Loading [a11y]/accessibility-menu.js
Research Article
BibTex RIS Cite

Mineral Chemistry of Ulukale Porphyritic Dome and Çağlarca Radial Dykes in the Tunceli Volcanites, Eastern Turkey

Year 2025, Volume: 12 Issue: 1, 228 - 249, 26.03.2025
https://doi.org/10.54287/gujsa.1589209

Abstract

This study presents mineral chemistry data the first time as a analytical data for the Ulukale porphyritic dome and the Çağlarca radial dykes located within the Neogene Tunceli volcanic rocks. In petrographic studies, it was determined that the dome and dykes with porphyritic texture were of trachyandesite composition. Plagioclase (oligoclase + andesine), amphibole (hastingsite + magnesiohastingsite and ferroedenite) and biotite (meroxene + phlogopite) found in domes-dykes, and pyroxene (augite and hypersthene) element contents only in dykes indicate that the magma originated from mantle-mantle+crust mixing and was affected by late-stage low-temperature hydrothermal fluids. Pyroxenes indicating low temperature - pressure conditions also indicate an upper crust source. This magma with mantle + crust properties supports crustal thickening and underplating mafic magma formation, which is a result of the compression regime in the Eastern Anatolia region.

Project Number

FÜBAP-MF.20.22

References

  • Abdel-Rahman, A.F.M. (1994). Nature of Biotites from Alkaline, Calc-Alkaline, and Peraluminous Magmas. Journal of Petrology, 35(2), 525-541. https://doi.org/10.1093/petrology/35.2.525
  • Agostini, S., Savaşçın, M.Y., Di Giuseppe, P., Di Stefano, F., & et al. (2019). Neogene volcanism in Elazig-Tunceli area (eastern Anatolia): geochronological and petrological constraints. Ital. Jour. Geosci., vol. 138, 435-455. https://doi.org/10.3301/IJG.2019.18
  • Anderson, J. L., &, Smith, D. R. (1995). The Effects of Temperature and fO2 on the Al-in Hornblende Barometer. American Mineralogist, 80, 549-559.
  • Arger, J., Mitchel, J., & Westaway, R.W.C. (2000). Neogene and Quaternary volcanism of southeastern Turkey. Geological Society, London,Special Publications, 173(1), 459-487. https://doi.org/10.1144/GSL.SP.2000.173.01.22
  • Atıcı, G., & Türkecan, A. (2017). Anadolu’nun volkanları, Doğal Kay. Eko. Bült., 22, 1-18.
  • Aydın, F., Karslı, O., & Sadıklar, M.B., (2009). Compositional variations, zoning types and petrogenetic implications of low-pressure clinopyroxenes in the neogene alkaline volcanic rocks of northeastern Turkey. Turkish J. Earth Sci., 18, 163-186. https://doi.org/10.3906/yer-0802-2
  • Aydın, F., Schmitt, A.K., Siebel, W., Sönmez, M., & et al. (2014). Quaternary bimodal volcanism in the Niğde Volcanic Complex (Cappadocia, Central Anatolia-Turkey): age, petrogenesis and geodynamic implications. Contributions to Mineralogy and Petrology, 168, 2-24. https://doi.org/10.1007/s00410-014-1078-3
  • Ball, J. L., Calder, E. S., Hubbard, B. E., & Bernstein, M. L. (2013). An assessment of hydrothermal alteration in the Santiaguito lava dome complex, Guatemala: implications for dome collapse hazards. Bull. Volcanol., 75, 676. https://doi.org/10.1007/s00445-012-0676-z
  • Beyarslan, M., & Bingöl, A.F. (2018). Zircon U-Pb age and geochemical constraints on the origin and tectonic implications of late cretaceous intra-oceanic arc magmatics in the Southeast Anatolian Orogenic Belt (SE-Turkey). Journal of African Earth Sciences, 147, 477-497. https://doi.org/10.1016/j.jafrearsci.2018.07.001
  • Cassidy, M., Manga, M., Cashman, K., & Bachmann, O. (2018). Controls on explosive-effusive volcanic eruption styles. Nat. Commun., 2839, https://doi.org/10.1038/s41467- 018-05293-3
  • Deer, W.A., Howie, R.A., & Zussman, J. (1992). An introduction to the rock forming minerals. 2nd ed. Harlow, Essex, England, New York, Longman scientific and technical, London.
  • Deniz, K., (2022). Mica Types as Indication of Magma Nature, Central Anatolia, Turkey. Acta Geologica Sinica, 96(3), 844-857. https://doi.org/10.1111/1755-6724.14670
  • Edmonds, M., Sides, I.R., Swanson, D.A., Werner, C., Martin, R.S., & et al. (2013). Magma storage, transport and degassing during the 2008-10 summit eruption at Kilauea volcano, Hawaii. Geochim. Cosmochim. Acta, 123, 284-301. https://doi.org/10.1016/j.gca.2013.05.038
  • Fink, J.H., & Griffiths, R.W. (1998). Morphology, eruption rates, and rheology of lava domes: Insights from laboratory models. J. Geophys. Res., 103, 527-545. https://doi.org/10.1029/97JB02838
