Research Article
BibTex RIS Cite
Year 2025, Volume: 12 Issue: 1, 1 - 14, 26.03.2025
https://doi.org/10.54287/gujsa.1620831

Abstract

Project Number

MYL-2023-45205

References

  • Altuncı, Y. T., & Öcal, C. (2022). TS EN 196-1 Standardında Belirtilen Üretim Tekniğinin İrdelenmesi. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 11(1), 21–28. https://doi.org/10.17798/bitlisfen.953562
  • Arya, R., Paulose, R., Agrawal, V., Pandey, A., Mishra, D., Kumar Sanghi, S., Akram Khan, M., Pada Mondal, D., Muhamed Shafeeq, M., Banerjee, K., Chatterjee, S., Mukhopadhyay, S., Roy, P., Ravishankar, R., Bhattacharya, C., Bhisikar, A., Mondi, P., Singh, U., Agnihotri, A., … Thankaraj Salammal, S. (2023). Next generation gamma ray shielding blocks developed using alumina industry waste. Construction and Building Materials, 373. https://doi.org/10.1016/j.conbuildmat.2023.130895
  • Baalamurugan, J., Kumar, V. G., Chandrasekaran, S., Balasundar, S., Venkatraman, B., Padmapriya, R., & Raja, V. K. B. (2021). Recycling of steel slag aggregates for the development of high density concrete: Alternative & environment-friendly radiation shielding composite. Composites Part B: Engineering, 216. https://doi.org/10.1016/j.compositesb.2021.108885
  • Cherian, C., Siddiqua, S., Arnepalli, D.N. (2022). Utilization of Recycled Industrial Solid Wastes as Building Materials in Sustainable Construction. In: Reddy, K.R., Pancharathi, R.K., Reddy, N.G., Arukala, S.R. (Eds) Advances in Sustainable Materials and Resilient Infrastructure. Springer Transactions in Civil and Environmental Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-16-9744-9_4
  • Eid, M. S., Bondouk, I. I., Saleh, H. M., Omar, K. M., Sayyed, M. I., El-Khatib, A. M., & Elsafi, M. (2022). Implementation of waste silicate glass into composition of ordinary cement for radiation shielding applications. Nuclear Engineering and Technology, 54(4), 1456–1463. https://doi.org/10.1016/j.net.2021.10.007
  • El-Khatib, A. M., Elsafi, M., Almutiri, M. N., Mahmoud, R. M. M., Alzahrani, J. S., Sayyed, M. I., & Abbas, M. I. (2021). Enhancement of bentonite materials with cement for gamma-ray shielding capability. Materials, 14(16), 4697. https://doi.org/10.3390/ma14164697
  • El-Samrah, M. G., Tawfic, A. F., Sallam, F. H., & Omar, A. M. (2023). Investigation of specially designed bentonite samples as potential bricks with better radiation shielding properties. Progress in Nuclear Energy, 162, 104778. https://doi.org/10.1016/j.pnucene.2023.104778
  • Gallala, W., Hayouni, Y., Gaied, M. E., Fusco, M., Alsaied, J., Bailey, K., & Bourham, M. (2017). Mechanical and radiation shielding properties of mortars with additive fine aggregate mine waste. Annals of Nuclear Energy, 101, 600–606. https://doi.org/10.1016/j.anucene.2016.11.022
  • Gili, M. B. Z., & Jecong, J. F. M. (2023). The Potential Application of Mining Wastes and Slag as Radiation Shielding: A Characterization Study Using EpiXS. Arabian Journal for Science and Engineering, 50, 3047–3058. https://doi.org/10.1007/s13369-023-07904-8
  • Heniegal, A. M., Amin, M., Nagib, S. H., Youssef, H., & Agwa, I. S. (2022). Effect of nano ferrosilicon and heavyweight fine aggregates on the properties and radiation shielding of ultra-high performance heavyweight concrete. Case Studies in Construction Materials, 17, e01543. https://doi.org/10.1016/j.cscm.2022.e01543
  • Hila, F. C., Asuncion-Astronomo, A., Dingle, C. A. M., Jecong, J. F. M., Javier-Hila, A. M. V., Gili, M. B. Z., Balderas, C. V., Lopez, G. E. P., Guillermo, N. R. D., & Amorsolo, A. V. (2021). EpiXS: A Windows-based program for photon attenuation, dosimetry and shielding based on EPICS2017 (ENDF/B-VIII) and EPDL97 (ENDF/B-VI.8). Radiation Physics and Chemistry, 182, 109331. https://doi.org/10.1016/j.radphyschem.2020.109331
  • JCGM. (2008). Evaluation of measurement data-Guide to the expression of uncertainty in measurement (JCGM 100:2008). Joint Committee for Guides in Metrology.
