Research Article
BibTex RIS Cite
Year 2024, Volume: 11 Issue: 4, 676 - 689, 30.12.2024
https://doi.org/10.54287/gujsa.1537785

Abstract

Project Number

120N520

References

  • Aghaei, M., Fairbrother, A., Gok, A., Ahmad, S., Kazim, S., Lobato, K., Oreski, G., Reinders, A., Schmitz, J., Theelen, M., Yilmaz, P., & Kettle, J. (2022). Review of degradation and failure phenomena in photovoltaic modules. Renewable and Sustainable Energy Reviews, 159, 112160. https://doi.org/10.1016/j.rser.2022.112160
  • BNEF. (2024, March 4). Global PV Market Outlook—1Q 2024. BloombergNEF. https://about.bnef.com/blog/1q-2024-global-pv-market-outlook/
  • Czanderna, A. W., & Pern, F. J. (1996). Encapsulation of PV modules using ethylene vinyl acetate copolymer as a pottant: A critical review. Solar Energy Materials and Solar Cells, 43(2), 101-181. https://doi.org/10.1016/0927-0248(95)00150-6
  • Dintcheva, N. T., Morici, E., & Colletti, C. (2023). Encapsulant Materials and Their Adoption in Photovoltaic Modules: A Brief Review. Sustainability, 15(12), 9453. https://doi.org/10.3390/su15129453
  • Gok, A., Fagerholm, C. L., French, R. H., & Bruckman, L. S. (2019). Temporal evolution and pathway models of poly(ethylene-terephthalate) degradation under multi-factor accelerated weathering exposures. PLOS ONE, 14(2), e0212258. https://doi.org/10.1371/journal.pone.0212258
  • Griffini, G., & Turri, S. (2016). Polymeric materials for long-term durability of photovoltaic systems. Journal of Applied Polymer Science, 133(11). https://doi.org/10.1002/app.43080
  • Hara, K., & Chiba, Y. (2021). Spectroscopic investigation of long-term outdoor-exposed crystalline silicon photovoltaic modules. Journal of Photochemistry and Photobiology A: Chemistry, 404, 112891. https://doi.org/10.1016/j.jphotochem.2020.112891
  • IEA PVPS. (2023). Snapshot of Global PV Markets 2023 (IEA-PVPS T1-44:2023). International Energy Agency (IEA) Photovoltaic Power Systems Programme (PVPS). https://iea-pvps.org/snapshot-reports/snapshot-2023/
  • IEA PVPS. (2024). Snapshot of Global PV Markets 2024 (IEA-PVPS T1-42: 2024). International Energy Agency (IEA) Photovoltaic Power Systems Programme (PVPS). https://iea-pvps.org/snapshot-reports/snapshot-2024/
  • IEC. (2021). IEC 61215-1-1:2021: Terrestrial photovoltaic (PV) modules—Design qualification and type approval—Part 1-1: Special requirements for testing of crystalline silicon photovoltaic (PV) modules (Version 2.0) [International Standard]. International Electrotechnical Commission. https://webstore.iec.ch/publication/61346
  • ITRPV. (2024). International Technology Roadmap for Photovoltaics. VDMA e. V. https://www.vdma.org/international-technology-roadmap-photovoltaic
  • Kempe, M. D., Jorgensen, G. J., Terwilliger, K. M., McMahon, T. J., Kennedy, C. E., & Borek, T. T. (2007). Acetic acid production and glass transition concerns with ethylene-vinyl acetate used in photovoltaic devices. Solar Energy Materials and Solar Cells, 91(4), 315-329. https://doi.org/10.1016/j.solmat.2006.10.009
  • Kempe, M. D., Panchagade, D., Reese, M. O., & Dameron, A. A. (2015). Modeling moisture ingress through polyisobutylene-based edge-seals: Polyisobutylene-based edge-seals. Progress in Photovoltaics: Research and Applications, 23(5), 570-581. https://doi.org/10.1002/pip.2465
  • Köntges, M., Kurtz, S., Packard, C., Jahn, U., Berger, K. A., Kato, K., Friesen, T., Liu, H., & Van Iseghem, M. (2014). Review of failures of photovoltaic modules (IEA-PVPS T13-01:2014). International Energy Agency (IEA) Photovoltaic Power Systems Programme (PVPS). https://iea-pvps.org/key-topics/review-of-failures-of-photovoltaic-modules-final/
  • Köntges, M., Oreski, G., Jahn, U., Herz, M., Hacke, P., Weiß, K.-A. Razongles, G., Paggi, M., Parlevliet, D., Tanahashi, T., & French, R. H. (2017). Assessment of photovoltaic module failures in the field (IEA-PVPS T13-09:2017). International Energy Agency (IEA) Photovoltaic Power Systems Programme (PVPS). https://iea-pvps.org/key-topics/report-assessment-of-photovoltaic-module-failures-in-the-field-2017/
  • Mitterhofer, S., Barretta, C., Castillon, L. F., Oreski, G., Topič, M., & Jankovec, M. (2020). A Dual-Transport Model of Moisture Diffusion in PV Encapsulants for Finite-Element Simulations. IEEE Journal of Photovoltaics, 10(1), 94-102. https://doi.org/10.1109/JPHOTOV.2019.2955182
  • Müller, A., Friedrich, L., Reichel, C., Herceg, S., Mittag, M., & Neuhaus, D. H. (2021). A comparative life cycle assessment of silicon PV modules: Impact of module design, manufacturing location and inventory. Solar Energy Materials and Solar Cells, 230, 111277. https://doi.org/10.1016/j.solmat.2021.111277
  • Oliveira, M. C. C. de, Diniz Cardoso, A. S. A., Viana, M. M., & Lins, V. de F. C. (2018). The causes and effects of degradation of encapsulant ethylene vinyl acetate copolymer (EVA) in crystalline silicon photovoltaic modules: A review. Renewable and Sustainable Energy Reviews, 81, 2299-2317. https://doi.org/10.1016/j.rser.2017.06.039
  • Oreski, G., Stein, J., Eder, G., Berger, K., Bruckman, L., Vedde, J., Weiss, K.-A., Tanahashi, T., French, R., & Ranta, S. (2021). Designing New Materials for Photovoltaics: Opportunities for Lowering Cost and Increasing Performance through Advanced Material Innovations (IEA-PVPS T13-13:2021). International Energy Agency (IEA) Photovoltaic Power Systems Programme (PVPS). https://iea-pvps.org/key-topics/designing-new-materials-for-photovoltaics/
  • Paç, A. B., & Gok, A. (2024). Assessing the Environmental Benefits of Extending the Service Lifetime of Solar Photovoltaic Modules. Global Challenges, 8(8), 2300245. https://doi.org/10.1002/gch2.202300245
  • Patel, A. P., Sinha, A., & Tamizhmani, G. (2020). Field-Aged Glass/Backsheet and Glass/Glass PV Modules: Encapsulant Degradation Comparison. IEEE Journal of Photovoltaics, 10(2), 607-615. https://doi.org/10.1109/JPHOTOV.2019.2958516
  • Schnatmann, A. K., Schoden, F., & Schwenzfeier-Hellkamp, E. (2022). Sustainable PV Module Design—Review of State-of-the-Art Encapsulation Methods. Sustainability, 14(16), 9971. https://doi.org/10.3390/su14169971
  • Segbefia, O. K., Imenes, A. G., & Sætre, T. O. (2021). Moisture ingress in photovoltaic modules: A review. Solar Energy, 224, 889-906. https://doi.org/10.1016/j.solener.2021.06.055
  • Sinha, A., Sulas-Kern, D. B., Owen-Bellini, M., Spinella, L., Uličná, S., Pelaez, S. A., Johnston, S., & Schelhas, L. T. (2021). Glass/glass photovoltaic module reliability and degradation: A review. Journal of Physics D: Applied Physics, 54(41), 413002. https://doi.org/10.1088/1361-6463/ac1462