  • Fu, J.B. (1981). Chemical composition of biotite in porphyry copper deposits. Geology and Prospecting, 9, 16-19.
  • Henry, D.J., Guidotti, C.V., & Thomson, J.A. (2005). The Ti saturation surface for low to medium pressure metapelitic biotite: Implications for geothermometry and Ti substitution mechanism. Amer. Mineral., 90, 316-328. https://doi.org/10.2138/am.2005.1498
  • Hibbard, M. J. (1991). Textural anatomy of twelve magma mixed granitoid systems. In: J. Didier, and B. Barbarin, (Eds.), Enclaves and Granite Petrology. Development in Petrology, (pp. 431-444). 6546968
  • Horwell, C.J., Baxter, P.J., Hillman, S.E., Calkins, J.A., & et al. (2013). Physicochemical and toxicological profiling of ash from the 2010 and 2011 eruptions of Eyjafjallajökull and Grímsvötn volcanoes, Iceland using a rapid respiratory hazard assessment protocol. Environ. Res., 127, 63-73. https://doi.org/10.1016/j.envres.2013.08.011
  • Hu, J., Zhou, H., Peng, P.A., & Spiro, B. (2016). Seasonal variability in concentrations and fluxes of glycerol dialkyl glycerol tetraethers in Huguangyan Maar Lake, SE China: implications for the applicability of the MBT–CBT paleo temperature proxy in lacustrine settings. Chem. Geol., 420, 200-212. https://doi.org/10.1016/j.chemgeo.2015.11.008
  • İmer, A., Richards, J.P., Creaser, R.A., & Spell, T.L. (2015). The late Oligocene Cevizlidere Cu-AuMo deposit, Tunceli Province, eastern Turkey. Mineralium Deposita, 50, 245-263. https://doi.org/10.1007/s00126-014-0533-4
  • Innocenti, F., Mazzuoli, R., Pasquar, G., Radicati Di Brozolo, F., & Villari, L. (1982). Tertiary and quaternary volcanism of the Erzurum-Kars area (Eastern Turkey): Geochronological data and geodynamic evolution. J. Volcanol. Geotherm. Res., 13, 223-240. https://doi.org/10.1016/0377-0273(82)90052-X
  • Jacobs, D.C. & Parry, W.T. (1979). Geochemistry of biotite in the Santa Rita porphyry copper deposit, New Mexico. Econonic Geology, 74(4), 860-887. https://doi.org/10.2113/gsecongeo.74.4.860
  • Jiang, C. & An, S. (1984). On chemical characteristics of calcific amphiboles from igneous rocks and their petrogenesis significance. Journal of Mineralogy and Petrology, 3, 1-9.
  • Karaoğlu, Ö., Browning, J., Bazargan, M., & Gudmundsson, A. (2016). Numerical modelling of triple-junction tectonics at Karlıova, Eastern Turkey, with implications for regional magma transport. Earth and Planetary Science Letters, 452, 157-170. https://doi.org/10.1016/j.epsl.2016.07.037
  • Karaoğlu, O., Selçuk, A.S., & Gudmundsson, A. (2017). Tectonic controls on the Karlıova triple junction (Turkey): Implications for tectonic inversion and the initiation of volcanism. Tectonophysics, 694, 368-384. https://doi.org/10.1016/j.tecto.2016.11.018
  • Karaoğlu, Ö., Gülmez, F., Göçmengil, G., Lustrino, M., & et al. (2020). Petrological evolution of Karlıova-Varto volcanism (Eastern Turkey): Magma genesis in a transtensional triple-junction tectonic setting. Lithos, 364-365, 105524. https://doi.org/10.1016/j.lithos.2020.105524
  • Karslı, O., Chen, B., Uysal, I., Aydın, F., Wijbrans, J.R., & Kandemir, R. (2008). Elemental and Sr-Nd-Pb isotopic geochemistry of the most recent Quaternary volcanism in the Erzincan Basin, eastern Turkey: framework for the evalution of basalt-lower crustinteraction. Lithos, 106, 55-70. https://doi.org/10.1016/j.lithos.2008.06.008
  • Kaygusuz, A. (2009). K/Ar Ages and geochemistry of the collision related volcanic rocks in the Ilıca (Erzurum) area, eastern Turkey, Neues Jahrbuch für Mineralogie, 186, 21-36. https://doi.org/10.1127/0077-7757/2009/0134
  • Kaygusuz, A., Aslan, Z., Aydınçakır, E., Yücel, C., Gücer, M.A., & Şen, C. (2018). Geochemical and Sr-Nd-Pb isotope characteristics of the Miocene to Pliocene volcanic rocks from the Kandilli (Erzurum) area, Eastern Anatolia (Turkey): Implications for magma evolution in extension-related origin. Lithos, 296, 332-351. https://doi.org/10.1016/j.lithos.2017.11.003
  • Keskin, M. (2005). Domal uplift and volcanism in a collision zone without a mantle plume: Evidence from Eastern Anatolia. http://www.mantleplumes.org/Anatolia.html
  • Keskin, M., Pearce, J.A., & Mitchell, J. (1998). Volcano-stratigraphy and geochemistry of collision-related volcanism on the Erzurum–Kars Plateau, northeastern Turkey. Journal of Volcanology and Geothermal Research, 85, 355-404. https://doi.org/10.1016/S0377-0273(98)00063-8
