Research Article
BibTex RIS Cite

Year 2025, Volume: 12 Issue: 3, 836 - 857, 30.09.2025
https://doi.org/10.54287/gujsa.1766682

Abstract

References

  • Afre, R. A., Sharma, N., Sharon, M., & Sharon, M. (2018). Transparent conducting oxide films for various applications: A review. Reviews on Advanced Materials Science, 53(1), 79-89. https://doi.org/10.1515/rams-2018-0006
  • Al-Ahmadi, N. A. (2020). Metal oxide semiconductor-based Schottky diodes: a review of recent advances. Materials Research Express, 7(3), 032001. https://doi.org/10.1088/2053-1591/ab7a60
  • Aldemir, D. A., Benhaliliba, M., & Benouis, C. E. (2020). Photodiode based on Al-doped SnO2: Fabrication, current-voltage and capacitance-conductance-voltage measurements. Optik, 222, 165487. https://doi.org/10.1016/j.ijleo.2020.165487
  • Altındal, Ş., Karadeniz, S., Tuğluoğlu, N., & Tataroğlu, A. (2003). The role of interface states and series resistance on the I–V and C–V characteristics in Al/SnO2/p-Si Schottky diodes. Solid-State Electronics, 47(10), 1847-1854. https://doi.org/10.1016/S0038-1101(03)00182-5
  • Barreira, E. A., Pedrini, L. F., Boratto, M. H., & Scalvi, L. V. (2020). A dynamic time-temperature-dependent process for thermal oxidation of Sn leading to SnOx thin films: Impedance spectroscopy study. International Journal of Modern Physics B, 34(19), 2050184. https://doi.org/10.1142/S0217979220501842
  • Benhaliliba, M., Benouis, C. E., & Aldemir, D. A. (2019). The presence of C/ω-V and G/ω-V peaks profile of Ag/SnO2/n-Si/Au MOS junction for capacitor applications. Physica B: Condensed Matter, 572, 175-183. https://doi.org/10.1016/j.physb.2019.07.043
  • Birkan Selçuk, A. (2007). On the dielectric characteristics of Au/SnO2/n-Si capacitors. Physica B: Condensed Matter, 396(1), 181-186. https://doi.org/10.1016/j.physb.2007.04.002
  • Chauhan, S., & Singh, R. (2023). Analysis of absorber layer for wide-bandgap double perovskite solar cell using SCAPS-1D. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2023.05.201
  • Chenari, H. M., Golzan, M., Sedghi, H., Hassanzadeh, A., & Talebian, M. (2011). Frequency dependence of dielectric properties and electrical conductivity of Cu/nano-SnO2 thick film/Cu arrangement. Current Applied Physics, 11(4), 1071-1076. https://doi.org/10.1016/j.cap.2011.01.038
  • Chetia, A., Saikia, D., & Sahu, S. (2022). Design and optimization of the performance of CsPbI3 based vertical photodetector using SCAPS simulation. Optik, 269, 169804. https://doi.org/10.1016/j.ijleo.2022.169804
  • Dhiman, S., Meena, R., Manyani, N., & Tripathi, S. K. (2023). Investigating the temperature and frequency dependence of dielectric response using AC impedance spectroscopy on SnO2. Surfaces and Interfaces, 42, 103362. https://doi.org/10.1016/j.surfin.2023.103362
  • Dixit, H., Porwal, S., Boro, B., Paul, M., Ghosh, S., Mishra, S., & Singh, T. (2022). A theoretical exploration of lead-free double perovskite La2NiMnO6 based solar cell via SCAPS-1D. Optical Materials, 131, 112611. https://doi.org/10.1016/j.optmat.2022.112611
  • Erbilen Tanrıkulu, E., Güçlü, Ç. Ş., Altındal, Ş., & Durmuş, H. (2024). A high sensitivity temperature coefficient of the Au/n-Si with (CdTe-PVA) structure based on capacitance/conductance-voltage (C/G-V) measurements in a wide range of temperature. Measurement, 238, 115316. https://doi.org/10.1016/j.measurement.2024.115316