Evaluating the Impact of Edge-Seal on the Performance of Double-Glass Solar Photovoltaic Modules

Year 2024, Volume: 11 Issue: 4, 676 - 689, 30.12.2024
https://doi.org/10.54287/gujsa.1537785

Abstract

Solar energy is a vital component of the renewable energy landscape. Nevertheless, photovoltaic (PV) modules face numerous challenges during operation due to environmental stress factors, which can lead to various degradation issues such as delamination, encapsulant discoloration, corrosion of cell metallization, and potential-induced degradation. Ethylene-vinyl acetate (EVA), despite being a prominent encapsulant material, is notably vulnerable to moisture. Upon degradation, EVA releases acetic acid, severely impacting the long-term performance of PV modules. This study investigates the effectiveness of using a polyisobutylene-based edge-seal to minimize moisture ingress in double-glass modules. One-cell mini-modules encapsulated with EVA, with and without edge-seal, are subjected to damp heat testing (85°C / 85% RH) for up to 5000 hours and their performance are evaluated though current-voltage characteristics. Mini-modules without edge-seal exhibit a significant 70% loss in power, primarily due to a 37% decrease in short-circuit current, a 56% decrease in fill factor, and a staggering 650% increase in series resistance. However, mini-modules with edge-seal see only a 33% loss in power, driven mainly by a 21% decrease in fill factor and a 76% increase in series resistance. The use of edge-seal does not completely prevent but effectively reduces moisture ingress and mitigates its detrimental effects on module performance. Additionally, the Network Structural Equation Modeling approach is applied to analyze current-voltage characteristics, enabling the identification of statistically significant relationships, the construction of degradation pathway diagrams, and the determination of key factors contributing to power degradation. This analysis reveals increased series resistance and reduced fill factor as primary causes of power degradation for both mini-module configurations. Although the encapsulant materials exhibit minimal degradation in optical, chemical, and thermo-chemical properties, the presence of moisture within the module construction can still cause corrosion of cell metallization. This results in a decline in power performance even without substantial acetic acid formation. This study highlights the critical importance of preventing moisture ingress to enhance the durability and reliability of PV modules, ensuring their optimal performance throughout their intended service lifetime.

