, C., K, T., Rahman, A., & Arif, E. M. H. (2018). A Survey on Cleaning Dirty Data Using Machine Learning Paradigm for Big Data Analytics. Indonesian Journal of Electrical Engineering and Computer Science, 10(3), 1234. https://doi.org/10.11591/ijeecs.v10.i3.pp1234-1243
  • Ji, Z., He, Z., Gui, Y., Li, J., Tan, Y., Wu, B., Xu, R., & Wang, J. (2022). Research and Application Validation of a Feature Wavelength Selection Method Based on Acousto-Optic Tunable Filter (AOTF) and Automatic Machine Learning (AutoML). Materials, 15(8), 2826. https://doi.org/10.3390/ma15082826
  • Jin, H., Song, Q., & Hu, X. (2019). Auto-Keras: An Efficient Neural Architecture Search System. Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. https://doi.org/10.1145/3292500.3330648
  • Jin, H., Chollet, F., Song, Q., & Hu, X. (2023). Autokeras: an Auto-ML library for deep learning. Journal of Machine Learning Research, 24(6), 1-6. https://www.jmlr.org/papers/volume24/20-1355/20-1355.pdf
  • Kocsis, L., & Szepesvári, C. (2006). Bandit Based Monte-Carlo Planning. Machine Learning: ECML 2006, 282–293. https://doi.org/10.1007/11871842_29
  • Kotthoff, L., Thornton, C., Hoos, H. H., Hutter, F., & Leyton-Brown, K. (2019). Auto-WEKA: Automatic Model Selection and Hyperparameter Optimization in WEKA. The Springer Series on Challenges in Machine Learning, 81–95. https://doi.org/10.1007/978-3-030-05318-5_4
  • Kotthoff, L., Thornton, C., & Hutter, F. (2017). User guide for auto-WEKA version 2.6. Department of Computer Science, University of British Columbia, BETA Lab, Tech Report 2, 1-15. Vancouver, BC, Canada.
  • Koza, JohnR. (1994). Genetic programming as a means for programming computers by natural selection. Statistics and Computing, 4(2). https://doi.org/10.1007/bf00175355
  • Krishnan, S., & Wu, E. (2019). AlphaClean: Automatic generation of data cleaning pipelines. https://doi.org/10.48550/arXiv.1904.11827
  • Lake, B. M., Ullman, T. D., Tenenbaum, J. B., & Gershman, S. J. (2016). Building machines that learn and think like people. Behavioral and Brain Sciences, 40. https://doi.org/10.1017/s0140525x16001837
  • LeDell, E., & Poirier, S. (2020). H2o Auto-ML: scalable automatic machine learning. In 7th ICML Workshop on Automated Machine Learning. https://www.automl.org/wp-content/uploads/2020/07/AutoML_2020_paper_61.pdf
  • LingChen, T. C., Khonsari, A., Lashkari, A., Nazari, M. R., & Sambee, J. S. (2020). UniformAugment: A search-free probabilistic data augmentation approach. arXiv preprint arXiv:2003.14348. https://doi.org/10.48550/arXiv.2003.14348
  • McGushion, H. (2019). HyperparameterHunter. Available at https://github.com/HunterMcGushion/hyperparameter_hunter.
  • Mahdavi, M., Neutatz, F., Visengeriyeva, L., & Abedjan, Z. (2019). Towards automated data cleaning workflows. Machine Learning, 15, 16.
  • Mohr, F., Wever, M., & Hüllermeier, E. (2018). ML-Plan: Automated machine learning via hierarchical planning. Machine Learning, 107(8–10), 1495–1515. https://doi.org/10.1007/s10994-018-5735-z
  • Olson, R. S., Bartley, N., Urbanowicz, R. J., & Moore, J. H. (2016). Evaluation of a Tree-based Pipeline Optimization Tool for Automating Data Science. Proceedings of the Genetic and Evolutionary Computation Conference 2016. https://doi.org/10.1145/2908812.2908918
  • Park, J. B., Lee, K. H., Kwak, J. Y., & Cho, C. S. (2022). Deployment Framework Design Techniques for Optimized Neural Network Applications. 2022 13th International Conference on Information and Communication Technology Convergence (ICTC). https://doi.org/10.1109/ictc55196.2022.9952771
  • Pedregosa, F., Varoquaux, G., & Gramfort, A. (2011). Scikit-learn: ML in python. Journal of Machine Learning Research, 12, 2825-2830.
  • Rakotoarison, H., Schoenauer, M., & Sebag, M. (2019). Automated Machine Learning with Monte-Carlo Tree Search. Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence. https://doi.org/10.24963/ijcai.2019/457
  • Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., Lillicrap, T., Simonyan, K., & Hassabis, D. (2018). A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play. Science, 362(6419), 1140–1144. https://doi.org/10.1126/science.aar6404
  • Thornton, C., Hutter, F., Hoos, H. H., & Leyton-Brown, K. (2013). Auto-WEKA. Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. https://doi.org/10.1145/2487575.2487629
  • UC Irvine ML Repository. (2023). Epileptic Seizures Dataset. https://www.kaggle.com/datasets/chaditya95/epileptic-seizures-dataset
  • Vafaie, H., & Jong, K. (1998). Evolutionary Feature Space Transformation. Feature Extraction, Construction and Selection, 307–323. https://doi.org/10.1007/978-1-4615-5725-8_19
  • Zheng, Z. (1998). A Comparison of Constructing Different Types of New Feature For Decision Tree Learning. Feature Extraction, Construction and Selection, 239-255. https://doi.org/10.1007/978-1-4615-5725-8_15
Year 2024, Volume: 11 Issue: 2, 289 - 303, 29.06.2024
https://doi.org/10.54287/gujsa.1473782

