Review
BibTex RIS Cite

Year 2025, Volume: 12 Issue: 3, 737 - 755, 30.09.2025
https://doi.org/10.54287/gujsa.1768961

Abstract

References

  • Alencar, J. B. M., & de Melo Moura, J. D. (2019). Mechanical Behavior of Cross-Laminated Timber Panels Made of Low-Added-Value Timber. Forest Products Journal, 69(3), 177-184. https://doi.org/10.13073/FPJ-D-18-00037
  • Alia Syahirah, Y., Anwar, U., Sh, L., Ong, C., Asniza, M., & Paridah, M. (2025). The properties of Cross Laminated Timber (CLT): A review. International Journal of Adhesion and Adhesives, 138, 103924. https://doi.org/10.1016/j.ijadhadh.2024.103924
  • Aloisio, A., Pasca, D., Tomasi, R., & Fragiacomo, M. (2020). Dynamic identification and model updating of an eight-storey CLT building. Engineering Structures, 213, 110593. https://doi.org/10.1016/j.engstruct.2020.110593
  • Badini, L., Ott, S., Aondio, P., & Winter, S. (2022). Seismic strengthening of existing RC buildings with external cross-laminated timber (CLT) walls hosting an integrated energetic and architectural renovation. Bulletin of Earthquake Engineering, 20(11), 5963-6006. https://doi.org/10.1007/s10518-022-01407-x
  • Bechert, S., Aldinger, L., Wood, D., Knippers, J., & Menges, A. (2021). Urbach Tower: Integrative structural design of a lightweight structure made of self-shaped curved cross-laminated timber. Structures, 33, 3667-3681. https://doi.org/10.1016/j.istruc.2021.06.073
  • Bhandari, S., Riggio, M., Jahedi, S., Fischer, E. C., Muszynski, L., & Luo, Z. (2023). A review of modular cross laminated timber construction: Implications for temporary housing in seismic areas. Journal of Building Engineering, 63, 105485. https://doi.org/10.1016/j.jobe.2022.105485
  • Brandner, R., Flatscher, G., Ringhofer, A., Schickhofer, G., & Thiel, A. (2016). Cross laminated timber (CLT): overview and development. European Journal of Wood and Wood Products, 74(3), 331-351. https://doi.org/10.1007/s00107-015-0999-5
  • De Araujo, V., Aguiar, F., Jardim, P., Mascarenhas, F., Marini, L., Aquino, V., Santos, H., Panzera, T., Lahr, F., & Christoforo, A. (2023). Is Cross-Laminated Timber (CLT) a Wood Panel, a Building, or a Construction System? A Systematic Review on Its Functions, Characteristics, Performances, and Applications. Forests, 14(2), 264. https://doi.org/10.3390/f14020264
  • Deng, H. G., Aoki, Y., Meng, D. O., Deng, H. H. & Deng, T.S. (2025). Timber Bridges in Modern Japan. Structural Engineering International, 35(1), 118-124. https://doi.org/10.1080/10168664.2024.2398793
  • Donthu, N., Kumar, S., Mukherjee, D., Pandey, N., & Lim, W. M. (2021). How to conduct a bibliometric analysis: An overview and guidelines. Journal of Business Research, 133, 285-296. https://doi.org/10.1016/j.jbusres.2021.04.070
  • Duan, Z. (2023). Impact of climate change on the life cycle greenhouse gas emissions of cross-laminated timber and reinforced concrete buildings in China. Journal of Cleaner Production, 395, 136446. https://doi.org/10.1016/j.jclepro.2023.136446
  • Duan, Z., Huang, Q., Sun, Q., & Zhang, Q. (2022). Comparative life cycle assessment of a reinforced concrete residential building with equivalent cross laminated timber alternatives in China. Journal of Building Engineering, 62, 105357. https://doi.org/10.1016/j.jobe.2022.105357
  • Espinoza, O., Rodriguez Trujillo, V., Laguarda Mallo, M. F., & Buehlmann, U. (2015). Cross-Laminated Timber: Status and Research Needs in Europe. BioResources, 11(1). https://doi.org/10.15376/biores.11.1.281-295
  • Huzita, T., Sasaki, T., Araki, S., & Kayo, C. (2022). Life Cycle Regional Economic Impacts of Bridge Repair Using Cross-Laminated Timber Floor Slabs: A Case Study in Akita Prefecture, Japan. Buildings, 12(2), 158. https://doi.org/10.3390/buildings12020158
  • Iizawa, N., Imamoto, K., Kiyohara, C., Nasu, H., & Onishi, S. (2023). Study on environment decomposition and strength of CLT when temporarily used on civil engineering.In: World Conference on Timber Engineering (WCTE 2023), (pp. 836-841). https://doi.org/10.52202/069179-0114
  • Ikari, K., & Sakaguchi, D. (2021). The structuralızatıon of awareness of the ıssue on clt. AIJ Journal of Technology and Design, 27(67), 1297-1302. https://doi.org/10.3130/aijt.27.1297
  • Ilgın, H. E., Karjalainen, M., & Mikkola, P. (2023). Views of Cross-Laminated Timber (CLT) Manufacturer Representatives around the World on CLT Practices and Its Future Outlook. Buildings, 13(12), 2912. https://doi.org/10.3390/buildings13122912