  • Erdal, M. O., Kocyigit, A., & Yıldırım, M. (2019). Temperature dependent current-voltage characteristics of Al/TiO2/n-Si and Al/Cu: TiO2/n-Si devices. Materials Science in Semiconductor Processing, 103, 104620. https://doi.org/10.1016/j.mssp.2019.104620
  • Hassun, H. K., Hussein, B. H., Salman, E. M. T., & Shaban, A. H. (2020). Photoelectric properties of SnO2: Ag/P–Si heterojunction photodetector. Energy Reports, 6, 46-54. https://doi.org/10.1016/j.egyr.2019.10.017
  • Jiao, Y., Lu, G., Feng, Y., Zhang, C., Wang, W., Wu, S., Chen, M., Ma, M., Li, W., Yang, C., & Li, W. (2021). Towards high sensitivity infrared detector using Cu2CdxZn1-xSnSe4 thin film by SCAPS simulation. Solar Energy, 225, 375-381. https://doi.org/10.1016/j.solener.2021.07.044
  • Karaca, A., Yıldız, D. E., & Yıldırım, M. (2024). Optimizing optoelectronics performance: theoretical and experimental study on ZnO thin film for Al/ZnO/p-Si photodiode. Physica Scripta, 99(11), 115904. https://doi.org/10.1088/1402-4896/ad7d45
  • Karaca, A., Yıldız, D. E., & Yıldırım, M. (2025). Comparing experimental and numerical approaches in the analysis of n-TiO2/p-Si photodiodes. Physica Scripta. https://doi.org/10.1088/1402-4896/ada58c
  • Karadeniz, S., Tuğluoğlu, N., Serin, T., & Serin, N. (2005). The energy distribution of the interface state density of SnO2/p-Si (1 1 1) heterojunctions prepared at different substrate temperatures by spray deposition method. Applied Surface Science, 246(1-3), 30-35. https://doi.org/10.1016/j.apsusc.2004.11.022
  • Karthick, S., Velumani, S., & Bouclé, J. (2020). Experimental and SCAPS simulated formamidinium perovskite solar cells: A comparison of device performance. Solar Energy, 205, 349-357. https://doi.org/10.1016/j.solener.2020.05.041
  • Kaur, M., Gupta, S. K., Betty, C. A., Saxena, V., Katti, V. R., Gadkari, S. C., & Yakhmi, J. V. (2005). Detection of reducing gases by SnO2 thin films: an impedance spectroscopy study. Sensors and Actuators B: Chemical, 107(1), 360-365. https://doi.org/10.1016/j.snb.2004.10.024
  • Kim, Y. J., Kumar, M. R., Kumar, G. M., & Kim, M. (2023). Self-powered silicon metal–semiconductor–metal photodetector based on asymmetric Schottky barrier heights. Applied Physics Letters, 123(25). https://doi.org/10.1063/5.0178740
  • Korotcenkov, G., Brinzari, V., & Cho, B. (2016). In2O3‐and SnO2‐Based Thin Film Ozone Sensors: Fundamentals. Journal of Sensors, 2016(1), 3816094. https://doi.org/10.1155/2016/3816094
  • Koushik, R. P., Kalita, J., & Mishra, R. (2024). Facile assembly of SnO2 thin film-based Al/SnO2/Al device for sensing of 260 nm UVC and 365 nm UVA radiation. Sensors and Actuators A: Physical, 379, 115991. https://doi.org/10.1016/j.sna.2024.115991
  • Lekshmy, S. S., Daniel, G. P., & Joy, K. (2013). Microstructure and physical properties of sol gel derived SnO2:Sb thin films for optoelectronic applications. Applied Surface Science, 274, 95-100. https://doi.org/10.1016/j.apsusc.2013.02.109
  • Mahani, R., Ashery, A., & Elnasharty, M. M. M. (2020). Frequency and Voltage Dependence of the Dielectric Properties of Ni/SiO2/P-Si (MOS) Structure. Silicon, 12(8), 1879-1885. https://doi.org/10.1007/s12633-019-00277-4
  • Majda-Zdancewicz, E., Suproniuk, M., Pawłowski, M., & Wierzbowski, M. (2018). Current state of photoconductive semiconductor switch engineering. Opto-Electronics Review, 26(2), 92-102. https://doi.org/10.1016/j.opelre.2018.02.003
