Performance Evaluation of Bitumen Modified with Thermo-Elastic Polymer
Year 2025,
Volume: 12 Issue: 3, 691 - 705, 30.09.2025
İslam Gökalp
Abstract
The increased traffic flow, vehicle loads, and the impacts of harsh climatic conditions necessitate more enduring and stable asphalt pavements. This requires the use of good-quality aggregates and the modification of bitumen with polymers to make pavement more resistant against heavy traffic and environmental conditions. Researchers have focused on using one of common thermo-elastic polymer called Elvaloy Reactive Elastomeric Terpolymer (Elvaloy®) to modify different Pen-Grade bitumen by using up to 2% by weight of bitumen in 0.5% increments. For performance measurement at high and intermediate temperatures, physical tests and rheological tests were used. In terms of physical and test results, significant decrease and increase due to test methods. Rutting and fatigue resistance performance under high temperatures differs as the rate of included the polymer increase. In general, the results show that as the Elvaloy® additive content increases, each sample improves at different rates and hence bitumen with different pen-grades are compatible with the additive.
Ethical Statement
The author declares no conflict of interest.
Thanks
I would like to thank the Adana, Türkiye, bitumen directorate and its staff for their help and support.
References
-
Al-Taher, M. G., Sawan, A. M., Solyman, M. E.-S. A., El-Sharkawi Attia, M. I., & Ibrahim, M. F. (2024). Evaluating the Durability of Asphalt Mixtures for Flexible Pavement Using Different Techniques: A Review. International Journal of Pavement Research and Technology. https://doi.org/10.1007/s42947-024-00469-1
-
ASTM D2872-22 (2022). Standard test method for effect of heat and air on a moving film of asphalt (RTFO). West Conshohocken, PA: American Society for Testing and Materials.
-
ASTM D36/D36M-14 (2020). Test method for softening point of bitumen (ring-and-ball apparatus). West Conshohocken, PA: American Society for Testing and Materials.
-
ASTM D4402/D4402M-23 (2023). Standard test method for viscosity determination of asphalt at elevated temperatures using a rotational viscometer. West Conshohocken, PA: American Society for Testing and Materials.
-
ASTM D5/D5M-20 (2020). Standard test method for penetration of bituminous materials. West Conshohocken, PA: American Society for Testing and Materials.
-
ASTM D6521-22 (2022). Standard Practice for Accelerated Aging of Asphalt Binder Using a Pressurized Aging Vessel (PAV). West Conshohocken, PA: American Society for Testing and Materials.
-
ASTM D7175-23 (2024). Standard Test Method for Determining the Rheological Properties of Asphalt Binder Using a Dynamic Shear Rheometer. West Conshohocken, PA: American Society for Testing and Materials.
-
Babashamsi, P., Yusoff, N. I., Ceylan, H., Nor, N. G., & Jenatabadi, H. S. (2016). Evaluation of pavement life cycle cost analysis: Review and analysis. International Journal of Pavement Research and Technology, 9(4), 241-254. https://doi.org/10.1016/j.ijprt.2016.08.004
-
Belyaev, P. S., Frolov, V. А., Belyaev, V. P., Varepo, L. G., & Bezzateeva, E. G. (2021, February 24-27). Petroleum bitumen and polymer-bitumen binders: Current state and Russian specifics. Review. In: Oil and Gas Engineering (OGE-2021), AIP Conference Proceedings. 2412, 060001. https://doi.org/10.1063/5.0075420
-
Chand, A., Jayesh, S., & Bhasi, A. B. (2021). Road traffic accidents: An overview of data sources, analysis techniques and contributing factors. Materials Today: Proceedings, 47, 5135-5141. https://doi.org/10.1016/j.matpr.2021.05.415
-
Frangopol, D. M., & Liu, M. (2019). Maintenance and management of civil infrastructure based on condition, safety, optimization, and life-cycle cost. Structure and Infrastructure Engineering, 3(1), 96-108. https://doi.org/10.1080/15732470500253164
-
García-Morales, M., Partal, P., Navarro, F. J., & Gallegos, C. (2006). Effect of waste polymer addition on the rheology of modified bitumen. Fuel, 85(7-8), 936-943. https://doi.org/10.1016/j.fuel.2005.09.015
-
Geçkil, T. (2019). Physical, chemical, microstructural and rheological properties of reactive terpolymer-modified bitumen. Materials, 12(6), 921. https://doi.org/10.3390/ma12060921
-
Giavarini, C. (1994). Polymer-modified bitumen. In: T.F. Yen, & G.V. Chilingarian (Eds.), Developments in Petroleum Science (Vol. 40, pp. 381-400). Elsevier. https://doi.org/10.1016/S0376-7361(09)70263-8
-
Jwaida, Z., Dulaimi, A., Mydin, A. O., Özkılıç, Y. O., Jaya, R. P., & Ameen, A. (2023). The use of waste polymers in asphalt mixtures: bibliometric analysis and systematic review. Journal of Composites Science, 7(10), 415. https://doi.org/10.3390/jcs7100415