  • Iwase, T., Sasaki, T., Araki, S., Huzita, T., & Kayo, C. (2020). Environmental and Economic Evaluation of Small-Scale Bridge Repair Using Cross-Laminated Timber Floor Slabs. Sustainability, 12(8), 3424. https://doi.org/10.3390/su12083424
  • Javoríková, M., & Hronský, M. (2024). Development of a Hybrid Wall-Framed System. In: Juniorstav 2024, Proceedings 26th International Scientific Conference Of Civil Engineering. https://doi.org/10.13164/juniorstav.2024.24146
  • Jayalath, A., Navaratnam, S., Ngo, T., Mendis, P., Hewson, N., & Aye, L. (2020). Life cycle performance of Cross Laminated Timber mid-rise residential buildings in Australia. Energy and Buildings, 223, 110091. https://doi.org/10.1016/j.enbuild.2020.110091
  • Klippel, M., & Schmid, J. (2017). Design of Cross-Laminated Timber in Fire. Structural Engineering International, 27(2), 224-230. https://doi.org/10.2749/101686617X14881932436096
  • Lan, K., Kelley, S. S., Nepal, P., & Yao, Y. (2020). Dynamic life cycle carbon and energy analysis for cross-laminated timber in the Southeastern United States. Environmental Research Letters, 15(12), 124036. https://doi.org/10.1088/1748-9326/abc5e6
  • Manrique, C., & Haglund, B. (2019). Learning from Innovative CLT Design in the United Kingdom. In: 2019 Reynolds Symposium: Education by Design. https://doi.org/10.21428/f7d9ca02.f38283ef
  • Marjanović, M., Jugović, V., & Nefovska-Danilović, M. (2020). Development of frequency curves for cross-laminated timber (CLT) floors using dynamic stiffness method. In: XI International Conference on Structural Dynamics, (pp. 502-509). https://doi.org/10.47964/1120.9038.18860
  • Nero, R., Christopher, P., & Ngo, T. (2022). Investigation of rolling shear properties of cross-laminated timber (CLT) and comparison of experimental approaches. Construction and Building Materials, 316, 125897. https://doi.org/10.1016/j.conbuildmat.2021.125897
  • Penfield, P., Germain, R., Smith, W. B., & Stehman, S. v. (2022). Assessıng the adoptıon of cross lamınated tımber by archıtects and structural engıneers wıthın the unıted states. Journal of Green Building, 17(1), 127-147. https://doi.org/10.3992/1943-4618.17.1.127
  • Pilathottathil, S. N., & Rauf, A. (2024). Barriers to the Use of Cross-Laminated Timber for Mid-Rise Residential Buildings in the UAE. Sustainability, 16(16), 6837. https://doi.org/10.3390/su16166837
  • Ren, H., Bahrami, A., Cehlin, M., & Wallhagen, M. (2024). A state-of-the-art review on connection systems, rolling shear performance, and sustainability assessment of cross-laminated timber. Engineering Structures, 317, 118552. https://doi.org/10.1016/j.engstruct.2024.118552
  • Said, H., Rajagopalan, A., & Hall, D. M. (2024). Longitudinal analysis of interorganizational collaborative networks of cross-laminated timber (CLT) construction. Construction Innovation. https://doi.org/10.1108/CI-01-2023-0012
  • Salgado, R. A., & Guner, S. (2021). Characterization of the out-of-plane behavior of CLT panel connections. Engineering Structures, 229, 111596. https://doi.org/10.1016/j.engstruct.2020.111596
  • Sanchotene, C. Y. dos S., Fischer, A. C., Monteiro, T. C., Punhagui, K. R. G., & Silva, D. A. da. (2024). Life cycle assessment of cross laminated timber: a systematic literature review. CONTRIBUCIONES A LAS CIENCIAS SOCIALES, 17(6), e7359. https://doi.org/10.55905/revconv.17n.6-080
  • Shin, B., Wi, S., & Kim, S. (2023). Assessing the environmental impact of using CLT-hybrid walls as a sustainable alternative in high-rise residential buildings. Energy and Buildings, 294, 113228. https://doi.org/10.1016/j.enbuild.2023.113228
  • Tokede, O. O., Rodgers, G., Waschl, B., Salter, J., & Ashraf, M. (2022). Harmonising life cycle sustainability thinking in material substitution for buildings. Resources, Conservation and Recycling, 185, 106468. https://doi.org/10.1016/j.resconrec.2022.106468
  • Vybranets, Y., & Deineka, V. (2024). Comparatıve analysıs of calculatıon methods of clt structures. Theory and Building Practice, 2024(1), 40-48. https://doi.org/10.23939/jtbp2024.01.040
  • Wimmer, H., Huber, C., & Eder, R. (2023). Numerıcal and experımental ınvestıgatıons on the stress state of clt-plates near concentrated loads. World Conference on Timber Engineering (WCTE 2023), (pp. 2537-2547). https://doi.org/10.52202/069179-0334
  • Younis, A., & Dodoo, A. (2022). Cross-laminated timber for building construction: A life-cycle-assessment overview. Journal of Building Engineering, 52, 104482. https://doi.org/10.1016/j.jobe.2022.104482