Abstract

Project Number

3220630

References

  • Banzhaf, W. (2006). Introduction. Genetic Programming and Evolvable Machines, 7(1), 5–6. https://doi.org/10.1007/s10710-006-7015-0
  • Browne, C. B., Powley, E., Whitehouse, D., Lucas, S. M., Cowling, P. I., Rohlfshagen, P., Tavener, S., Perez, D., Samothrakis, S., & Colton, S. (2012). A Survey of Monte Carlo Tree Search Methods. IEEE Transactions on Computational Intelligence and AI in Games, 4(1), 1–43. https://doi.org/10.1109/tciaig.2012.2186810
  • Chu, X., Ilyas, I. F., Krishnan, S., & Wang, J. (2016). Data Cleaning. Proceedings of the 2016 International Conference on Management of Data. https://doi.org/10.1145/2882903.2912574
  • Chu, X., Morcos, J., Ilyas, I. F., Ouzzani, M., Papotti, P., Tang, N., & Ye, Y. (2015). KATARA. Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data. https://doi.org/10.1145/2723372.2749431
  • Cubuk, E. D., Zoph, B., Mane, D., Vasudevan, V., & Le, Q. V. (2019). AutoAugment: Learning Augmentation Strategies From Data. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). https://doi.org/10.1109/cvpr.2019.00020
  • Darren, C. (2016). Practical ML with H2O: powerful, scalable techniques for deep learning and AI. O’Reilly Media, Inc.
  • Drori, I., Krishnamurthy, Y., Rampin, R., Lourenco, R. d. P., Ono, J. P., Cho, K., Silva, C., & Freire, J. (2018). AlphaD3M: Machine Learning Pipeline Synthesis. In International Conference on Machine Learning AutoML Workshop.
  • Drori, I., Krishnamurthy, Y., de Paula Lourenco, R., Rampin, R., Kyunghyun, C., Silva, C., & Freire, J. (2019). Automatic Machine Learning by Pipeline Synthesis using Model-Based Reinforcement Learning and a Grammar. In International Conference on Machine Learning AutoML Workshop.
  • Erickson, N., Mueller, J., Shirkov, A., Zhang, H., Larroy, P., Li, M., & Smola, A. (2020). AutoGluon-Tabular: Robust and Accurate Auto-ML for Structured Data. arXiv preprint arXiv:2003.06505.
  • Feurer, M., Klein, A., Eggensperger, K., Springenberg, J. T., Blum, M., & Hutter, F. (2019). Auto-sklearn: Efficient and Robust Automated Machine Learning. The Springer Series on Challenges in Machine Learning, 113-134. https://doi.org/10.1007/978-3-030-05318-5_6
  • Gama, J. (2004). Functional Trees. Machine Learning, 55(3), 219–250. https://doi.org/10.1023/b:mach.0000027782.67192.13
  • Ge, P. (2020). Analysis on Approaches and Structures of Automated Machine Learning Frameworks. 2020 International Conference on Communications, Information System and Computer Engineering (CISCE). https://doi.org/10.1109/cisce50729.2020.00106
  • Iwendi, C., Huescas, C. G. Y., Chakraborty, C., & Mohan, S. (2022). COVID-19 health analysis and prediction using machine learning algorithms for Mexico and Brazil patients. Journal of Experimental & Theoretical Artificial Intelligence, 1–21. https://doi.org/10.1080/0952813x.2022.2058097
