Research Article
BibTex RIS Cite

Year 2025, Volume: 12 Issue: 3, 756 - 769, 30.09.2025
https://doi.org/10.54287/gujsa.1758643

Abstract

Project Number

FGA-2025-10068 and FKA-2023-8617

References

  • Avşar, S. G., & Gökmen, U. (2025). Neutron and gamma radiation shielding properties of BaSO4-reinforced Inconel 625 composites: A comprehensive analysis. Radiation Physics and Chemistry, 237, 113130. https://doi.org/10.1016/j.radphyschem.2025.113130
  • Chen, J., Bao, C., Chen, W., Zhang, L., & Liu, J. (2017). Mechanical Properties and Fracture Behavior of Mg-Al/AlN Composites with Different Particle Contents. Journal of Materials Science & Technology, 33(7), 668–674. https://doi.org/10.1016/j.jmst.2016.07.010
  • Chen, X., Liu, J., Zhang, Z., & Pan, F. (2012). Effect of heat treatment on electromagnetic shielding effectiveness of ZK60 magnesium alloy. Materials and Design, 42, 327-333. https://doi.org/10.1016/j.matdes.2012.05.061
  • Dong, N., Li. M., Sun. L., Wang, J., Jin, P., Wei, Y., & Ma, H. (2022). Effect of nanodiamond content on the hot deformation behaviors of ND/ZK60 composites. Diamond and Related Materials, 125, 108983. https://doi.org/10.1016/j.diamond.2022.108983
  • Gu, S. W., Hao, H., Fang, C. F., Ji, S. H., & Zhang, X. G. (2011). Effects of AlN particles and electromagnetic stirring on as-cast structure of AZ31 alloys. Materials Science Forum, 675-677, 771–774. https://doi.org/10.4028/www.scientific.net/MSF.675-677.771
  • Haghshenas, M. (2017). Mechanical characterstics of biodegradable magnesium matrix composites: A Reviev. Journal of Magnesium and Alloys, 5(2),189-201. https://doi.org/10.1016/j.jma.2017.05.001
  • Kumar, M. A., Srinivasan, V., & Raju, P. R. (2024). Microstructural and mechanical characterization of the Mg-based functionally graded material fabricated through centrifugal casting process. Indian Journal of Science and Technology, 17(7), 583-591. https://doi.org/10.17485/IJST/v17i7.2828
  • Li, Y., Lu, X., Wu, K., Yang, L., Zang, T., & Wang, F. (2020). Exploration of the inhibition mechanisms of sodium dodecyl sulfate on Mg alloy. Corrosion Science, 168, 108559. https://doi.org/10.1016/j.corsci.2020.108559
  • Li, Z., Gao, T., Xu, Q., Yang, H., Han, M., & Liu, X. (2019). Microstructure and Mechanical Properties of an AlN/Mg–Al Composite Synthesized by Al–AlN Master Alloy. International Journal of Metalcasting, 13(2), 384–391, https://doi.org/10.1007/s40962-018-0261-0
  • Sager, A., Esen, I., Ahlatçı, H., & Türen, Y. (2023). Characterization and corrosion behavior of composite reinforced with ZK60, AlN, and SiC particles. Engineering Science and Technology, an International Journal, 41, 101389. https://doi.org/10.1016/j.jestch.2023.101389
  • Sayyed, M. I., Mahmoud, K. A., Mohammed, F. Q., & Kaky, K. M. (2024). A comprehensive evaluation of Mg-Ni-based alloys radiation shielding features for nuclear protection applications. Nuclear Engineering and Technology, 56(5), 1830-1835. https://doi.org/10.1016/j.net.2023.12.040
  • Shi, F., Piao, N., Wang, H., Wang, J., Zang, Q., Guo, Y., Chen, C., & Zhang, L. (2023). Investigation of microstructure and mechanical properties of ZK60 magnesium alloy achieved by extrusion-shearing process. Journal of Materials Research and Technology, 25, 799-811. https://doi.org/10.1016/j.jmrt.2023.05.256
  • Şakar, E., Özpolat, Ö. F., Alım, B., Sayyed, M. I., & Kurudirek, M. (2020). Phy-X/PSD: Development of a user-friendly online software for calculation of parameters relevant to radiation shielding and dosimetry. Radiation Physics and Chemistry, 166, 108496. https://doi.org/10.1016/j.radphyschem.2019.108496
  • Tasnim, A., Sahadath, H., & Khan, M. N. I (2021). Development of high-density radiation shielding materials containing BaSO4 and investigation of the gamma-ray attenuation properties. Radiation Physics and Chemistry, 189, 109772. https://doi.org/10.1016/j.radphyschem.2021.109772
  • Turhan, M. F., Kaçal, M. R., Özdoğan, H., Turşucu, A., Akman, F., Oğul, H., Polat, H., & Yurtcan, S. (2025). Determination of neutron and gamma ray shielding properties, secondary radiation formations and neutron damage of composites containing polyester/pyrite/titanium diboride. Applied Radiation and Isotopes, 225, 112027. https://doi.org/10.1016/j.apradiso.2025.112027
  • Yaykaşlı, H., Eskalen, H., Kavrun, H., & Gögebakan, M. (2022). Microstructural, thermal, and radiation shielding properties of Al50B25Mg25 alloy prepared by mechanical alloying. Journal of Materials Science: Materials in Electronics, 33(5), 2350-2359. https://doi.org/10.1007/s10854-021-07434-9
  • Yue, T. M., Wang, A. H., & Man, H. C. (1999). Corrosion resistance enhancement of magnesium ZK60/SiC composite by Nd:YAG laser cladding. Scripta Materialia, 40(3), 303–311. https://doi.org/10.1016/S1359-6462(98)00416-3