  • Kocaarslan, A., & Ersoy, E.Y. (2018). Petrologic evolution of Miocene-Pliocene mafic volcanism in the Kangal and Gürün basins (Sivas-Malatya), central east Anatolia: evidence for Miocene anorogenic magmas contaminated by continental crust. Lithos, 310-311, 392-408. https://doi.org/10.1016/j.lithos.2018.04.021
  • Kuşçu, İ., Kuşçu, G.G., Tosdal, R., & Andrew, C.J. (2007). Tectonomagmatic-metallogenic framework of mineralization events in the southern NeoTethyan arc, southeastern Turkey. Digging Deeper. Proceedings of the 9th Biennial SGA Meeting, Dublin, (pp. 20-23).
  • Kürkçüoğlu, B., Pickard, M., Şen, P., Hanan, B.B., Sayit, K. & et al. (2015). Geochemistry of mafic lavas from Sivas, Turkey and the evolution of Anatolian lithosphere. Lithos, 232, 229-241. https://doi.org/10.1016/j.lithos.2015.07.006Get rights and content
  • Kürüm, S. (2011). K-Ar age, geochemical, and Sr-Pb isotopic compositions of Keban magmatics, Elazıg, Eastern Anatolia, Turkey. National Sci., 3(9), 750-767. https://doi.org/10.4236/ns.2011.39100
  • Kürüm, S., & Baykara, T. (2020). Geochemistry of Post-Collisional Yolçatı (Bingöl) Volcanic Rocks in Eastern Anatolia, Turkey. African Earth Sciences, 161, 103-153. https://doi.org/10.1016/j.jafrearsci.2019.103653
  • Kürüm, S., Önal, A., Boztuğ, D., Spell, T., & Arslan, M. (2008). 40Ar/39Ar age and geochemistry of the post-collisional Miocene Yamadağ volcanics in the Arapkir area (Malatya Province), eastern Anatolia, Turkey. Journal of Asian Earth Sciences, 33, 229-251. https://doi.org/10.1016/j.jseaes.2007.12.001
  • Kürüm S., Akgül B., Önal A.Ö., Boztuğ D., Harlavan Y., & Ural M. (2011). An Example for Arc-Type Granitoids along Collisional Zones: The Pertek Granitoid, Taurus Orogenic Belt, Turkey. International Journal of Geosciences, 2, 214-226. ISSN Online: 2156-8367
  • Kürüm, S., Sar, A., Yurt, M.Y., & Yıldırım, İ. (2024). Petrological Features of Neogene Ulukale Porphyritic Dome and Çağlarca Radial Dykes in the Tunceli Volcanic, Eastern Turkey. Doklady Earth Sciences, 518(2), 1665-1678. ISSN 1028-334X.
  • Lalonde, A.E., & Bernard, P. (1993). Composition and colour of biotite from granites: two useful properties in the characterization of plutonic suites from the Hepburn internal zone of the Wopmay orogen, Northwest Territories. Canadian Mineralogist, 31, 203-217.
  • Leake, B.E. (1971). On aluminous and edenitic amphiboles. Mineralogical Magazine 38, 389-407. https://doi.org/10.1180/minmag.1971.038.296.01
  • Leake, B.E., Woolley, A.R., Arps, C.E.S., Birch, W.D., Gilbert, M.C., & et al. (1997). Nomenclature of amphiboles Report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names. European Journal of Mineralogy, 9, 623-651. https://doi.org/10.1127/ejm/9/3/0623
  • Lebedev, V., Sharkov, E., Ünal, E., & Keskin, M. (2016). Late Pleistocene Tendürek Volcano (Eastern Anatolia, Turkey): I. Geochronology and petrographic characteristics of igneous rocks. Petrology, 24, 127-152. https://doi.org/10.1134/s0869591116030048
  • Leterrier, J., Maury, R.C., Thonon, P., Girard, D., & Marchal, M. (1982). Clinopyroxene composition as a method of identification of the magmatic affinities of paleo-volcanic series. Earth and Planetary Science Letters, 59, 139-154. https://doi.org/10.1016/0012-821X(82)90122-4
  • Lin, Y.C., Chung, S.L., Bingöl, A.F., Beyarslan, M., & Lee, H.Y. (2015). Petrogenesis of late Cretaceous Elazıg magmatic rocks from SE Turkey: New age and geochemical and Sr-Nd-Hf isotopic constraints. Goldschmidt, 16-21 August Prag, Abstracts, 1869
  • Lustrino, M., Keskin, M., Mattioli, M., Lebedev, V.A., & Chugaev, A. (2010). Early activity of the largest Cenozoic shield volcano in the circum-Mediterranean area: Mt. Karacadağ, SE Turkey. European Journal of Mineralogy, 22, 343-362. https://doi.org/10.1127/0935-1221/2010/0022-2024
  • Morimoto N., Fabries J., Ferguson A.K., Ginzburg I.V., Ross M., & et al. (1988). Nomenclature of pyroxenes. Mineralogy and Petrology, 39, 55-76.
  • MTA. (2002). Geological map of Turkey. 1:500,000. MTA, Ankara, Turkey
  • Nachit, H., Razafimahefa, N., Stussi, J.M., & Caron, J.P. (1985). Composition chimique des Biotites et typologie magmatique des granitoids. C.R. Acadomic Sciences Paris, Series 2, 301, 813-818. INIST identifier 9284353
  • Nekvasil, H., Dondolini, A., Horn, J., Filiberto, J., Long, H., & Lindsley, D.H. (2004). The origin and evolution of silica-saturated alkalic suites: an experimental study. Journal of Petro. 45, 693-721. https://doi.org/10.1093/petrology/egg103