  • Johnson, W., Chan, E., Walsh, E., Morte, C., & Lee, D. (2021). InterSpec v. 1.0.8. https://doi.org/10.11578/dc.20211202.6
  • Kahraman, D. A., Cogalmis, F. T., Esen, A. N., Haciyakupoglu, S., & Senkal, B. F. (2024). Neutron and gamma-ray shielding effectiveness of novel polyaniline composites. Radiation Physics and Chemistry, 219, 111675. https://doi.org/10.1016/j.radphyschem.2024.111675
  • Liu, M., Hu, Y., Lai, Z., Yan, T., He, X., Wu, J., Lu, Z., & Lv, S. (2020). Influence of various bentonites on the mechanical properties and impermeability of cement mortars. Construction and Building Materials, 241, 118015. https://doi.org/10.1016/j.conbuildmat.2020.118015
  • Liu, Y., Naidu, R., & Ming, H. (2011). Red mud as an amendment for pollutants in solid and liquid phases. Geoderma, 163(1–2), 1–12. https://doi.org/10.1016/j.geoderma.2011.04.00
  • Madhusudanan, S., & Amirtham, L. R. (2016). Optimization of construction cost using industrial wastes in alternative building material for walls. Key Engineering Materials, 692, 1–8. https://doi.org/10.4028/www.scientific.net/kem.692.1
  • Salati, A., Share Isfahani, H., & Rowshanzamir, M. A. (2021). Evaluation of the performance of bentonite and red mud mixture as a shield in radioactive waste landfills. Journal of Physics: Conference Series, 1973(1). https://doi.org/10.1088/1742-6596/1973/1/012200
  • Sallem, F. H., Sayyed, M. I., Aloraini, D. A., Almuqrin, A. H., & Mahmoud, K. A. (2022). Characterization and Gamma-ray Shielding Performance of Calcinated and Ball-Milled Calcinated Bentonite Clay Nanoparticles. Crystals, 12(8), 1178. https://doi.org/10.3390/cryst12081178
  • Saraee, R. E. K., & Baferani, P. S. (2018). Application of Solid Waste Containing Lead for Gamma Ray Shielding Material. Iranian Journal of Science and Technology, Transaction A: Science, 42(2), 941–946. https://doi.org/10.1007/s40995-016-0131-7
  • Sharma, K., & Kumar, A. (2024). Comparative Cost Analysis of Industrial Waste-Based Composite Materials Treated with Lime, Cement, and Alkali Activator in Comparison with Conventional Pavement Material. In: Agnihotri, A.K., Reddy, K.R., Bansal, A. (Eds), Sustainable Materials. EGRWSE 2023. Lecture Notes in Civil Engineering, vol 509, pp (149-157), Springer, Singapore. https://doi.org/10.1007/978-981-97-3153-4_11
  • Shivani, Vishwakarma, J., Dhand, C., M, M. S., Salammal, S. T., Gupta, G. K., Mishra, A., & Dwivedi, N. (2024). “Red-Mud, A Golden Waste for Radiation Shielding”: Red-Mud Polymer Composites for High-Performance Radiation-Shielding Components. Journal of Hazardous Materials Advances, 13, 100394. https://doi.org/10.1016/j.hazadv.2023.100394
  • Singh, S., & Singh, K. (2021). On the use of green concrete composite as a nuclear radiation shielding material. Progress in Nuclear Energy, 136, 103730. https://doi.org/10.1016/j.pnucene.2021.103730
  • Tsoulfanidis, N., & Landsberger, S. (2015). Measurement and Detection of Radiation (4th ed.). CRC Press.
  • Vuillier, C. (2021). Future Of Mining With Zero Mine Waste | Knowledge Ridge. https://www.knowledgeridge.com/expert-views/future-of-mining-with-zero-mine-waste
  • Wen, J., Wang, B., Dai, Z., Shi, X., Jin, Z., Wang, H., & Jiang, X. (2023). New insights into the green cement composites with low carbon footprint: The role of biochar as cement additive/alternative. Resources, Conservation and Recycling, 197, 107081. https://doi.org/10.1016/j.resconrec.2023.107081
  • Worrell, E. (2014). Cement and Energy, Reference Module. In: S. A. Elias (Ed.), Reference Module in Earth Systems and Environmental Sciences (pp. 307-315). Elsevier. https://doi.org/10.1016/B0-12-176480-X/00373-9
  • Xia, Y., Shi, D., Zhao, R., Yu, K., Liu, M., Mei, H., Xu, L., Zhao, Y., Wang, L., & Yan, J. (2024). Iron-rich industrial waste enhanced low-carbon radiation shielding functional composites. Journal of Cleaner Production, 449, 141649. https://doi.org/10.1016/j.jclepro.2024.141649