  • Mehraj, S., & Ansari, M. S. (2013). Structural, dielectric and complex impedance properties of Cd doped SnO2 nanoparticles. Journal of Nanoengineering and Nanomanufacturing, 3(3), 229-236.
  • Mwema, F. M., Jen, T.-C., & Zhu, L. (2022). Thin film coatings: properties, deposition, and applications. CRC Press. https://doi.org/10.1201/9781003202615
  • Ozel, K., & Yildiz, A. (2021). The potential barrier-dependent carrier transport mechanism in n-SnO2/p-Si heterojunctions. Sensors and Actuators A: Physical, 332, 113141. https://doi.org/10.1016/j.sna.2021.113141
  • Paul David, S., Soosaimanickam, A., Sakthivel, T., Sambandam, B., & Sivaramalingam, A. (2021). Thin film metal oxides for displays and other optoelectronic applications. Metal and Metal Oxides for Energy and Electronics, 185-250. https://doi.org/10.1007/978-3-030-53065-5_6
  • Prades, J. D., Jimenez-Diaz, R., Hernandez-Ramirez, F., Barth, S., Cirera, A., Romano-Rodriguez, A., Mathur, S., & Morante, J. R. (2009). Equivalence between thermal and room temperature UV light-modulated responses of gas sensors based on individual SnO2 nanowires. Sensors and Actuators B: Chemical, 140(2), 337-341. https://doi.org/10.1016/j.snb.2009.04.070
  • Rejaiba, O., Braña, A. F., & Matoussi, A. (2016). Study of various technological parameters on the CVg and the GVg characteristics of MOS structures. The European Physical Journal Plus, 131, 1-12. https://doi.org/10.1140/epjp/i2016-16281-5
  • Schipani, F., Miller, D. R., Ponce, M. A., Aldao, C. M., Akbar, S. A., Morris, P. A., & Xu, J. C. (2017). Conduction mechanisms in SnO2 single-nanowire gas sensors: An impedance spectroscopy study. Sensors and Actuators B: Chemical, 241, 99-108. https://doi.org/10.1016/j.snb.2016.10.061
  • Tataroğlu, A., & Altındal, Ş. (2008). Study on the frequency dependence of electrical and dielectric characteristics of Au/SnO2/n-Si (MIS) structures. Microelectronic Engineering, 85(9), 1866-1871. https://doi.org/10.1016/j.mee.2008.05.025
  • Tomaev, V., Moshnikov, V., Miroshkin, V., Gar'Kin, L., & Zhivago, A. Y. (2004). Impedance spectroscopy of metal-oxide nanocomposites. Glass Physics and Chemistry, 30, 461-470. https://doi.org/10.1023/B:GPAC.0000045928.95952.ba
  • Tuğluoğlu, N., Altındal, Ş., Tataroğlu, A., & Karadeniz, S. (2004). Dielectric properties in Au/SnO2/n-Si (MOS) structures irradiated under 60Co-γ rays. Microelectronics Journal, 35(9), 731-738. https://doi.org/10.1016/j.mejo.2004.06.004
  • Wang, X., Wu, Z., Zhu, J., Kang, Y., Cai, M., Xia, Y., & Deng, H. (2024). Design and optimization of the performance of self-powered Sb2S3 photodetector by SCAPS-1D simulation and potential application in imaging. Optical Materials, 147, 114594. https://doi.org/10.1016/j.optmat.2023.114594
  • Xu, M., Xu, Z., Sun, Z., Chen, W., Wang, L., Liu, Y., Wang, Y., Du, X., & Pan, S. (2023). Surface Engineering in SnO2/Si for High-Performance Broadband Photodetectors. ACS Applied Materials & Interfaces, 15(2), 3664-3672. https://doi.org/10.1021/acsami.2c20073
  • Yan, X., Wang, X., Gao, S., & Qiao, W. (2023). High‐Performance Organic Photodetectors Using SnO2 as Interfacial Layer with Optimal Thickness. physica status solidi (a), 220(1), 2200667. https://doi.org/10.1002/pssa.202200667