  • Oyan, V., Keskin, M., Lebedev, V.A., Chugaev, A.V., & Sharkov, E.V. (2016). Magmatic evolution of the Early Pliocene Etrüsk stratovolcano, eastern Anatolian collision zone, Turkey. Lithos, 256, 88-108. https://doi.org/10.1016/j.lithos.2016.03.017
  • Oyan, V., Keskin, M., Lebedev, V.A., Chugaev, A.V., Sharkov, E.V., & Ünal, E. (2017). Petrology and Geochemistry of the Quaternary Mafi c Volcanism in the northeast of Lake Van, Eastern Anatolian Collision Zone, Turkey. Journal of Petrology, 58, 1701-1728. https://doi.org/10.1093/petrology/egx070
  • Önal, A., Boztuğ, D., Arslan, M., Spell, T.L., & Kürüm, S. (2008). Petrology and 40Ar-39Ar age of the bimodal Orduzu Volcanics (Malatya) from the western end of the eastern Anatolian Neogene volcanism, Turkey. Turkish Journal of Earth Sci., 17, 85-109. https://journals.tubitak.gov.tr/earth/vol17/iss1/4
  • Özdemir, Y., Karaoğlu, Ö., Tolluoğlu, A.Ü., & Güleç, N. (2006). Volcanostratigraphy and petrogenesis of the Nemrut stratovolcano (East Anatolian high plateau): the most recent post-collisional volcanism in Turkey. Chemical Geology, 226, 189-211. https://doi.org/10.1016/j.chemgeo.2005.09.020
  • Pearce, J., Bender, J., De Long, S., Kidd, W., Low, P., & et al. (1990). Genesis of collision volcanism in Eastern Anatolia, Turkey. Journal of Volcanology and Geothermal Research, 44, 189-229. https://doi.org/10.1016/0377-0273(90)90018-B
  • Rabayrol, F., Hart, C.J.R., & Thorkelson, D.J. (2019). Temporal, spatial and geochemical evolution of late Cenozoic post-subduction magmatism in central and eastern Anatolia, Turkey. Lithos, 336(337), 67-96. https://doi.org/10.1016/j.lithos.2019.03.022
  • Rieder, M., Cavazzini, G., D´Yakonov, Y.S., Frankkamenetskii, V.A., Gottardi, G., & et al. (1998). Nomenclature of the mica. Canadian Mineralogist 36, 905-912.
  • Robert, J.L. (1976). Titanium solubility in synthetic phlogopite solid solutions. Chemical Geology, 17(3): 213-227.
  • Rosas-Carbajal, M., Komorowski, J.C. Nicollin, F., & Gibert, D. (2016). Volcano electrical tomography unveils edifice collapse hazard linked to hydrothermal system structure and dynamics, Sci. Rep., 6, 29899.
  • Sar, A., Ertürk, M.A., & Rizeli, M.E. (2019). Genesis of Late Cretaceous intra-oceanic arc intrusions in the Pertek area of Tunceli Province, eastern Turkey, and implications for the geodynamic evolution of the southern Neo-Tethys: Results of zircon U–Pb geochronology and geochemical and Sr-Nd isotopic analyses, Lithos, 105263, 350-351. https://doi.org/10.1016/j.lithos.2019.105263
  • Sar, A., Rizeli, M.E., & Ertürk, M.A. (2022). Petrographic and Geochemical Characteristics of the Rocks Belonging to the Elazıg Magmatic Complex in the Geçityaka region (Tunceli). El-Cezerî Journal of Science and Engineering, 9(2), 680-694. https://doi.org/10.31202/ecjse.993333
  • Tang, P., Yuchuan, Y.,, Tang, J., Wang, Y., Zheng, W., & et al. (2019). Advances in research of mineral chemistry of magmatic and hydrothermal biotites. Acta Geologica Sinica, 93(6), 1947-1966. https://doi.org/10.1111/1755-6724.14395
  • Tröger, W.E. (1982). Optische Bestimmung der gesteinsbildenden Minerale, Teil 2. Scheweizerbartsche Verlagsbuchhandlung, Stuttgart. (pp.822)
  • Turner, M., Turner, S., Mironov, N., Portnyagin, M., & Hoernle, K. (2017). Can magmatic water contents be estimated from clinopyroxene phenocrysts in some lavas? A case study with implications for the origin of the Azores Islands. Chem Geol., 466, 436-445. https://doi.org/10.1016/j.chemgeo.2017.06.032
  • Xu, W., Zhao, Z., & Daı, L. (2020). Post-collisional mafic magmatism: Record of lithospheric mantle evolution in continental orogenic belt. Science China Earth Sciences, 63, 2029-2041. https://doi.org/10.1007/s11430-019-9611-9
  • Yılmaz, Y., Güner, Y., & Şaroğlu, F. (1998). Geology of the quaternary volcanic centres of the east Anatolia. Journal of Volc. and Geoth. Research, 85, 173-210. https://doi.org/10.1016/S0377-0273(98)00055-9
  • Zhang, J.Q., Li, S.R., Santosh, M., Wang, J-Z., & Li, Q. (2015). Mineral chemistry of high-Mg diorites and skarn in the Han-Xing Iron deposits of South Taihang Mountains, China: Constraints on mineralization process, Ore Geology Reviews, 64, 200-214. https://doi.org/10.1016/j.oregeorev.2014.07.007
  • Zhou, Z.X. (1986). The origin of intrusive mass in Fengshandong, Hubei province. Acta Petrol. Sin., 2 (1), 59-70 (in Chinese with English abstract).
Year 2025, Volume: 12 Issue: 1, 228 - 249, 26.03.2025
https://doi.org/10.54287/gujsa.1589209