Using Mine Waste and Bentonite in Cement for Enhanced Gamma Radiation Shielding

Year 2025, Volume: 12 Issue: 1, 1 - 14, 26.03.2025
https://doi.org/10.54287/gujsa.1620831

Abstract

The increasing waste produced by the mining industry presents serious environmental challenges. This research focused on developing a sustainable material with enhanced shielding properties against gamma radiation by combining mine waste, which is rich in aluminum and iron, with bentonite and cement. We investigated the gamma-ray shielding properties of the shielding materials at energies of 59.54 keV, 661.66 keV, and 1115.54 keV using both experimental methods and theoretical approaches via EpiXS software. We calculated various metrics, including the linear attenuation coefficient, HVL, TVL, and radiation protection efficiency values. The findings revealed that a shielding material containing 55 wt.% cement and 17 wt.% mine waste mud could effectively reduce the intensity of low-energy gamma-ray photons by half with a thickness of less than 1 cm. The results indicate that incorporating mine waste significantly enhances radiation attenuation at lower gamma-ray energies and presents a promising opportunity for producing eco-friendly building materials, aligning with the principles of green engineering. Overall, using industrial waste in construction is cost-effective, providing long-term savings and environmental benefits.

Supporting Institution

Scientific Research Projects Department of Istanbul Technical University

Project Number

MYL-2023-45205

Thanks

This research was supported by the Scientific Research Projects Department of Istanbul Technical University under Project Number MYL-2023-45205. We want to thank Research Assistant Deniz Agehan Kahraman for her assistance. Experimental studies were conducted at the Radioisotope Tracers and Applications Laboratory and the Radiation Detection and Measurement Laboratory at ITU Energy Institute.