Supporting Institution

The Scientific and Technological Research Council of Turkey (TUBITAK)

Project Number

120N520

Thanks

This work was conducted as part of the Solar-Era.NET project: PV40+ and supported by the funding from The Scientific and Technological Research Council of Turkey (TUBITAK) under the Grant No: 120N520. The authors would like to thank PV40+ project partners for the experimental work and providing data for the analysis conducted in this work.

References

  • Aghaei, M., Fairbrother, A., Gok, A., Ahmad, S., Kazim, S., Lobato, K., Oreski, G., Reinders, A., Schmitz, J., Theelen, M., Yilmaz, P., & Kettle, J. (2022). Review of degradation and failure phenomena in photovoltaic modules. Renewable and Sustainable Energy Reviews, 159, 112160. https://doi.org/10.1016/j.rser.2022.112160
  • BNEF. (2024, March 4). Global PV Market Outlook—1Q 2024. BloombergNEF. https://about.bnef.com/blog/1q-2024-global-pv-market-outlook/
  • Czanderna, A. W., & Pern, F. J. (1996). Encapsulation of PV modules using ethylene vinyl acetate copolymer as a pottant: A critical review. Solar Energy Materials and Solar Cells, 43(2), 101-181. https://doi.org/10.1016/0927-0248(95)00150-6
  • Dintcheva, N. T., Morici, E., & Colletti, C. (2023). Encapsulant Materials and Their Adoption in Photovoltaic Modules: A Brief Review. Sustainability, 15(12), 9453. https://doi.org/10.3390/su15129453
  • Gok, A., Fagerholm, C. L., French, R. H., & Bruckman, L. S. (2019). Temporal evolution and pathway models of poly(ethylene-terephthalate) degradation under multi-factor accelerated weathering exposures. PLOS ONE, 14(2), e0212258. https://doi.org/10.1371/journal.pone.0212258
  • Griffini, G., & Turri, S. (2016). Polymeric materials for long-term durability of photovoltaic systems. Journal of Applied Polymer Science, 133(11). https://doi.org/10.1002/app.43080
  • Hara, K., & Chiba, Y. (2021). Spectroscopic investigation of long-term outdoor-exposed crystalline silicon photovoltaic modules. Journal of Photochemistry and Photobiology A: Chemistry, 404, 112891. https://doi.org/10.1016/j.jphotochem.2020.112891
  • IEA PVPS. (2023). Snapshot of Global PV Markets 2023 (IEA-PVPS T1-44:2023). International Energy Agency (IEA) Photovoltaic Power Systems Programme (PVPS). https://iea-pvps.org/snapshot-reports/snapshot-2023/
  • IEA PVPS. (2024). Snapshot of Global PV Markets 2024 (IEA-PVPS T1-42: 2024). International Energy Agency (IEA) Photovoltaic Power Systems Programme (PVPS). https://iea-pvps.org/snapshot-reports/snapshot-2024/
  • IEC. (2021). IEC 61215-1-1:2021: Terrestrial photovoltaic (PV) modules—Design qualification and type approval—Part 1-1: Special requirements for testing of crystalline silicon photovoltaic (PV) modules (Version 2.0) [International Standard]. International Electrotechnical Commission. https://webstore.iec.ch/publication/61346
  • ITRPV. (2024). International Technology Roadmap for Photovoltaics. VDMA e. V. https://www.vdma.org/international-technology-roadmap-photovoltaic
  • Kempe, M. D., Jorgensen, G. J., Terwilliger, K. M., McMahon, T. J., Kennedy, C. E., & Borek, T. T. (2007). Acetic acid production and glass transition concerns with ethylene-vinyl acetate used in photovoltaic devices. Solar Energy Materials and Solar Cells, 91(4), 315-329. https://doi.org/10.1016/j.solmat.2006.10.009
  • Kempe, M. D., Panchagade, D., Reese, M. O., & Dameron, A. A. (2015). Modeling moisture ingress through polyisobutylene-based edge-seals: Polyisobutylene-based edge-seals. Progress in Photovoltaics: Research and Applications, 23(5), 570-581. https://doi.org/10.1002/pip.2465