Investigation of the Gamma Attenuation Behaviors on the ZK60-Based Composite Materials

Year 2025, Volume: 12 Issue: 3, 756 - 769, 30.09.2025
https://doi.org/10.54287/gujsa.1758643

Abstract

In this study, the interaction of ZK60-based composite materials with gamma rays was investigated using the Phy-x/PSD software. To understand the photon interaction with these composite materials, fundamental parameters including MFP (mean free path), Zeff (effective atomic number), HVL (half-value layer), LAC (linear attenuation coefficient), effective electron density (Neff), MAC (mass attenuation coefficient), and tenth-value layer (TVL) were theoretically calculated for the energy range of 0.001 MeV to 10 MeV. The outcomes showed that rising the BaSO₄ content in Mg-based composite materials led to a decline in HVL, MFP, and TVL values. Especially in the low-energy range, HVL values varied between 4.386 cm-2.456 cm, TVL values between 14.570 cm-8.158 cm, and MFP values between 6.328 cm-3.543 cm. Conversely, an increase in BaSO₄ content caused an increase in LAC and MAC values. Because of the high atomic number (Z) and of barium, 50BaSO₄ showed the highest Zeff and Neff values, 17.54 for Zeff and 9.35 × 10²³ electrons/g for Neff.

Supporting Institution

GAZİ BAP

Project Number

FGA-2025-10068 and FKA-2023-8617

Thanks

This work was supported by Gazi University BAP with project numbers FGA-2025-10068 and FKA-2023-8617.