References

  • Altuncı, Y. T., & Öcal, C. (2022). TS EN 196-1 Standardında Belirtilen Üretim Tekniğinin İrdelenmesi. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 11(1), 21–28. https://doi.org/10.17798/bitlisfen.953562
  • Arya, R., Paulose, R., Agrawal, V., Pandey, A., Mishra, D., Kumar Sanghi, S., Akram Khan, M., Pada Mondal, D., Muhamed Shafeeq, M., Banerjee, K., Chatterjee, S., Mukhopadhyay, S., Roy, P., Ravishankar, R., Bhattacharya, C., Bhisikar, A., Mondi, P., Singh, U., Agnihotri, A., … Thankaraj Salammal, S. (2023). Next generation gamma ray shielding blocks developed using alumina industry waste. Construction and Building Materials, 373. https://doi.org/10.1016/j.conbuildmat.2023.130895
  • Baalamurugan, J., Kumar, V. G., Chandrasekaran, S., Balasundar, S., Venkatraman, B., Padmapriya, R., & Raja, V. K. B. (2021). Recycling of steel slag aggregates for the development of high density concrete: Alternative & environment-friendly radiation shielding composite. Composites Part B: Engineering, 216. https://doi.org/10.1016/j.compositesb.2021.108885
  • Cherian, C., Siddiqua, S., Arnepalli, D.N. (2022). Utilization of Recycled Industrial Solid Wastes as Building Materials in Sustainable Construction. In: Reddy, K.R., Pancharathi, R.K., Reddy, N.G., Arukala, S.R. (Eds) Advances in Sustainable Materials and Resilient Infrastructure. Springer Transactions in Civil and Environmental Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-16-9744-9_4
  • Eid, M. S., Bondouk, I. I., Saleh, H. M., Omar, K. M., Sayyed, M. I., El-Khatib, A. M., & Elsafi, M. (2022). Implementation of waste silicate glass into composition of ordinary cement for radiation shielding applications. Nuclear Engineering and Technology, 54(4), 1456–1463. https://doi.org/10.1016/j.net.2021.10.007
  • El-Khatib, A. M., Elsafi, M., Almutiri, M. N., Mahmoud, R. M. M., Alzahrani, J. S., Sayyed, M. I., & Abbas, M. I. (2021). Enhancement of bentonite materials with cement for gamma-ray shielding capability. Materials, 14(16), 4697. https://doi.org/10.3390/ma14164697
  • El-Samrah, M. G., Tawfic, A. F., Sallam, F. H., & Omar, A. M. (2023). Investigation of specially designed bentonite samples as potential bricks with better radiation shielding properties. Progress in Nuclear Energy, 162, 104778. https://doi.org/10.1016/j.pnucene.2023.104778
  • Gallala, W., Hayouni, Y., Gaied, M. E., Fusco, M., Alsaied, J., Bailey, K., & Bourham, M. (2017). Mechanical and radiation shielding properties of mortars with additive fine aggregate mine waste. Annals of Nuclear Energy, 101, 600–606. https://doi.org/10.1016/j.anucene.2016.11.022
  • Gili, M. B. Z., & Jecong, J. F. M. (2023). The Potential Application of Mining Wastes and Slag as Radiation Shielding: A Characterization Study Using EpiXS. Arabian Journal for Science and Engineering, 50, 3047–3058. https://doi.org/10.1007/s13369-023-07904-8
  • Heniegal, A. M., Amin, M., Nagib, S. H., Youssef, H., & Agwa, I. S. (2022). Effect of nano ferrosilicon and heavyweight fine aggregates on the properties and radiation shielding of ultra-high performance heavyweight concrete. Case Studies in Construction Materials, 17, e01543. https://doi.org/10.1016/j.cscm.2022.e01543
  • Hila, F. C., Asuncion-Astronomo, A., Dingle, C. A. M., Jecong, J. F. M., Javier-Hila, A. M. V., Gili, M. B. Z., Balderas, C. V., Lopez, G. E. P., Guillermo, N. R. D., & Amorsolo, A. V. (2021). EpiXS: A Windows-based program for photon attenuation, dosimetry and shielding based on EPICS2017 (ENDF/B-VIII) and EPDL97 (ENDF/B-VI.8). Radiation Physics and Chemistry, 182, 109331. https://doi.org/10.1016/j.radphyschem.2020.109331
  • JCGM. (2008). Evaluation of measurement data-Guide to the expression of uncertainty in measurement (JCGM 100:2008). Joint Committee for Guides in Metrology.
  • Johnson, W., Chan, E., Walsh, E., Morte, C., & Lee, D. (2021). InterSpec v. 1.0.8. https://doi.org/10.11578/dc.20211202.6
  • Kahraman, D. A., Cogalmis, F. T., Esen, A. N., Haciyakupoglu, S., & Senkal, B. F. (2024). Neutron and gamma-ray shielding effectiveness of novel polyaniline composites. Radiation Physics and Chemistry, 219, 111675. https://doi.org/10.1016/j.radphyschem.2024.111675