Cross-Laminated Timber as a Sustainable Building Material: an Interdisciplinary Bibliometric Analysis

Year 2025, Volume: 12 Issue: 3, 737 - 755, 30.09.2025
https://doi.org/10.54287/gujsa.1768961

Abstract

Cross-Laminated Timber (CLT) is an innovative structural material composed of timber layers bonded perpendicularly, offering high load-bearing capacity, durability, and environmental benefits. As a sustainable alternative to conventional construction materials, CLT has gained growing attention in architecture and engineering. Although previous studies have examined its structural performance, environmental impacts, and design applications, a comprehensive mapping of research trends across disciplines has remained limited. This study aims to fill this gap by conducting a bibliometric analysis of 1,937 English-language publications indexed in the Web of Science database between 2007 and June 2025, using the keywords “cross laminated timber” and “mass timber.” Publications were analyzed by year, country, discipline, and alignment with the United Nations Sustainable Development Goals (SDGs). Keyword co-occurrences, citation networks, and thematic clusters were visualized with VOSviewer. The findings reveal four major research clusters—structural-mechanical behavior, connection details and seismic performance, environmental sustainability, and fire-hybrid systems—demonstrating the interdisciplinary evolution of CLT. By highlighting how these clusters contribute to engineering practices, architectural design, and sustainability strategies, the study provides a holistic framework that distinguishes it from earlier reviews and offers guidance for future research directions in timber-based construction.