Abstract

Project Number

FÜBAP-MF.20.22

References

  • Abdel-Rahman, A.F.M. (1994). Nature of Biotites from Alkaline, Calc-Alkaline, and Peraluminous Magmas. Journal of Petrology, 35(2), 525-541. https://doi.org/10.1093/petrology/35.2.525
  • Agostini, S., Savaşçın, M.Y., Di Giuseppe, P., Di Stefano, F., & et al. (2019). Neogene volcanism in Elazig-Tunceli area (eastern Anatolia): geochronological and petrological constraints. Ital. Jour. Geosci., vol. 138, 435-455. https://doi.org/10.3301/IJG.2019.18
  • Anderson, J. L., &, Smith, D. R. (1995). The Effects of Temperature and fO2 on the Al-in Hornblende Barometer. American Mineralogist, 80, 549-559.
  • Arger, J., Mitchel, J., & Westaway, R.W.C. (2000). Neogene and Quaternary volcanism of southeastern Turkey. Geological Society, London,Special Publications, 173(1), 459-487. https://doi.org/10.1144/GSL.SP.2000.173.01.22
  • Atıcı, G., & Türkecan, A. (2017). Anadolu’nun volkanları, Doğal Kay. Eko. Bült., 22, 1-18.
  • Aydın, F., Karslı, O., & Sadıklar, M.B., (2009). Compositional variations, zoning types and petrogenetic implications of low-pressure clinopyroxenes in the neogene alkaline volcanic rocks of northeastern Turkey. Turkish J. Earth Sci., 18, 163-186. https://doi.org/10.3906/yer-0802-2
  • Aydın, F., Schmitt, A.K., Siebel, W., Sönmez, M., & et al. (2014). Quaternary bimodal volcanism in the Niğde Volcanic Complex (Cappadocia, Central Anatolia-Turkey): age, petrogenesis and geodynamic implications. Contributions to Mineralogy and Petrology, 168, 2-24. https://doi.org/10.1007/s00410-014-1078-3
  • Ball, J. L., Calder, E. S., Hubbard, B. E., & Bernstein, M. L. (2013). An assessment of hydrothermal alteration in the Santiaguito lava dome complex, Guatemala: implications for dome collapse hazards. Bull. Volcanol., 75, 676. https://doi.org/10.1007/s00445-012-0676-z
  • Beyarslan, M., & Bingöl, A.F. (2018). Zircon U-Pb age and geochemical constraints on the origin and tectonic implications of late cretaceous intra-oceanic arc magmatics in the Southeast Anatolian Orogenic Belt (SE-Turkey). Journal of African Earth Sciences, 147, 477-497. https://doi.org/10.1016/j.jafrearsci.2018.07.001
  • Cassidy, M., Manga, M., Cashman, K., & Bachmann, O. (2018). Controls on explosive-effusive volcanic eruption styles. Nat. Commun., 2839, https://doi.org/10.1038/s41467- 018-05293-3
  • Deer, W.A., Howie, R.A., & Zussman, J. (1992). An introduction to the rock forming minerals. 2nd ed. Harlow, Essex, England, New York, Longman scientific and technical, London.
  • Deniz, K., (2022). Mica Types as Indication of Magma Nature, Central Anatolia, Turkey. Acta Geologica Sinica, 96(3), 844-857. https://doi.org/10.1111/1755-6724.14670
  • Edmonds, M., Sides, I.R., Swanson, D.A., Werner, C., Martin, R.S., & et al. (2013). Magma storage, transport and degassing during the 2008-10 summit eruption at Kilauea volcano, Hawaii. Geochim. Cosmochim. Acta, 123, 284-301. https://doi.org/10.1016/j.gca.2013.05.038
  • Fink, J.H., & Griffiths, R.W. (1998). Morphology, eruption rates, and rheology of lava domes: Insights from laboratory models. J. Geophys. Res., 103, 527-545. https://doi.org/10.1029/97JB02838
  • Fu, J.B. (1981). Chemical composition of biotite in porphyry copper deposits. Geology and Prospecting, 9, 16-19.
  • Henry, D.J., Guidotti, C.V., & Thomson, J.A. (2005). The Ti saturation surface for low to medium pressure metapelitic biotite: Implications for geothermometry and Ti substitution mechanism. Amer. Mineral., 90, 316-328. https://doi.org/10.2138/am.2005.1498
  • Hibbard, M. J. (1991). Textural anatomy of twelve magma mixed granitoid systems. In: J. Didier, and B. Barbarin, (Eds.), Enclaves and Granite Petrology. Development in Petrology, (pp. 431-444). 6546968
  • Horwell, C.J., Baxter, P.J., Hillman, S.E., Calkins, J.A., & et al. (2013). Physicochemical and toxicological profiling of ash from the 2010 and 2011 eruptions of Eyjafjallajökull and Grímsvötn volcanoes, Iceland using a rapid respiratory hazard assessment protocol. Environ. Res., 127, 63-73. https://doi.org/10.1016/j.envres.2013.08.011
  • Hu, J., Zhou, H., Peng, P.A., & Spiro, B. (2016). Seasonal variability in concentrations and fluxes of glycerol dialkyl glycerol tetraethers in Huguangyan Maar Lake, SE China: implications for the applicability of the MBT–CBT paleo temperature proxy in lacustrine settings. Chem. Geol., 420, 200-212. https://doi.org/10.1016/j.chemgeo.2015.11.008