  • Liu, M., Hu, Y., Lai, Z., Yan, T., He, X., Wu, J., Lu, Z., & Lv, S. (2020). Influence of various bentonites on the mechanical properties and impermeability of cement mortars. Construction and Building Materials, 241, 118015. https://doi.org/10.1016/j.conbuildmat.2020.118015
  • Liu, Y., Naidu, R., & Ming, H. (2011). Red mud as an amendment for pollutants in solid and liquid phases. Geoderma, 163(1–2), 1–12. https://doi.org/10.1016/j.geoderma.2011.04.00
  • Madhusudanan, S., & Amirtham, L. R. (2016). Optimization of construction cost using industrial wastes in alternative building material for walls. Key Engineering Materials, 692, 1–8. https://doi.org/10.4028/www.scientific.net/kem.692.1
  • Salati, A., Share Isfahani, H., & Rowshanzamir, M. A. (2021). Evaluation of the performance of bentonite and red mud mixture as a shield in radioactive waste landfills. Journal of Physics: Conference Series, 1973(1). https://doi.org/10.1088/1742-6596/1973/1/012200
  • Sallem, F. H., Sayyed, M. I., Aloraini, D. A., Almuqrin, A. H., & Mahmoud, K. A. (2022). Characterization and Gamma-ray Shielding Performance of Calcinated and Ball-Milled Calcinated Bentonite Clay Nanoparticles. Crystals, 12(8), 1178. https://doi.org/10.3390/cryst12081178
  • Saraee, R. E. K., & Baferani, P. S. (2018). Application of Solid Waste Containing Lead for Gamma Ray Shielding Material. Iranian Journal of Science and Technology, Transaction A: Science, 42(2), 941–946. https://doi.org/10.1007/s40995-016-0131-7
  • Sharma, K., & Kumar, A. (2024). Comparative Cost Analysis of Industrial Waste-Based Composite Materials Treated with Lime, Cement, and Alkali Activator in Comparison with Conventional Pavement Material. In: Agnihotri, A.K., Reddy, K.R., Bansal, A. (Eds), Sustainable Materials. EGRWSE 2023. Lecture Notes in Civil Engineering, vol 509, pp (149-157), Springer, Singapore. https://doi.org/10.1007/978-981-97-3153-4_11
  • Shivani, Vishwakarma, J., Dhand, C., M, M. S., Salammal, S. T., Gupta, G. K., Mishra, A., & Dwivedi, N. (2024). “Red-Mud, A Golden Waste for Radiation Shielding”: Red-Mud Polymer Composites for High-Performance Radiation-Shielding Components. Journal of Hazardous Materials Advances, 13, 100394. https://doi.org/10.1016/j.hazadv.2023.100394
  • Singh, S., & Singh, K. (2021). On the use of green concrete composite as a nuclear radiation shielding material. Progress in Nuclear Energy, 136, 103730. https://doi.org/10.1016/j.pnucene.2021.103730
  • Tsoulfanidis, N., & Landsberger, S. (2015). Measurement and Detection of Radiation (4th ed.). CRC Press.
  • Vuillier, C. (2021). Future Of Mining With Zero Mine Waste | Knowledge Ridge. https://www.knowledgeridge.com/expert-views/future-of-mining-with-zero-mine-waste
  • Wen, J., Wang, B., Dai, Z., Shi, X., Jin, Z., Wang, H., & Jiang, X. (2023). New insights into the green cement composites with low carbon footprint: The role of biochar as cement additive/alternative. Resources, Conservation and Recycling, 197, 107081. https://doi.org/10.1016/j.resconrec.2023.107081
  • Worrell, E. (2014). Cement and Energy, Reference Module. In: S. A. Elias (Ed.), Reference Module in Earth Systems and Environmental Sciences (pp. 307-315). Elsevier. https://doi.org/10.1016/B0-12-176480-X/00373-9
  • Xia, Y., Shi, D., Zhao, R., Yu, K., Liu, M., Mei, H., Xu, L., Zhao, Y., Wang, L., & Yan, J. (2024). Iron-rich industrial waste enhanced low-carbon radiation shielding functional composites. Journal of Cleaner Production, 449, 141649. https://doi.org/10.1016/j.jclepro.2024.141649
There are 28 citations in total.

Details

Primary Language English
Subjects Nuclear Applications
Journal Section Nuclear Engineering
Authors

Setenay Tunçkılıç This is me 0009-0008-1539-132X

Ayşe Nur Esen 0000-0003-4211-7728

Project Number MYL-2023-45205
Publication Date March 26, 2025
Submission Date January 15, 2025
Acceptance Date February 28, 2025
Published in Issue Year 2025 Volume: 12 Issue: 1

Cite

APA Tunçkılıç, S., & Esen, A. N. (2025). Using Mine Waste and Bentonite in Cement for Enhanced Gamma Radiation Shielding. Gazi University Journal of Science Part A: Engineering and Innovation, 12(1), 1-14. https://doi.org/10.54287/gujsa.1620831