References

  • Alencar, J. B. M., & de Melo Moura, J. D. (2019). Mechanical Behavior of Cross-Laminated Timber Panels Made of Low-Added-Value Timber. Forest Products Journal, 69(3), 177-184. https://doi.org/10.13073/FPJ-D-18-00037
  • Alia Syahirah, Y., Anwar, U., Sh, L., Ong, C., Asniza, M., & Paridah, M. (2025). The properties of Cross Laminated Timber (CLT): A review. International Journal of Adhesion and Adhesives, 138, 103924. https://doi.org/10.1016/j.ijadhadh.2024.103924
  • Aloisio, A., Pasca, D., Tomasi, R., & Fragiacomo, M. (2020). Dynamic identification and model updating of an eight-storey CLT building. Engineering Structures, 213, 110593. https://doi.org/10.1016/j.engstruct.2020.110593
  • Badini, L., Ott, S., Aondio, P., & Winter, S. (2022). Seismic strengthening of existing RC buildings with external cross-laminated timber (CLT) walls hosting an integrated energetic and architectural renovation. Bulletin of Earthquake Engineering, 20(11), 5963-6006. https://doi.org/10.1007/s10518-022-01407-x
  • Bechert, S., Aldinger, L., Wood, D., Knippers, J., & Menges, A. (2021). Urbach Tower: Integrative structural design of a lightweight structure made of self-shaped curved cross-laminated timber. Structures, 33, 3667-3681. https://doi.org/10.1016/j.istruc.2021.06.073
  • Bhandari, S., Riggio, M., Jahedi, S., Fischer, E. C., Muszynski, L., & Luo, Z. (2023). A review of modular cross laminated timber construction: Implications for temporary housing in seismic areas. Journal of Building Engineering, 63, 105485. https://doi.org/10.1016/j.jobe.2022.105485
  • Brandner, R., Flatscher, G., Ringhofer, A., Schickhofer, G., & Thiel, A. (2016). Cross laminated timber (CLT): overview and development. European Journal of Wood and Wood Products, 74(3), 331-351. https://doi.org/10.1007/s00107-015-0999-5
  • De Araujo, V., Aguiar, F., Jardim, P., Mascarenhas, F., Marini, L., Aquino, V., Santos, H., Panzera, T., Lahr, F., & Christoforo, A. (2023). Is Cross-Laminated Timber (CLT) a Wood Panel, a Building, or a Construction System? A Systematic Review on Its Functions, Characteristics, Performances, and Applications. Forests, 14(2), 264. https://doi.org/10.3390/f14020264
  • Deng, H. G., Aoki, Y., Meng, D. O., Deng, H. H. & Deng, T.S. (2025). Timber Bridges in Modern Japan. Structural Engineering International, 35(1), 118-124. https://doi.org/10.1080/10168664.2024.2398793
  • Donthu, N., Kumar, S., Mukherjee, D., Pandey, N., & Lim, W. M. (2021). How to conduct a bibliometric analysis: An overview and guidelines. Journal of Business Research, 133, 285-296. https://doi.org/10.1016/j.jbusres.2021.04.070
  • Duan, Z. (2023). Impact of climate change on the life cycle greenhouse gas emissions of cross-laminated timber and reinforced concrete buildings in China. Journal of Cleaner Production, 395, 136446. https://doi.org/10.1016/j.jclepro.2023.136446
  • Duan, Z., Huang, Q., Sun, Q., & Zhang, Q. (2022). Comparative life cycle assessment of a reinforced concrete residential building with equivalent cross laminated timber alternatives in China. Journal of Building Engineering, 62, 105357. https://doi.org/10.1016/j.jobe.2022.105357
  • Espinoza, O., Rodriguez Trujillo, V., Laguarda Mallo, M. F., & Buehlmann, U. (2015). Cross-Laminated Timber: Status and Research Needs in Europe. BioResources, 11(1). https://doi.org/10.15376/biores.11.1.281-295
  • Huzita, T., Sasaki, T., Araki, S., & Kayo, C. (2022). Life Cycle Regional Economic Impacts of Bridge Repair Using Cross-Laminated Timber Floor Slabs: A Case Study in Akita Prefecture, Japan. Buildings, 12(2), 158. https://doi.org/10.3390/buildings12020158
  • Iizawa, N., Imamoto, K., Kiyohara, C., Nasu, H., & Onishi, S. (2023). Study on environment decomposition and strength of CLT when temporarily used on civil engineering.In: World Conference on Timber Engineering (WCTE 2023), (pp. 836-841). https://doi.org/10.52202/069179-0114
  • Ikari, K., & Sakaguchi, D. (2021). The structuralızatıon of awareness of the ıssue on clt. AIJ Journal of Technology and Design, 27(67), 1297-1302. https://doi.org/10.3130/aijt.27.1297
  • Ilgın, H. E., Karjalainen, M., & Mikkola, P. (2023). Views of Cross-Laminated Timber (CLT) Manufacturer Representatives around the World on CLT Practices and Its Future Outlook. Buildings, 13(12), 2912. https://doi.org/10.3390/buildings13122912
  • Iwase, T., Sasaki, T., Araki, S., Huzita, T., & Kayo, C. (2020). Environmental and Economic Evaluation of Small-Scale Bridge Repair Using Cross-Laminated Timber Floor Slabs. Sustainability, 12(8), 3424. https://doi.org/10.3390/su12083424
  • Javoríková, M., & Hronský, M. (2024). Development of a Hybrid Wall-Framed System. In: Juniorstav 2024, Proceedings 26th International Scientific Conference Of Civil Engineering. https://doi.org/10.13164/juniorstav.2024.24146