-
Kuliczkowska, E. (2016). The interaction between road traffic safety and the condition of sewers laid under roads. Transportation Research Part D: Transport and Environment, 48, 203-213. https://doi.org/10.1016/j.trd.2016.08.025
-
Llopis-Castelló, D., García-Segura, T., Montalbán-Domingo, L., Sanz-Benlloch, A., & Pellicer, E. (2020). Influence of pavement structure, traffic, and weather on urban flexible pavement deterioration. Sustainability, 12(22), 9717. https://doi.org/10.3390/su12229717
-
Maharaj, C., Maharaj, R., & Maynard, J. (2015). The effect of polyethylene terephthalate particle size and concentration on the properties of asphalt and bitumen as an additive. Progress in Rubber Plastics and Recycling Technology, 31(1), 1-23. https://doi.org/10.1177/147776061503100101
-
Navarro, F. J., Partal, P., García-Morales, M., Martín-Alfonso, M. J., Martinez-Boza, F., Gallegos, C., Bordado, J. C. M., & Diogo, A. C. (2009). Bitumen modification with reactive and non-reactive (virgin and recycled) polymers: a comparative analysis. Journal of Industrial and Engineering Chemistry, 15(4), 458-464. https://doi.org/10.1016/j.jiec.2009.01.003
-
Oner, J., & Sengoz, B. (2016). Investigation of rheological effects of waxes on different bitumen sources. Road Materials and Pavement Design, 18(6), 1269-1287. https://doi.org/10.1080/14680629.2016.1209123
-
Pérez-Lepe, A., Martınez-Boza, F. J., Gallegos, C., González, O., Muñoz, M. E., & Santamarı́a, A. (2003). Influence of the processing conditions on the rheological behaviour of polymer-modified bitumen☆. Fuel, 82(11), 1339-1348. https://doi.org/10.1016/S0016-2361(03)00065-6
-
Pipintakos, G., Sreeram, A., Mirwald, J., & Bhasin, A. (2024). Engineering bitumen for future asphalt pavements: A review of chemistry, structure and rheology. Materials & Design, 244, 113157. https://doi.org/10.1016/j.matdes.2024.113157
-
Plati, C. (2019). Sustainability factors in pavement materials, design, and preservation strategies: A literature review. Construction and Building Materials, 211, 539-555. https://doi.org/10.1016/j.conbuildmat.2019.03.242
-
Porto, M., Caputo, P., Loise, V., Eskandarsefat, S., Teltayev, B., & Oliviero Rossi, C. (2019). Bitumen and Bitumen Modification: A Review on Latest Advances. Applied Sciences, 9(4), 742. https://doi.org/10.3390/app9040742
-
Rashid, S., Mudavath, R., Chandra, H., Shekhar, I., Kumar, P., Srivastava, M., & Kumar, K. (2024). A Review on Virgin or Waste Polymers in Bitumen Modification for Ageing and Rejuvenation. Chemical Engineering & Technology, 47(4), 624-637. https://doi.org/10.1002/ceat.202300194
-
Rossi, C. O., Spadafora, A., Teltayev, B., Izmailova, G., Amerbayev, Y., & Bortolotti, V. (2015). Polymer modified bitumen: Rheological properties and structural characterization. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 480, 390-397. https://doi.org/10.1016/j.colsurfa.2015.02.048
-
Sengoz, B., Bagayogo, L., Oner, J., & Topal, A. (2017). Investigation of rheological properties of transparent bitumen. Construction and Building Materials, 154, 1105-1111. https://doi.org/10.1016/j.conbuildmat.2017.07.239
-
Sengoz, B., Onsori, A. & Topal, A. (2014). Effect of aggregate shape on the surface properties of flexible pavement. KSCE Journal of Civil Engineering, 18(5), 1364-1371 https://doi.org/10.1007/s12205-014-0516-0
-
Weigel, S., & Stephan, D. (2017). Relationships between the chemistry and the physical properties of bitumen. Road Materials and Pavement Design, 19(7), 1636-1650. https://doi.org/10.1080/14680629.2017.1338189
-
Wilde, W. J., Thompson, L., & Wood, T. J. (2014). Cost-effective pavement preservation solutions for the real world (No. MN/RC 2014-33). Department of Transportation, Research Services & Library.
-
Wong, T. L. X., Hasan, M. R. M., & Peng, L. C. (2022). Recent development, utilization, treatment and performance of solid wastes additives in asphaltic concrete worldwide: A review. Journal of Traffic and Transportation Engineering (English Edition), 9(5), 693-724. https://doi.org/10.1016/j.jtte.2022.06.003
-
Wu, W., Cavalli, M. C., Jiang, W., & Kringos, N. (2024). Differing perspectives on the use of high-content SBS polymer-modified bitumen. Construction and Building Materials, 411, 134433. https://doi.org/10.1016/j.conbuildmat.2023.134433
-
Yousefi, A. A. (2003). Polyethylene dispersions in bitumen: The effects of the polymer structural parameters. Journal of Applied Polymer Science, 90(12), 3183-3190. https://doi.org/10.1002/app.12942
-
Zhu, J., Birgisson, B., & Kringos, N. (2014). Polymer modification of bitumen: Advances and challenges. European Polymer Journal, 54, 18-38. https://doi.org/10.1016/j.eurpolymj.2014.02.005