  • Z. H, J. M., Hossen, J., Sayeed, S., Ho, C., K, T., Rahman, A., & Arif, E. M. H. (2018). A Survey on Cleaning Dirty Data Using Machine Learning Paradigm for Big Data Analytics. Indonesian Journal of Electrical Engineering and Computer Science, 10(3), 1234. https://doi.org/10.11591/ijeecs.v10.i3.pp1234-1243
  • Ji, Z., He, Z., Gui, Y., Li, J., Tan, Y., Wu, B., Xu, R., & Wang, J. (2022). Research and Application Validation of a Feature Wavelength Selection Method Based on Acousto-Optic Tunable Filter (AOTF) and Automatic Machine Learning (AutoML). Materials, 15(8), 2826. https://doi.org/10.3390/ma15082826
  • Jin, H., Song, Q., & Hu, X. (2019). Auto-Keras: An Efficient Neural Architecture Search System. Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. https://doi.org/10.1145/3292500.3330648
  • Jin, H., Chollet, F., Song, Q., & Hu, X. (2023). Autokeras: an Auto-ML library for deep learning. Journal of Machine Learning Research, 24(6), 1-6. https://www.jmlr.org/papers/volume24/20-1355/20-1355.pdf
  • Kocsis, L., & Szepesvári, C. (2006). Bandit Based Monte-Carlo Planning. Machine Learning: ECML 2006, 282–293. https://doi.org/10.1007/11871842_29
  • Kotthoff, L., Thornton, C., Hoos, H. H., Hutter, F., & Leyton-Brown, K. (2019). Auto-WEKA: Automatic Model Selection and Hyperparameter Optimization in WEKA. The Springer Series on Challenges in Machine Learning, 81–95. https://doi.org/10.1007/978-3-030-05318-5_4
  • Kotthoff, L., Thornton, C., & Hutter, F. (2017). User guide for auto-WEKA version 2.6. Department of Computer Science, University of British Columbia, BETA Lab, Tech Report 2, 1-15. Vancouver, BC, Canada.
  • Koza, JohnR. (1994). Genetic programming as a means for programming computers by natural selection. Statistics and Computing, 4(2). https://doi.org/10.1007/bf00175355
  • Krishnan, S., & Wu, E. (2019). AlphaClean: Automatic generation of data cleaning pipelines. https://doi.org/10.48550/arXiv.1904.11827
  • Lake, B. M., Ullman, T. D., Tenenbaum, J. B., & Gershman, S. J. (2016). Building machines that learn and think like people. Behavioral and Brain Sciences, 40. https://doi.org/10.1017/s0140525x16001837
  • LeDell, E., & Poirier, S. (2020). H2o Auto-ML: scalable automatic machine learning. In 7th ICML Workshop on Automated Machine Learning. https://www.automl.org/wp-content/uploads/2020/07/AutoML_2020_paper_61.pdf
  • LingChen, T. C., Khonsari, A., Lashkari, A., Nazari, M. R., & Sambee, J. S. (2020). UniformAugment: A search-free probabilistic data augmentation approach. arXiv preprint arXiv:2003.14348. https://doi.org/10.48550/arXiv.2003.14348
  • McGushion, H. (2019). HyperparameterHunter. Available at https://github.com/HunterMcGushion/hyperparameter_hunter.