  • İmer, A., Richards, J.P., Creaser, R.A., & Spell, T.L. (2015). The late Oligocene Cevizlidere Cu-AuMo deposit, Tunceli Province, eastern Turkey. Mineralium Deposita, 50, 245-263. https://doi.org/10.1007/s00126-014-0533-4
  • Innocenti, F., Mazzuoli, R., Pasquar, G., Radicati Di Brozolo, F., & Villari, L. (1982). Tertiary and quaternary volcanism of the Erzurum-Kars area (Eastern Turkey): Geochronological data and geodynamic evolution. J. Volcanol. Geotherm. Res., 13, 223-240. https://doi.org/10.1016/0377-0273(82)90052-X
  • Jacobs, D.C. & Parry, W.T. (1979). Geochemistry of biotite in the Santa Rita porphyry copper deposit, New Mexico. Econonic Geology, 74(4), 860-887. https://doi.org/10.2113/gsecongeo.74.4.860
  • Jiang, C. & An, S. (1984). On chemical characteristics of calcific amphiboles from igneous rocks and their petrogenesis significance. Journal of Mineralogy and Petrology, 3, 1-9.
  • Karaoğlu, Ö., Browning, J., Bazargan, M., & Gudmundsson, A. (2016). Numerical modelling of triple-junction tectonics at Karlıova, Eastern Turkey, with implications for regional magma transport. Earth and Planetary Science Letters, 452, 157-170. https://doi.org/10.1016/j.epsl.2016.07.037
  • Karaoğlu, O., Selçuk, A.S., & Gudmundsson, A. (2017). Tectonic controls on the Karlıova triple junction (Turkey): Implications for tectonic inversion and the initiation of volcanism. Tectonophysics, 694, 368-384. https://doi.org/10.1016/j.tecto.2016.11.018
  • Karaoğlu, Ö., Gülmez, F., Göçmengil, G., Lustrino, M., & et al. (2020). Petrological evolution of Karlıova-Varto volcanism (Eastern Turkey): Magma genesis in a transtensional triple-junction tectonic setting. Lithos, 364-365, 105524. https://doi.org/10.1016/j.lithos.2020.105524
  • Karslı, O., Chen, B., Uysal, I., Aydın, F., Wijbrans, J.R., & Kandemir, R. (2008). Elemental and Sr-Nd-Pb isotopic geochemistry of the most recent Quaternary volcanism in the Erzincan Basin, eastern Turkey: framework for the evalution of basalt-lower crustinteraction. Lithos, 106, 55-70. https://doi.org/10.1016/j.lithos.2008.06.008
  • Kaygusuz, A. (2009). K/Ar Ages and geochemistry of the collision related volcanic rocks in the Ilıca (Erzurum) area, eastern Turkey, Neues Jahrbuch für Mineralogie, 186, 21-36. https://doi.org/10.1127/0077-7757/2009/0134
  • Kaygusuz, A., Aslan, Z., Aydınçakır, E., Yücel, C., Gücer, M.A., & Şen, C. (2018). Geochemical and Sr-Nd-Pb isotope characteristics of the Miocene to Pliocene volcanic rocks from the Kandilli (Erzurum) area, Eastern Anatolia (Turkey): Implications for magma evolution in extension-related origin. Lithos, 296, 332-351. https://doi.org/10.1016/j.lithos.2017.11.003
  • Keskin, M. (2005). Domal uplift and volcanism in a collision zone without a mantle plume: Evidence from Eastern Anatolia. http://www.mantleplumes.org/Anatolia.html
  • Keskin, M., Pearce, J.A., & Mitchell, J. (1998). Volcano-stratigraphy and geochemistry of collision-related volcanism on the Erzurum–Kars Plateau, northeastern Turkey. Journal of Volcanology and Geothermal Research, 85, 355-404. https://doi.org/10.1016/S0377-0273(98)00063-8
  • Kocaarslan, A., & Ersoy, E.Y. (2018). Petrologic evolution of Miocene-Pliocene mafic volcanism in the Kangal and Gürün basins (Sivas-Malatya), central east Anatolia: evidence for Miocene anorogenic magmas contaminated by continental crust. Lithos, 310-311, 392-408. https://doi.org/10.1016/j.lithos.2018.04.021
  • Kuşçu, İ., Kuşçu, G.G., Tosdal, R., & Andrew, C.J. (2007). Tectonomagmatic-metallogenic framework of mineralization events in the southern NeoTethyan arc, southeastern Turkey. Digging Deeper. Proceedings of the 9th Biennial SGA Meeting, Dublin, (pp. 20-23).
  • Kürkçüoğlu, B., Pickard, M., Şen, P., Hanan, B.B., Sayit, K. & et al. (2015). Geochemistry of mafic lavas from Sivas, Turkey and the evolution of Anatolian lithosphere. Lithos, 232, 229-241. https://doi.org/10.1016/j.lithos.2015.07.006Get rights and content
  • Kürüm, S. (2011). K-Ar age, geochemical, and Sr-Pb isotopic compositions of Keban magmatics, Elazıg, Eastern Anatolia, Turkey. National Sci., 3(9), 750-767. https://doi.org/10.4236/ns.2011.39100