Evaluating the Impact of Dynamic Behavior on the Al/SnO2/p-Si MOS Structures

Year 2025, Volume: 12 Issue: 3, 836 - 857, 30.09.2025
https://doi.org/10.54287/gujsa.1766682

Abstract

This study presents a comprehensive numerical analysis of Al/SnO2/p-Si metal–oxide–semiconductor (MOS) structures using the SCAPS-1D simulation framework, with a focus on elucidating the interplay between structural parameters and environmental conditions that govern device performance. By systematically varying the thicknesses of the SnO2 layer and p-Si wafer, as well as simulating temperature-dependent behavior, the investigation reveals in electrical, spectral, and impedance characteristics. Thinner SnO2 films enhance forward bias current and spectral response due to reduced series resistance and increased optical transparency, whereas thicker films effectively suppress leakage currents, preserving rectification behavior. The p-Si wafer thickness is shown to significantly influence near-infrared absorption and carrier collection efficiency, showing its importance in photodetector design. As temperature was elevated from 273 K to 350 K, the results consistently showed a significant enhancement in carrier generation and mobility, leading to a reduction in both the overall impedance and charge transfer resistance. This was evidenced by the systematic decrease in Nyquist semicircle diameter and the leftward shift of C-V curves. The study also confirmed the thermally activated nature of interface states, whose activity was found to be highly sensitive to temperature variations. The findings validate SCAPS-1D as a reliable tool for modeling MOS heterojunctions and provide actionable design principles for optimizing SnO2/p-Si-based optoelectronic devices intended for imaging, sensing, and energy conversion applications.

Thanks

Special thanks are extended to Prof. Dr. Marc Burgelman and his team at Ghent University for the development of the SCAPS-1D simulation program, which was employed throughout this study for all numerical simulations.