  • Köntges, M., Kurtz, S., Packard, C., Jahn, U., Berger, K. A., Kato, K., Friesen, T., Liu, H., & Van Iseghem, M. (2014). Review of failures of photovoltaic modules (IEA-PVPS T13-01:2014). International Energy Agency (IEA) Photovoltaic Power Systems Programme (PVPS). https://iea-pvps.org/key-topics/review-of-failures-of-photovoltaic-modules-final/
  • Köntges, M., Oreski, G., Jahn, U., Herz, M., Hacke, P., Weiß, K.-A. Razongles, G., Paggi, M., Parlevliet, D., Tanahashi, T., & French, R. H. (2017). Assessment of photovoltaic module failures in the field (IEA-PVPS T13-09:2017). International Energy Agency (IEA) Photovoltaic Power Systems Programme (PVPS). https://iea-pvps.org/key-topics/report-assessment-of-photovoltaic-module-failures-in-the-field-2017/
  • Mitterhofer, S., Barretta, C., Castillon, L. F., Oreski, G., Topič, M., & Jankovec, M. (2020). A Dual-Transport Model of Moisture Diffusion in PV Encapsulants for Finite-Element Simulations. IEEE Journal of Photovoltaics, 10(1), 94-102. https://doi.org/10.1109/JPHOTOV.2019.2955182
  • Müller, A., Friedrich, L., Reichel, C., Herceg, S., Mittag, M., & Neuhaus, D. H. (2021). A comparative life cycle assessment of silicon PV modules: Impact of module design, manufacturing location and inventory. Solar Energy Materials and Solar Cells, 230, 111277. https://doi.org/10.1016/j.solmat.2021.111277
  • Oliveira, M. C. C. de, Diniz Cardoso, A. S. A., Viana, M. M., & Lins, V. de F. C. (2018). The causes and effects of degradation of encapsulant ethylene vinyl acetate copolymer (EVA) in crystalline silicon photovoltaic modules: A review. Renewable and Sustainable Energy Reviews, 81, 2299-2317. https://doi.org/10.1016/j.rser.2017.06.039
  • Oreski, G., Stein, J., Eder, G., Berger, K., Bruckman, L., Vedde, J., Weiss, K.-A., Tanahashi, T., French, R., & Ranta, S. (2021). Designing New Materials for Photovoltaics: Opportunities for Lowering Cost and Increasing Performance through Advanced Material Innovations (IEA-PVPS T13-13:2021). International Energy Agency (IEA) Photovoltaic Power Systems Programme (PVPS). https://iea-pvps.org/key-topics/designing-new-materials-for-photovoltaics/
  • Paç, A. B., & Gok, A. (2024). Assessing the Environmental Benefits of Extending the Service Lifetime of Solar Photovoltaic Modules. Global Challenges, 8(8), 2300245. https://doi.org/10.1002/gch2.202300245
  • Patel, A. P., Sinha, A., & Tamizhmani, G. (2020). Field-Aged Glass/Backsheet and Glass/Glass PV Modules: Encapsulant Degradation Comparison. IEEE Journal of Photovoltaics, 10(2), 607-615. https://doi.org/10.1109/JPHOTOV.2019.2958516
  • Schnatmann, A. K., Schoden, F., & Schwenzfeier-Hellkamp, E. (2022). Sustainable PV Module Design—Review of State-of-the-Art Encapsulation Methods. Sustainability, 14(16), 9971. https://doi.org/10.3390/su14169971
  • Segbefia, O. K., Imenes, A. G., & Sætre, T. O. (2021). Moisture ingress in photovoltaic modules: A review. Solar Energy, 224, 889-906. https://doi.org/10.1016/j.solener.2021.06.055
  • Sinha, A., Sulas-Kern, D. B., Owen-Bellini, M., Spinella, L., Uličná, S., Pelaez, S. A., Johnston, S., & Schelhas, L. T. (2021). Glass/glass photovoltaic module reliability and degradation: A review. Journal of Physics D: Applied Physics, 54(41), 413002. https://doi.org/10.1088/1361-6463/ac1462
There are 24 citations in total.

Details

Primary Language English
Subjects Materials Engineering (Other)
Journal Section Materials Engineering
Authors

Melikenur Genç 0009-0005-0350-8664

Abdülkerim Gök 0000-0003-3433-7106

Project Number 120N520
Publication Date December 30, 2024
Submission Date August 23, 2024
Acceptance Date October 7, 2024
Published in Issue Year 2024 Volume: 11 Issue: 4

Cite

APA Genç, M., & Gök, A. (2024). Evaluating the Impact of Edge-Seal on the Performance of Double-Glass Solar Photovoltaic Modules. Gazi University Journal of Science Part A: Engineering and Innovation, 11(4), 676-689. https://doi.org/10.54287/gujsa.1537785