  • Mahdavi, M., Neutatz, F., Visengeriyeva, L., & Abedjan, Z. (2019). Towards automated data cleaning workflows. Machine Learning, 15, 16.
  • Mohr, F., Wever, M., & Hüllermeier, E. (2018). ML-Plan: Automated machine learning via hierarchical planning. Machine Learning, 107(8–10), 1495–1515. https://doi.org/10.1007/s10994-018-5735-z
  • Olson, R. S., Bartley, N., Urbanowicz, R. J., & Moore, J. H. (2016). Evaluation of a Tree-based Pipeline Optimization Tool for Automating Data Science. Proceedings of the Genetic and Evolutionary Computation Conference 2016. https://doi.org/10.1145/2908812.2908918
  • Park, J. B., Lee, K. H., Kwak, J. Y., & Cho, C. S. (2022). Deployment Framework Design Techniques for Optimized Neural Network Applications. 2022 13th International Conference on Information and Communication Technology Convergence (ICTC). https://doi.org/10.1109/ictc55196.2022.9952771
  • Pedregosa, F., Varoquaux, G., & Gramfort, A. (2011). Scikit-learn: ML in python. Journal of Machine Learning Research, 12, 2825-2830.
  • Rakotoarison, H., Schoenauer, M., & Sebag, M. (2019). Automated Machine Learning with Monte-Carlo Tree Search. Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence. https://doi.org/10.24963/ijcai.2019/457
  • Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., Lillicrap, T., Simonyan, K., & Hassabis, D. (2018). A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play. Science, 362(6419), 1140–1144. https://doi.org/10.1126/science.aar6404
  • Thornton, C., Hutter, F., Hoos, H. H., & Leyton-Brown, K. (2013). Auto-WEKA. Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. https://doi.org/10.1145/2487575.2487629
  • UC Irvine ML Repository. (2023). Epileptic Seizures Dataset. https://www.kaggle.com/datasets/chaditya95/epileptic-seizures-dataset
  • Vafaie, H., & Jong, K. (1998). Evolutionary Feature Space Transformation. Feature Extraction, Construction and Selection, 307–323. https://doi.org/10.1007/978-1-4615-5725-8_19
  • Zheng, Z. (1998). A Comparison of Constructing Different Types of New Feature For Decision Tree Learning. Feature Extraction, Construction and Selection, 239-255. https://doi.org/10.1007/978-1-4615-5725-8_15
There are 37 citations in total.

Details

Primary Language English
Subjects Modelling and Simulation
Journal Section Computer Engineering
Authors

Ezgi Avcı 0000-0002-9826-1027

Project Number 3220630
Early Pub Date June 4, 2024
Publication Date June 29, 2024
Submission Date April 25, 2024
Acceptance Date May 22, 2024
Published in Issue Year 2024 Volume: 11 Issue: 2

Cite

APA Avcı, E. (2024). A No-Code Automated Machine Learning Platform for the Energy Sector. Gazi University Journal of Science Part A: Engineering and Innovation, 11(2), 289-303. https://doi.org/10.54287/gujsa.1473782