References

  • Afre, R. A., Sharma, N., Sharon, M., & Sharon, M. (2018). Transparent conducting oxide films for various applications: A review. Reviews on Advanced Materials Science, 53(1), 79-89. https://doi.org/10.1515/rams-2018-0006
  • Al-Ahmadi, N. A. (2020). Metal oxide semiconductor-based Schottky diodes: a review of recent advances. Materials Research Express, 7(3), 032001. https://doi.org/10.1088/2053-1591/ab7a60
  • Aldemir, D. A., Benhaliliba, M., & Benouis, C. E. (2020). Photodiode based on Al-doped SnO2: Fabrication, current-voltage and capacitance-conductance-voltage measurements. Optik, 222, 165487. https://doi.org/10.1016/j.ijleo.2020.165487
  • Altındal, Ş., Karadeniz, S., Tuğluoğlu, N., & Tataroğlu, A. (2003). The role of interface states and series resistance on the I–V and C–V characteristics in Al/SnO2/p-Si Schottky diodes. Solid-State Electronics, 47(10), 1847-1854. https://doi.org/10.1016/S0038-1101(03)00182-5
  • Barreira, E. A., Pedrini, L. F., Boratto, M. H., & Scalvi, L. V. (2020). A dynamic time-temperature-dependent process for thermal oxidation of Sn leading to SnOx thin films: Impedance spectroscopy study. International Journal of Modern Physics B, 34(19), 2050184. https://doi.org/10.1142/S0217979220501842
  • Benhaliliba, M., Benouis, C. E., & Aldemir, D. A. (2019). The presence of C/ω-V and G/ω-V peaks profile of Ag/SnO2/n-Si/Au MOS junction for capacitor applications. Physica B: Condensed Matter, 572, 175-183. https://doi.org/10.1016/j.physb.2019.07.043
  • Birkan Selçuk, A. (2007). On the dielectric characteristics of Au/SnO2/n-Si capacitors. Physica B: Condensed Matter, 396(1), 181-186. https://doi.org/10.1016/j.physb.2007.04.002
  • Chauhan, S., & Singh, R. (2023). Analysis of absorber layer for wide-bandgap double perovskite solar cell using SCAPS-1D. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2023.05.201
  • Chenari, H. M., Golzan, M., Sedghi, H., Hassanzadeh, A., & Talebian, M. (2011). Frequency dependence of dielectric properties and electrical conductivity of Cu/nano-SnO2 thick film/Cu arrangement. Current Applied Physics, 11(4), 1071-1076. https://doi.org/10.1016/j.cap.2011.01.038
  • Chetia, A., Saikia, D., & Sahu, S. (2022). Design and optimization of the performance of CsPbI3 based vertical photodetector using SCAPS simulation. Optik, 269, 169804. https://doi.org/10.1016/j.ijleo.2022.169804
  • Dhiman, S., Meena, R., Manyani, N., & Tripathi, S. K. (2023). Investigating the temperature and frequency dependence of dielectric response using AC impedance spectroscopy on SnO2. Surfaces and Interfaces, 42, 103362. https://doi.org/10.1016/j.surfin.2023.103362
  • Dixit, H., Porwal, S., Boro, B., Paul, M., Ghosh, S., Mishra, S., & Singh, T. (2022). A theoretical exploration of lead-free double perovskite La2NiMnO6 based solar cell via SCAPS-1D. Optical Materials, 131, 112611. https://doi.org/10.1016/j.optmat.2022.112611
  • Erbilen Tanrıkulu, E., Güçlü, Ç. Ş., Altındal, Ş., & Durmuş, H. (2024). A high sensitivity temperature coefficient of the Au/n-Si with (CdTe-PVA) structure based on capacitance/conductance-voltage (C/G-V) measurements in a wide range of temperature. Measurement, 238, 115316. https://doi.org/10.1016/j.measurement.2024.115316
  • Erdal, M. O., Kocyigit, A., & Yıldırım, M. (2019). Temperature dependent current-voltage characteristics of Al/TiO2/n-Si and Al/Cu: TiO2/n-Si devices. Materials Science in Semiconductor Processing, 103, 104620. https://doi.org/10.1016/j.mssp.2019.104620