  • Kürüm, S., & Baykara, T. (2020). Geochemistry of Post-Collisional Yolçatı (Bingöl) Volcanic Rocks in Eastern Anatolia, Turkey. African Earth Sciences, 161, 103-153. https://doi.org/10.1016/j.jafrearsci.2019.103653
  • Kürüm, S., Önal, A., Boztuğ, D., Spell, T., & Arslan, M. (2008). 40Ar/39Ar age and geochemistry of the post-collisional Miocene Yamadağ volcanics in the Arapkir area (Malatya Province), eastern Anatolia, Turkey. Journal of Asian Earth Sciences, 33, 229-251. https://doi.org/10.1016/j.jseaes.2007.12.001
  • Kürüm S., Akgül B., Önal A.Ö., Boztuğ D., Harlavan Y., & Ural M. (2011). An Example for Arc-Type Granitoids along Collisional Zones: The Pertek Granitoid, Taurus Orogenic Belt, Turkey. International Journal of Geosciences, 2, 214-226. ISSN Online: 2156-8367
  • Kürüm, S., Sar, A., Yurt, M.Y., & Yıldırım, İ. (2024). Petrological Features of Neogene Ulukale Porphyritic Dome and Çağlarca Radial Dykes in the Tunceli Volcanic, Eastern Turkey. Doklady Earth Sciences, 518(2), 1665-1678. ISSN 1028-334X.
  • Lalonde, A.E., & Bernard, P. (1993). Composition and colour of biotite from granites: two useful properties in the characterization of plutonic suites from the Hepburn internal zone of the Wopmay orogen, Northwest Territories. Canadian Mineralogist, 31, 203-217.
  • Leake, B.E. (1971). On aluminous and edenitic amphiboles. Mineralogical Magazine 38, 389-407. https://doi.org/10.1180/minmag.1971.038.296.01
  • Leake, B.E., Woolley, A.R., Arps, C.E.S., Birch, W.D., Gilbert, M.C., & et al. (1997). Nomenclature of amphiboles Report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names. European Journal of Mineralogy, 9, 623-651. https://doi.org/10.1127/ejm/9/3/0623
  • Lebedev, V., Sharkov, E., Ünal, E., & Keskin, M. (2016). Late Pleistocene Tendürek Volcano (Eastern Anatolia, Turkey): I. Geochronology and petrographic characteristics of igneous rocks. Petrology, 24, 127-152. https://doi.org/10.1134/s0869591116030048
  • Leterrier, J., Maury, R.C., Thonon, P., Girard, D., & Marchal, M. (1982). Clinopyroxene composition as a method of identification of the magmatic affinities of paleo-volcanic series. Earth and Planetary Science Letters, 59, 139-154. https://doi.org/10.1016/0012-821X(82)90122-4
  • Lin, Y.C., Chung, S.L., Bingöl, A.F., Beyarslan, M., & Lee, H.Y. (2015). Petrogenesis of late Cretaceous Elazıg magmatic rocks from SE Turkey: New age and geochemical and Sr-Nd-Hf isotopic constraints. Goldschmidt, 16-21 August Prag, Abstracts, 1869
  • Lustrino, M., Keskin, M., Mattioli, M., Lebedev, V.A., & Chugaev, A. (2010). Early activity of the largest Cenozoic shield volcano in the circum-Mediterranean area: Mt. Karacadağ, SE Turkey. European Journal of Mineralogy, 22, 343-362. https://doi.org/10.1127/0935-1221/2010/0022-2024
  • Morimoto N., Fabries J., Ferguson A.K., Ginzburg I.V., Ross M., & et al. (1988). Nomenclature of pyroxenes. Mineralogy and Petrology, 39, 55-76.
  • MTA. (2002). Geological map of Turkey. 1:500,000. MTA, Ankara, Turkey
  • Nachit, H., Razafimahefa, N., Stussi, J.M., & Caron, J.P. (1985). Composition chimique des Biotites et typologie magmatique des granitoids. C.R. Acadomic Sciences Paris, Series 2, 301, 813-818. INIST identifier 9284353
  • Nekvasil, H., Dondolini, A., Horn, J., Filiberto, J., Long, H., & Lindsley, D.H. (2004). The origin and evolution of silica-saturated alkalic suites: an experimental study. Journal of Petro. 45, 693-721. https://doi.org/10.1093/petrology/egg103
  • Oyan, V., Keskin, M., Lebedev, V.A., Chugaev, A.V., & Sharkov, E.V. (2016). Magmatic evolution of the Early Pliocene Etrüsk stratovolcano, eastern Anatolian collision zone, Turkey. Lithos, 256, 88-108. https://doi.org/10.1016/j.lithos.2016.03.017
  • Oyan, V., Keskin, M., Lebedev, V.A., Chugaev, A.V., Sharkov, E.V., & Ünal, E. (2017). Petrology and Geochemistry of the Quaternary Mafi c Volcanism in the northeast of Lake Van, Eastern Anatolian Collision Zone, Turkey. Journal of Petrology, 58, 1701-1728. https://doi.org/10.1093/petrology/egx070
  • Önal, A., Boztuğ, D., Arslan, M., Spell, T.L., & Kürüm, S. (2008). Petrology and 40Ar-39Ar age of the bimodal Orduzu Volcanics (Malatya) from the western end of the eastern Anatolian Neogene volcanism, Turkey. Turkish Journal of Earth Sci., 17, 85-109. https://journals.tubitak.gov.tr/earth/vol17/iss1/4
