Year 2025,
Volume: 12 Issue: 2, 619 - 631, 30.06.2025
Özlem Bayal
,
Ali Gültekin
,
Ahmet Bılgılı
,
Mustafa Öztürk
Project Number
2016K121220
References
-
Born, M., & Huang, K. (1996). Dynamical theory of crystallite lattices. Oxford university press.
-
Bouarissa, N., & Saib, S. (2013). Elastic modulus, optical phonon modes and polaron properties in Al1− xBxN alloys. Current Applied Physics, 13(3), 493-499. https://doi.org/10.1016/j.cap.2012.09.021
-
Dulong, P. L., & Petit, A. T. (1819). Recherches sur quelques points importans de la theorie de la chaleur.
-
Fox, M. (2010). Optical properties of solids (Vol. 3). Oxford university press.
-
Frantsevich, I. N. (1982). Elastic constants and elastic moduli of metals and insulators. Reference book.
-
Godlewski, M., Bergman, J. P., Holtz, P. O., Monemar, B., Bugajski, M., Regiński, K., & Kaniewska, M. (1995). Influence of Growth Conditions on Exciton Properties in Thin Quantum Wells of GaAs/AlGaAs. Acta Physica Polonica A, 88(4), 719-722. https://doi.org/10.12693/aphyspola.88.719
-
Hosseini, S. M. (2008). Optical properties of cadmium telluride in zinc-blende and wurzite structure. Physica B: Condensed Matter, 403(10-11), 1907-1915. https://doi.org/10.1016/j.physb.2007.10.370
-
Ilyasov, V. V., Zhdanova, T. P., & Nikiforov, I. Y. (2005). Electronic energy structure and x-ray spectra of wide-gap AlN and BN crystallites and B x Al 1− x N solid solutions. Physics of the Solid State, 47, 1618-1625. https://doi.org/10.1134/1.2045343
-
Khenata, R., Bouhemadou, A., Sahnoun, M., Reshak, A. H., Baltache, H., & Rabah, M. (2006). Elastic, electronic and optical properties of ZnS, ZnSe and ZnTe under pressure. Computational Materials Science, 38(1), 29-38. https://doi.org/10.1016/j.commatsci.2006.01.013
-
Kleinman, L. (1962). Deformation potentials in silicon. I. Uniaxial strain. Physical Review, 128(6), 2614. https://doi.org/10.1103/PhysRev.128.2614
-
Larbi, M., Riane, R., Matar, S. F., Abdiche, A., Djermouni, M., Ameri, M., Merabet, N., & Oualdine, A. (2016). Abinitio studies of the structural, electronic, and optical properties of quaternary BxAlyGa1–x–yN compounds. Zeitschrift für Naturforschung B, 71(2), 125-134. https://doi.org/10.1515/znb-2015-0149
-
Matori, K. A., Zaid, M. H. M., Sidek, H. A. A., Halimah, M. K., Wahab, Z. A., & Sabri, M. G. M. (2010). Influence of ZnO on the ultrasonic velocity and elastic moduli of soda lime silicate glasses. International Journal of Physical Sciences, 5(14), 2212-2216. https://doi.org/10.5897/IJPS.9000313
-
Ponomareva, A. V., Isaev, E. I., Vekilov, Y. K., & Abrikosov, I. A. (2012). Site preference and effect of alloying on elastic properties of ternary B 2 NiAl-based alloys. Physical Review B, 85(14), 144117. https://doi.org/10.1103/PhysRevB.85.144117
-
Rai, D. P., Ghimire, M. P., & Thapa, R. K. (2014). A DFT study of BeX (X= S, Se, Te) semiconductor: modified Becke Johnson (mBJ) potential. Semiconductors, 48, 1411-1422. https://doi.org/10.1134/S1063782614110244
-
Riane, R., Boussahla, Z., Matar, S. F., & Zaoui, A. (2008). Structural and electronic properties of zinc blende-type nitrides BxAl1–xN. Zeitschrift für Naturforschung B, 63(9), 1069-1076. https://doi.org/10.1515/znb-2008-0909
-
Shen, Y., & Zhou, Z. (2008). Structural, electronic, and optical properties of ferroelectric KTa1/2Nb1/2O3 solid solutions. Journal of Applied Physics, 103(7). https://doi.org/10.1063/1.2902433
-
Teles, L. K., Scolfaro, L. M. R., Leite, J. R., Furthmüller, J., & Bechstedt, F. (2002). Spinodal decomposition in BxGa1−xN and BxAl1−xN alloys. Applied Physics Letters, 80(7), 1177-1179. https://doi.org/10.1063/1.1450261
-
Troullier, N., & Martins, J. L. (1991). Efficient pseudopotentials for plane-wave calculations. Physical Review B, 43(3), 1993. https://doi.org/10.1103/PhysRevB.43.1993
-
Watanabe, S., Takano, T., Jinen, K., Yamamoto, J., & Kawanishi, H. (2003). Refractive indices of BxAl1− xN (x= 0–0.012) and ByGa1− yN (y= 0–0.023) epitaxial layers in ultraviolet region. physica status solidi (c), (7), 2691-2694. https://doi.org/10.1002/pssc.200303549
-
Wooten, F. (1972). Optical properties of solids. Academic Press.