  • Hassun, H. K., Hussein, B. H., Salman, E. M. T., & Shaban, A. H. (2020). Photoelectric properties of SnO2: Ag/P–Si heterojunction photodetector. Energy Reports, 6, 46-54. https://doi.org/10.1016/j.egyr.2019.10.017
  • Jiao, Y., Lu, G., Feng, Y., Zhang, C., Wang, W., Wu, S., Chen, M., Ma, M., Li, W., Yang, C., & Li, W. (2021). Towards high sensitivity infrared detector using Cu2CdxZn1-xSnSe4 thin film by SCAPS simulation. Solar Energy, 225, 375-381. https://doi.org/10.1016/j.solener.2021.07.044
  • Karaca, A., Yıldız, D. E., & Yıldırım, M. (2024). Optimizing optoelectronics performance: theoretical and experimental study on ZnO thin film for Al/ZnO/p-Si photodiode. Physica Scripta, 99(11), 115904. https://doi.org/10.1088/1402-4896/ad7d45
  • Karaca, A., Yıldız, D. E., & Yıldırım, M. (2025). Comparing experimental and numerical approaches in the analysis of n-TiO2/p-Si photodiodes. Physica Scripta. https://doi.org/10.1088/1402-4896/ada58c
  • Karadeniz, S., Tuğluoğlu, N., Serin, T., & Serin, N. (2005). The energy distribution of the interface state density of SnO2/p-Si (1 1 1) heterojunctions prepared at different substrate temperatures by spray deposition method. Applied Surface Science, 246(1-3), 30-35. https://doi.org/10.1016/j.apsusc.2004.11.022
  • Karthick, S., Velumani, S., & Bouclé, J. (2020). Experimental and SCAPS simulated formamidinium perovskite solar cells: A comparison of device performance. Solar Energy, 205, 349-357. https://doi.org/10.1016/j.solener.2020.05.041
  • Kaur, M., Gupta, S. K., Betty, C. A., Saxena, V., Katti, V. R., Gadkari, S. C., & Yakhmi, J. V. (2005). Detection of reducing gases by SnO2 thin films: an impedance spectroscopy study. Sensors and Actuators B: Chemical, 107(1), 360-365. https://doi.org/10.1016/j.snb.2004.10.024
  • Kim, Y. J., Kumar, M. R., Kumar, G. M., & Kim, M. (2023). Self-powered silicon metal–semiconductor–metal photodetector based on asymmetric Schottky barrier heights. Applied Physics Letters, 123(25). https://doi.org/10.1063/5.0178740
  • Korotcenkov, G., Brinzari, V., & Cho, B. (2016). In2O3‐and SnO2‐Based Thin Film Ozone Sensors: Fundamentals. Journal of Sensors, 2016(1), 3816094. https://doi.org/10.1155/2016/3816094
  • Koushik, R. P., Kalita, J., & Mishra, R. (2024). Facile assembly of SnO2 thin film-based Al/SnO2/Al device for sensing of 260 nm UVC and 365 nm UVA radiation. Sensors and Actuators A: Physical, 379, 115991. https://doi.org/10.1016/j.sna.2024.115991
  • Lekshmy, S. S., Daniel, G. P., & Joy, K. (2013). Microstructure and physical properties of sol gel derived SnO2:Sb thin films for optoelectronic applications. Applied Surface Science, 274, 95-100. https://doi.org/10.1016/j.apsusc.2013.02.109
  • Mahani, R., Ashery, A., & Elnasharty, M. M. M. (2020). Frequency and Voltage Dependence of the Dielectric Properties of Ni/SiO2/P-Si (MOS) Structure. Silicon, 12(8), 1879-1885. https://doi.org/10.1007/s12633-019-00277-4
  • Majda-Zdancewicz, E., Suproniuk, M., Pawłowski, M., & Wierzbowski, M. (2018). Current state of photoconductive semiconductor switch engineering. Opto-Electronics Review, 26(2), 92-102. https://doi.org/10.1016/j.opelre.2018.02.003
  • Mehraj, S., & Ansari, M. S. (2013). Structural, dielectric and complex impedance properties of Cd doped SnO2 nanoparticles. Journal of Nanoengineering and Nanomanufacturing, 3(3), 229-236.
  • Mwema, F. M., Jen, T.-C., & Zhu, L. (2022). Thin film coatings: properties, deposition, and applications. CRC Press. https://doi.org/10.1201/9781003202615