References

  • Avşar, S. G., & Gökmen, U. (2025). Neutron and gamma radiation shielding properties of BaSO4-reinforced Inconel 625 composites: A comprehensive analysis. Radiation Physics and Chemistry, 237, 113130. https://doi.org/10.1016/j.radphyschem.2025.113130
  • Chen, J., Bao, C., Chen, W., Zhang, L., & Liu, J. (2017). Mechanical Properties and Fracture Behavior of Mg-Al/AlN Composites with Different Particle Contents. Journal of Materials Science & Technology, 33(7), 668–674. https://doi.org/10.1016/j.jmst.2016.07.010
  • Chen, X., Liu, J., Zhang, Z., & Pan, F. (2012). Effect of heat treatment on electromagnetic shielding effectiveness of ZK60 magnesium alloy. Materials and Design, 42, 327-333. https://doi.org/10.1016/j.matdes.2012.05.061
  • Dong, N., Li. M., Sun. L., Wang, J., Jin, P., Wei, Y., & Ma, H. (2022). Effect of nanodiamond content on the hot deformation behaviors of ND/ZK60 composites. Diamond and Related Materials, 125, 108983. https://doi.org/10.1016/j.diamond.2022.108983
  • Gu, S. W., Hao, H., Fang, C. F., Ji, S. H., & Zhang, X. G. (2011). Effects of AlN particles and electromagnetic stirring on as-cast structure of AZ31 alloys. Materials Science Forum, 675-677, 771–774. https://doi.org/10.4028/www.scientific.net/MSF.675-677.771
  • Haghshenas, M. (2017). Mechanical characterstics of biodegradable magnesium matrix composites: A Reviev. Journal of Magnesium and Alloys, 5(2),189-201. https://doi.org/10.1016/j.jma.2017.05.001
  • Kumar, M. A., Srinivasan, V., & Raju, P. R. (2024). Microstructural and mechanical characterization of the Mg-based functionally graded material fabricated through centrifugal casting process. Indian Journal of Science and Technology, 17(7), 583-591. https://doi.org/10.17485/IJST/v17i7.2828
  • Li, Y., Lu, X., Wu, K., Yang, L., Zang, T., & Wang, F. (2020). Exploration of the inhibition mechanisms of sodium dodecyl sulfate on Mg alloy. Corrosion Science, 168, 108559. https://doi.org/10.1016/j.corsci.2020.108559
  • Li, Z., Gao, T., Xu, Q., Yang, H., Han, M., & Liu, X. (2019). Microstructure and Mechanical Properties of an AlN/Mg–Al Composite Synthesized by Al–AlN Master Alloy. International Journal of Metalcasting, 13(2), 384–391, https://doi.org/10.1007/s40962-018-0261-0
  • Sager, A., Esen, I., Ahlatçı, H., & Türen, Y. (2023). Characterization and corrosion behavior of composite reinforced with ZK60, AlN, and SiC particles. Engineering Science and Technology, an International Journal, 41, 101389. https://doi.org/10.1016/j.jestch.2023.101389
  • Sayyed, M. I., Mahmoud, K. A., Mohammed, F. Q., & Kaky, K. M. (2024). A comprehensive evaluation of Mg-Ni-based alloys radiation shielding features for nuclear protection applications. Nuclear Engineering and Technology, 56(5), 1830-1835. https://doi.org/10.1016/j.net.2023.12.040
  • Shi, F., Piao, N., Wang, H., Wang, J., Zang, Q., Guo, Y., Chen, C., & Zhang, L. (2023). Investigation of microstructure and mechanical properties of ZK60 magnesium alloy achieved by extrusion-shearing process. Journal of Materials Research and Technology, 25, 799-811. https://doi.org/10.1016/j.jmrt.2023.05.256
  • Şakar, E., Özpolat, Ö. F., Alım, B., Sayyed, M. I., & Kurudirek, M. (2020). Phy-X/PSD: Development of a user-friendly online software for calculation of parameters relevant to radiation shielding and dosimetry. Radiation Physics and Chemistry, 166, 108496. https://doi.org/10.1016/j.radphyschem.2019.108496
  • Tasnim, A., Sahadath, H., & Khan, M. N. I (2021). Development of high-density radiation shielding materials containing BaSO4 and investigation of the gamma-ray attenuation properties. Radiation Physics and Chemistry, 189, 109772. https://doi.org/10.1016/j.radphyschem.2021.109772
  • Turhan, M. F., Kaçal, M. R., Özdoğan, H., Turşucu, A., Akman, F., Oğul, H., Polat, H., & Yurtcan, S. (2025). Determination of neutron and gamma ray shielding properties, secondary radiation formations and neutron damage of composites containing polyester/pyrite/titanium diboride. Applied Radiation and Isotopes, 225, 112027. https://doi.org/10.1016/j.apradiso.2025.112027
  • Yaykaşlı, H., Eskalen, H., Kavrun, H., & Gögebakan, M. (2022). Microstructural, thermal, and radiation shielding properties of Al50B25Mg25 alloy prepared by mechanical alloying. Journal of Materials Science: Materials in Electronics, 33(5), 2350-2359. https://doi.org/10.1007/s10854-021-07434-9
  • Yue, T. M., Wang, A. H., & Man, H. C. (1999). Corrosion resistance enhancement of magnesium ZK60/SiC composite by Nd:YAG laser cladding. Scripta Materialia, 40(3), 303–311. https://doi.org/10.1016/S1359-6462(98)00416-3
There are 17 citations in total.

Details

Primary Language English
Subjects Composite and Hybrid Materials
Journal Section Materials Engineering
Authors

Yakup Ünal 0009-0001-5574-3595

Zübeyde Özkan 0000-0003-2901-7749

Uğur Gökmen 0000-0002-6903-0297

Project Number FGA-2025-10068 and FKA-2023-8617
Publication Date September 30, 2025
Submission Date August 6, 2025
Acceptance Date September 9, 2025
Published in Issue Year 2025 Volume: 12 Issue: 3

Cite

APA Ünal, Y., Özkan, Z., & Gökmen, U. (2025). Investigation of the Gamma Attenuation Behaviors on the ZK60-Based Composite Materials. Gazi University Journal of Science Part A: Engineering and Innovation, 12(3), 756-769. https://doi.org/10.54287/gujsa.1758643