-
Wu, Z. J., Zhao, E. J., Xiang, H. P., Hao, X. F., Liu, X. J., & Meng, J. (2007). Crystallite structures and elastic properties of superhard Ir N 2 and Ir N 3 from first principles. Physical Review B, 76(5), 054115. https://doi.org/10.1103/PhysRevB.76.054115
-
Zhai, H., Li, X., & Du, J. (2012). First-principles calculations on elasticity and anisotropy of tetragonal tungsten dinitride under pressure. Materials Transactions, 53(7), 1247-1251. https://doi.org/10.2320/matertrans.M2011373
-
Zheng, J. C., Wang, H. Q., Huan, C. H. A., & Wee, A. T. S. (2001). The structural and electronic properties of (AlN)x(C2)1− x and (AlN)x(BN)1− x alloys. Journal of Physics: Condensed Matter, 13(22), 5295. https://doi.org/10.1088/0953-8984/13/22/322
On the Structural, Electric and Optic Properties of B1-xAlxN Alloys Using Ab Initio Calculation
Year 2025,
Volume: 12 Issue: 2, 619 - 631, 30.06.2025
Özlem Bayal
,
Ali Gültekin
,
Ahmet Bılgılı
,
Mustafa Öztürk
Abstract
In this study, electronic, optical, elastic, dynamical and structural properties of B1-xAlxN structure are investigated. During this investigation, density functional theory (DFT) in CASTEP code, local density approximation (LDA) and generalized gradient approximation (GGA) are employed. B/G ratio, Bulk module (B), Scherar module (G), Poisson’s ratio (), Kelinman parameters (), Cauchy pressure (P) and compressibility are gained by using elastic constants for the mentioned structure. B1-xAlxN structure showed epitaxial semiconductor behaviour with well crystallitelized and brittle characteristics. It also showed cubic structure behaviour for 0.25 and 0.75 Al content and tetragonal structure for 0.50 Al content. With increasing Al ratio, band gap values showed decreasing behaviour as 4.06, 3.56 and 3.34 eV respectively. It is noticed that compressibility is affected by increasing Al contents. It is also found out that real part of refraction constant (RPRF) is in accordance with real part of Dielectric function (RPDF). Peak center of losing function is gained as 27.75 eV for %25 Al content. This value corresponds with maximum Plasmon frequency.
Supporting Institution
Presidency Strategy and Budget Directorate
Project Number
2016K121220
Thanks
Dear Sir, Thank you very much for giving me the opportunity to publish my work in your magazine. Best Regards
References
-
Born, M., & Huang, K. (1996). Dynamical theory of crystallite lattices. Oxford university press.
-
Bouarissa, N., & Saib, S. (2013). Elastic modulus, optical phonon modes and polaron properties in Al1− xBxN alloys. Current Applied Physics, 13(3), 493-499. https://doi.org/10.1016/j.cap.2012.09.021
-
Dulong, P. L., & Petit, A. T. (1819). Recherches sur quelques points importans de la theorie de la chaleur.
-
Fox, M. (2010). Optical properties of solids (Vol. 3). Oxford university press.
-
Frantsevich, I. N. (1982). Elastic constants and elastic moduli of metals and insulators. Reference book.