  • Ozel, K., & Yildiz, A. (2021). The potential barrier-dependent carrier transport mechanism in n-SnO2/p-Si heterojunctions. Sensors and Actuators A: Physical, 332, 113141. https://doi.org/10.1016/j.sna.2021.113141
  • Paul David, S., Soosaimanickam, A., Sakthivel, T., Sambandam, B., & Sivaramalingam, A. (2021). Thin film metal oxides for displays and other optoelectronic applications. Metal and Metal Oxides for Energy and Electronics, 185-250. https://doi.org/10.1007/978-3-030-53065-5_6
  • Prades, J. D., Jimenez-Diaz, R., Hernandez-Ramirez, F., Barth, S., Cirera, A., Romano-Rodriguez, A., Mathur, S., & Morante, J. R. (2009). Equivalence between thermal and room temperature UV light-modulated responses of gas sensors based on individual SnO2 nanowires. Sensors and Actuators B: Chemical, 140(2), 337-341. https://doi.org/10.1016/j.snb.2009.04.070
  • Rejaiba, O., Braña, A. F., & Matoussi, A. (2016). Study of various technological parameters on the CVg and the GVg characteristics of MOS structures. The European Physical Journal Plus, 131, 1-12. https://doi.org/10.1140/epjp/i2016-16281-5
  • Schipani, F., Miller, D. R., Ponce, M. A., Aldao, C. M., Akbar, S. A., Morris, P. A., & Xu, J. C. (2017). Conduction mechanisms in SnO2 single-nanowire gas sensors: An impedance spectroscopy study. Sensors and Actuators B: Chemical, 241, 99-108. https://doi.org/10.1016/j.snb.2016.10.061
  • Tataroğlu, A., & Altındal, Ş. (2008). Study on the frequency dependence of electrical and dielectric characteristics of Au/SnO2/n-Si (MIS) structures. Microelectronic Engineering, 85(9), 1866-1871. https://doi.org/10.1016/j.mee.2008.05.025
  • Tomaev, V., Moshnikov, V., Miroshkin, V., Gar'Kin, L., & Zhivago, A. Y. (2004). Impedance spectroscopy of metal-oxide nanocomposites. Glass Physics and Chemistry, 30, 461-470. https://doi.org/10.1023/B:GPAC.0000045928.95952.ba
  • Tuğluoğlu, N., Altındal, Ş., Tataroğlu, A., & Karadeniz, S. (2004). Dielectric properties in Au/SnO2/n-Si (MOS) structures irradiated under 60Co-γ rays. Microelectronics Journal, 35(9), 731-738. https://doi.org/10.1016/j.mejo.2004.06.004
  • Wang, X., Wu, Z., Zhu, J., Kang, Y., Cai, M., Xia, Y., & Deng, H. (2024). Design and optimization of the performance of self-powered Sb2S3 photodetector by SCAPS-1D simulation and potential application in imaging. Optical Materials, 147, 114594. https://doi.org/10.1016/j.optmat.2023.114594
  • Xu, M., Xu, Z., Sun, Z., Chen, W., Wang, L., Liu, Y., Wang, Y., Du, X., & Pan, S. (2023). Surface Engineering in SnO2/Si for High-Performance Broadband Photodetectors. ACS Applied Materials & Interfaces, 15(2), 3664-3672. https://doi.org/10.1021/acsami.2c20073
  • Yan, X., Wang, X., Gao, S., & Qiao, W. (2023). High‐Performance Organic Photodetectors Using SnO2 as Interfacial Layer with Optimal Thickness. physica status solidi (a), 220(1), 2200667. https://doi.org/10.1002/pssa.202200667
There are 40 citations in total.

Details

Primary Language English
Subjects Condensed Matter Modelling and Density Functional Theory
Journal Section Physical Sciences
Authors

Abdullah Karaca 0000-0001-5001-5559

Publication Date September 30, 2025
Submission Date August 16, 2025
Acceptance Date September 11, 2025
Published in Issue Year 2025 Volume: 12 Issue: 3

Cite

APA Karaca, A. (2025). Evaluating the Impact of Dynamic Behavior on the Al/SnO2/p-Si MOS Structures. Gazi University Journal of Science Part A: Engineering and Innovation, 12(3), 836-857. https://doi.org/10.54287/gujsa.1766682