  • Özdemir, Y., Karaoğlu, Ö., Tolluoğlu, A.Ü., & Güleç, N. (2006). Volcanostratigraphy and petrogenesis of the Nemrut stratovolcano (East Anatolian high plateau): the most recent post-collisional volcanism in Turkey. Chemical Geology, 226, 189-211. https://doi.org/10.1016/j.chemgeo.2005.09.020
  • Pearce, J., Bender, J., De Long, S., Kidd, W., Low, P., & et al. (1990). Genesis of collision volcanism in Eastern Anatolia, Turkey. Journal of Volcanology and Geothermal Research, 44, 189-229. https://doi.org/10.1016/0377-0273(90)90018-B
  • Rabayrol, F., Hart, C.J.R., & Thorkelson, D.J. (2019). Temporal, spatial and geochemical evolution of late Cenozoic post-subduction magmatism in central and eastern Anatolia, Turkey. Lithos, 336(337), 67-96. https://doi.org/10.1016/j.lithos.2019.03.022
  • Rieder, M., Cavazzini, G., D´Yakonov, Y.S., Frankkamenetskii, V.A., Gottardi, G., & et al. (1998). Nomenclature of the mica. Canadian Mineralogist 36, 905-912.
  • Robert, J.L. (1976). Titanium solubility in synthetic phlogopite solid solutions. Chemical Geology, 17(3): 213-227.
  • Rosas-Carbajal, M., Komorowski, J.C. Nicollin, F., & Gibert, D. (2016). Volcano electrical tomography unveils edifice collapse hazard linked to hydrothermal system structure and dynamics, Sci. Rep., 6, 29899.
  • Sar, A., Ertürk, M.A., & Rizeli, M.E. (2019). Genesis of Late Cretaceous intra-oceanic arc intrusions in the Pertek area of Tunceli Province, eastern Turkey, and implications for the geodynamic evolution of the southern Neo-Tethys: Results of zircon U–Pb geochronology and geochemical and Sr-Nd isotopic analyses, Lithos, 105263, 350-351. https://doi.org/10.1016/j.lithos.2019.105263
  • Sar, A., Rizeli, M.E., & Ertürk, M.A. (2022). Petrographic and Geochemical Characteristics of the Rocks Belonging to the Elazıg Magmatic Complex in the Geçityaka region (Tunceli). El-Cezerî Journal of Science and Engineering, 9(2), 680-694. https://doi.org/10.31202/ecjse.993333
  • Tang, P., Yuchuan, Y.,, Tang, J., Wang, Y., Zheng, W., & et al. (2019). Advances in research of mineral chemistry of magmatic and hydrothermal biotites. Acta Geologica Sinica, 93(6), 1947-1966. https://doi.org/10.1111/1755-6724.14395
  • Tröger, W.E. (1982). Optische Bestimmung der gesteinsbildenden Minerale, Teil 2. Scheweizerbartsche Verlagsbuchhandlung, Stuttgart. (pp.822)
  • Turner, M., Turner, S., Mironov, N., Portnyagin, M., & Hoernle, K. (2017). Can magmatic water contents be estimated from clinopyroxene phenocrysts in some lavas? A case study with implications for the origin of the Azores Islands. Chem Geol., 466, 436-445. https://doi.org/10.1016/j.chemgeo.2017.06.032
  • Xu, W., Zhao, Z., & Daı, L. (2020). Post-collisional mafic magmatism: Record of lithospheric mantle evolution in continental orogenic belt. Science China Earth Sciences, 63, 2029-2041. https://doi.org/10.1007/s11430-019-9611-9
  • Yılmaz, Y., Güner, Y., & Şaroğlu, F. (1998). Geology of the quaternary volcanic centres of the east Anatolia. Journal of Volc. and Geoth. Research, 85, 173-210. https://doi.org/10.1016/S0377-0273(98)00055-9
  • Zhang, J.Q., Li, S.R., Santosh, M., Wang, J-Z., & Li, Q. (2015). Mineral chemistry of high-Mg diorites and skarn in the Han-Xing Iron deposits of South Taihang Mountains, China: Constraints on mineralization process, Ore Geology Reviews, 64, 200-214. https://doi.org/10.1016/j.oregeorev.2014.07.007
  • Zhou, Z.X. (1986). The origin of intrusive mass in Fengshandong, Hubei province. Acta Petrol. Sin., 2 (1), 59-70 (in Chinese with English abstract).
There are 68 citations in total.

Details

Primary Language English
Subjects Exploration Geochemistry, Mineralogy and Crystallography
Journal Section Geological Engineering
Authors

Sevcan Kürüm 0000-0001-6121-5564

Abdullah Sar 0000-0002-9752-7807

Muhammed Yasir Yurt 0000-0002-1563-2938

Project Number FÜBAP-MF.20.22
Publication Date March 26, 2025
Submission Date November 22, 2024
Acceptance Date January 8, 2025
Published in Issue Year 2025 Volume: 12 Issue: 1

Cite

APA Kürüm, S., Sar, A., & Yurt, M. Y. (2025). Mineral Chemistry of Ulukale Porphyritic Dome and Çağlarca Radial Dykes in the Tunceli Volcanites, Eastern Turkey. Gazi University Journal of Science Part A: Engineering and Innovation, 12(1), 228-249. https://doi.org/10.54287/gujsa.1589209