-
Godlewski, M., Bergman, J. P., Holtz, P. O., Monemar, B., Bugajski, M., Regiński, K., & Kaniewska, M. (1995). Influence of Growth Conditions on Exciton Properties in Thin Quantum Wells of GaAs/AlGaAs. Acta Physica Polonica A, 88(4), 719-722. https://doi.org/10.12693/aphyspola.88.719
-
Hosseini, S. M. (2008). Optical properties of cadmium telluride in zinc-blende and wurzite structure. Physica B: Condensed Matter, 403(10-11), 1907-1915. https://doi.org/10.1016/j.physb.2007.10.370
-
Ilyasov, V. V., Zhdanova, T. P., & Nikiforov, I. Y. (2005). Electronic energy structure and x-ray spectra of wide-gap AlN and BN crystallites and B x Al 1− x N solid solutions. Physics of the Solid State, 47, 1618-1625. https://doi.org/10.1134/1.2045343
-
Khenata, R., Bouhemadou, A., Sahnoun, M., Reshak, A. H., Baltache, H., & Rabah, M. (2006). Elastic, electronic and optical properties of ZnS, ZnSe and ZnTe under pressure. Computational Materials Science, 38(1), 29-38. https://doi.org/10.1016/j.commatsci.2006.01.013
-
Kleinman, L. (1962). Deformation potentials in silicon. I. Uniaxial strain. Physical Review, 128(6), 2614. https://doi.org/10.1103/PhysRev.128.2614
-
Larbi, M., Riane, R., Matar, S. F., Abdiche, A., Djermouni, M., Ameri, M., Merabet, N., & Oualdine, A. (2016). Abinitio studies of the structural, electronic, and optical properties of quaternary BxAlyGa1–x–yN compounds. Zeitschrift für Naturforschung B, 71(2), 125-134. https://doi.org/10.1515/znb-2015-0149
-
Matori, K. A., Zaid, M. H. M., Sidek, H. A. A., Halimah, M. K., Wahab, Z. A., & Sabri, M. G. M. (2010). Influence of ZnO on the ultrasonic velocity and elastic moduli of soda lime silicate glasses. International Journal of Physical Sciences, 5(14), 2212-2216. https://doi.org/10.5897/IJPS.9000313
-
Ponomareva, A. V., Isaev, E. I., Vekilov, Y. K., & Abrikosov, I. A. (2012). Site preference and effect of alloying on elastic properties of ternary B 2 NiAl-based alloys. Physical Review B, 85(14), 144117. https://doi.org/10.1103/PhysRevB.85.144117
-
Rai, D. P., Ghimire, M. P., & Thapa, R. K. (2014). A DFT study of BeX (X= S, Se, Te) semiconductor: modified Becke Johnson (mBJ) potential. Semiconductors, 48, 1411-1422. https://doi.org/10.1134/S1063782614110244
-
Riane, R., Boussahla, Z., Matar, S. F., & Zaoui, A. (2008). Structural and electronic properties of zinc blende-type nitrides BxAl1–xN. Zeitschrift für Naturforschung B, 63(9), 1069-1076. https://doi.org/10.1515/znb-2008-0909
-
Shen, Y., & Zhou, Z. (2008). Structural, electronic, and optical properties of ferroelectric KTa1/2Nb1/2O3 solid solutions. Journal of Applied Physics, 103(7). https://doi.org/10.1063/1.2902433
-
Teles, L. K., Scolfaro, L. M. R., Leite, J. R., Furthmüller, J., & Bechstedt, F. (2002). Spinodal decomposition in BxGa1−xN and BxAl1−xN alloys. Applied Physics Letters, 80(7), 1177-1179. https://doi.org/10.1063/1.1450261
-
Troullier, N., & Martins, J. L. (1991). Efficient pseudopotentials for plane-wave calculations. Physical Review B, 43(3), 1993. https://doi.org/10.1103/PhysRevB.43.1993
-
Watanabe, S., Takano, T., Jinen, K., Yamamoto, J., & Kawanishi, H. (2003). Refractive indices of BxAl1− xN (x= 0–0.012) and ByGa1− yN (y= 0–0.023) epitaxial layers in ultraviolet region. physica status solidi (c), (7), 2691-2694. https://doi.org/10.1002/pssc.200303549
-
Wooten, F. (1972). Optical properties of solids. Academic Press.
-
Wu, Z. J., Zhao, E. J., Xiang, H. P., Hao, X. F., Liu, X. J., & Meng, J. (2007). Crystallite structures and elastic properties of superhard Ir N 2 and Ir N 3 from first principles. Physical Review B, 76(5), 054115. https://doi.org/10.1103/PhysRevB.76.054115
-
Zhai, H., Li, X., & Du, J. (2012). First-principles calculations on elasticity and anisotropy of tetragonal tungsten dinitride under pressure. Materials Transactions, 53(7), 1247-1251. https://doi.org/10.2320/matertrans.M2011373
-
Zheng, J. C., Wang, H. Q., Huan, C. H. A., & Wee, A. T. S. (2001). The structural and electronic properties of (AlN)x(C2)1− x and (AlN)x(BN)1− x alloys. Journal of Physics: Condensed Matter, 13(22), 5295. https://doi.org/10.1088/0953-8984/13/22/322