  • Jayalath, A., Navaratnam, S., Ngo, T., Mendis, P., Hewson, N., & Aye, L. (2020). Life cycle performance of Cross Laminated Timber mid-rise residential buildings in Australia. Energy and Buildings, 223, 110091. https://doi.org/10.1016/j.enbuild.2020.110091
  • Klippel, M., & Schmid, J. (2017). Design of Cross-Laminated Timber in Fire. Structural Engineering International, 27(2), 224-230. https://doi.org/10.2749/101686617X14881932436096
  • Lan, K., Kelley, S. S., Nepal, P., & Yao, Y. (2020). Dynamic life cycle carbon and energy analysis for cross-laminated timber in the Southeastern United States. Environmental Research Letters, 15(12), 124036. https://doi.org/10.1088/1748-9326/abc5e6
  • Manrique, C., & Haglund, B. (2019). Learning from Innovative CLT Design in the United Kingdom. In: 2019 Reynolds Symposium: Education by Design. https://doi.org/10.21428/f7d9ca02.f38283ef
  • Marjanović, M., Jugović, V., & Nefovska-Danilović, M. (2020). Development of frequency curves for cross-laminated timber (CLT) floors using dynamic stiffness method. In: XI International Conference on Structural Dynamics, (pp. 502-509). https://doi.org/10.47964/1120.9038.18860
  • Nero, R., Christopher, P., & Ngo, T. (2022). Investigation of rolling shear properties of cross-laminated timber (CLT) and comparison of experimental approaches. Construction and Building Materials, 316, 125897. https://doi.org/10.1016/j.conbuildmat.2021.125897
  • Penfield, P., Germain, R., Smith, W. B., & Stehman, S. v. (2022). Assessıng the adoptıon of cross lamınated tımber by archıtects and structural engıneers wıthın the unıted states. Journal of Green Building, 17(1), 127-147. https://doi.org/10.3992/1943-4618.17.1.127
  • Pilathottathil, S. N., & Rauf, A. (2024). Barriers to the Use of Cross-Laminated Timber for Mid-Rise Residential Buildings in the UAE. Sustainability, 16(16), 6837. https://doi.org/10.3390/su16166837
  • Ren, H., Bahrami, A., Cehlin, M., & Wallhagen, M. (2024). A state-of-the-art review on connection systems, rolling shear performance, and sustainability assessment of cross-laminated timber. Engineering Structures, 317, 118552. https://doi.org/10.1016/j.engstruct.2024.118552
  • Said, H., Rajagopalan, A., & Hall, D. M. (2024). Longitudinal analysis of interorganizational collaborative networks of cross-laminated timber (CLT) construction. Construction Innovation. https://doi.org/10.1108/CI-01-2023-0012
  • Salgado, R. A., & Guner, S. (2021). Characterization of the out-of-plane behavior of CLT panel connections. Engineering Structures, 229, 111596. https://doi.org/10.1016/j.engstruct.2020.111596
  • Sanchotene, C. Y. dos S., Fischer, A. C., Monteiro, T. C., Punhagui, K. R. G., & Silva, D. A. da. (2024). Life cycle assessment of cross laminated timber: a systematic literature review. CONTRIBUCIONES A LAS CIENCIAS SOCIALES, 17(6), e7359. https://doi.org/10.55905/revconv.17n.6-080
  • Shin, B., Wi, S., & Kim, S. (2023). Assessing the environmental impact of using CLT-hybrid walls as a sustainable alternative in high-rise residential buildings. Energy and Buildings, 294, 113228. https://doi.org/10.1016/j.enbuild.2023.113228
  • Tokede, O. O., Rodgers, G., Waschl, B., Salter, J., & Ashraf, M. (2022). Harmonising life cycle sustainability thinking in material substitution for buildings. Resources, Conservation and Recycling, 185, 106468. https://doi.org/10.1016/j.resconrec.2022.106468
  • Vybranets, Y., & Deineka, V. (2024). Comparatıve analysıs of calculatıon methods of clt structures. Theory and Building Practice, 2024(1), 40-48. https://doi.org/10.23939/jtbp2024.01.040
  • Wimmer, H., Huber, C., & Eder, R. (2023). Numerıcal and experımental ınvestıgatıons on the stress state of clt-plates near concentrated loads. World Conference on Timber Engineering (WCTE 2023), (pp. 2537-2547). https://doi.org/10.52202/069179-0334
  • Younis, A., & Dodoo, A. (2022). Cross-laminated timber for building construction: A life-cycle-assessment overview. Journal of Building Engineering, 52, 104482. https://doi.org/10.1016/j.jobe.2022.104482
There are 36 citations in total.

Details

Primary Language English
Subjects Architectural Engineering, Construction Materials, Production Technologies, Wooden Buildings and Constructions
Journal Section Civil Engineering
Authors

Sadik Akşar 0000-0003-0583-4197

Publication Date September 30, 2025
Submission Date August 19, 2025
Acceptance Date September 15, 2025
Published in Issue Year 2025 Volume: 12 Issue: 3

Cite

APA Akşar, S. (2025). Cross-Laminated Timber as a Sustainable Building Material: an Interdisciplinary Bibliometric Analysis. Gazi University Journal of Science Part A: Engineering and Innovation, 12(3), 737-755. https://doi.org/10.54287/gujsa.1768961