Review
BibTex RIS Cite

Audibility Assessment of Fire Alarm System Sound Level for Industrial Processes

Year 2025, Volume: 13 Issue: 3, 353 - 368, 30.09.2025

Abstract

Fire alarm systems are the first stage of fire evacuation. The audibility of the fire alarm is of vital importance. In industrial buildings, there is almost continuous occupational noise. Variables such as duration, frequency, level and frequency range of this noise may vary depending on the work performed. In this study, the audibility of the fire alarm when it sounds during the process is evaluated. Audibility is based on the sound level. Sound levels for various processes were obtained from the literature.
In our country, the sound levels of audible fire alarm systems are specified in the “Regulation on Fire Protection of Buildings”. According to this, the lowest alarm level is 65 dB(A), and the maximum total is 75 dB(A) with +10 dB(A) in places characterized as “noisy”. The maximum sound level allowed by the regulation is 120 dB(A). The sound level generated in the environment was calculated by calculating the fire alarm sound level and the sound levels of the processes together. The results show that the fire alarm sound level at the lower limit is not sufficient for process noise, while the fire alarm level at the upper limit corresponds to the “pain threshold”.

References

  • [1] Y. Zhu, G. Kong, and C. Che, “Thermally-induced self-cutting surfaced reduced graphene oxide fibers for smart fire alarm,” Colloids Surf A Physicochem Eng Asp, vol. 675, p. 132032, Oct. 2023, doi: 10.1016/j.colsurfa.2023.132032.
  • [2] M. Yu, H. Yuan, K. Li, and J. Wang, “Research on multi-detector real-time fire alarm technology based on signal similarity,” Fire Saf J, vol. 136, p. 103724, Apr. 2023, doi: 10.1016/j.firesaf.2022.103724.
  • [3] X. Han, T. Lu, H. Wang, Z. Zhang, and S. Lu, “Phytic acid modified soy protein isolate/chitosan film: A multi-functional and degradable bio-based composite material for fire alarm sensor,” Polym Degrad Stab, vol. 216, p. 110505, Oct. 2023, doi: 10.1016/j.polymdegradstab.2023.110505.
  • [4] M. F. Pekşen, Y. Kaya, Y. Uyaroğlu, H. S. Soyhan, and C. Çelik, “Kocaeli İli Yangın Karakteristiklerinin İncelenmesi,” Uluslararası Yakıtlar Yanma Ve Yangın Dergisi, vol. 10, no. 1, pp. 9–20, Dec. 2022, doi: 10.52702/fce.1079533.
  • [5] Ü. Arpacıoğlu, “Yangın Olgusu ve Yüksek Yapılarda Yangın Güvenliği,” Yüksek Lisans Tezi, Mimar Sinan Güzel Sanatlar Üniversitesi, İstanbul, 2004.
  • [6] M. Yaman and F. Demirel, “Cephelerde Yangın Güvenlik Önlemleri ve Mevzuatların Karşılaştırmalı Analizi,” Uluslararası Doğu Anadolu Fen Mühendislik ve Tasarım Dergisi, vol. 2, no. 1, pp. 88–108, 2020.
  • [7] T.C. Cumhurbaşkanlığı Yönetmeliği, “Binaların Yangından Korunması Hakkında Yönetmelik.”
  • [8] H. Başdemir, “Eğitim Yapılarında Pasif Yangın Güvenlik Analizi,” Afet ve Risk Dergisi, vol. 5, no. 1, pp. 151–166, Jun. 2022, doi: 10.35341/afet.1000172.
  • [9] A. H. Buchanan, B. L. Deam, M. Fragiacomo, T. Gibson, and H. Morris, “Fifteen years of performance-based design in New Zealand,” in 9th World Conference on Timber Engineering WCTE 2006, University of Canterbury. Civil Engineering., Aug. 2006, pp. 6–10.
  • [10] S. Altıntaş, “Hastanelerde yangın güvenliği: Konunun Türkiye bağlamında incelenmesi ve bir politika önerisi,” Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol. 36, no. 2, pp. 913–924, Mar. 2021, doi: 10.17341/gazimmfd.640353.
  • [11] S. Gupta, S. Kanwar, and M. Kashyap, “Performance characteristics and assessment of fire alarm system,” Mater Today Proc, vol. 57, pp. 2036–2040, 2022, doi: 10.1016/j.matpr.2021.11.184.
  • [12] H. Wu et al., “Smart cement for fire alarms and indoor climate control,” Chemical Engineering Journal, vol. 482, p. 148298, Feb. 2024, doi: 10.1016/j.cej.2023.148298.
  • [13] A. Balboa, A. Cuesta, J. González-Villa, G. Ortiz, and D. Alvear, “Logistic regression vs machine learning to predict evacuation decisions in fire alarm situations,” Saf Sci, vol. 174, p. 106485, Jun. 2024, doi: 10.1016/j.ssci.2024.106485.
  • [14] W. K. Tannous, “The economic cost of unwanted automatic fire alarms,” Fire Saf J, vol. 124, p. 103394, Sep. 2021, doi: 10.1016/j.firesaf.2021.103394.
  • [15] D. Gryboś, D. Młynarczyk, J. Leszczyński, and J. Wiciak, “Mitigation of noise pollution in compressed air installations through the use of an air collection system in the expansion process,” Appl Energy, vol. 364, p. 123158, Jun. 2024, doi: 10.1016/j.apenergy.2024.123158. [16] T. S. Bozkurt and S. Y. Demirkale, “The field study and numerical simulation of industrial noise mapping,” Journal of Building Engineering, vol. 9, pp. 60–75, Jan. 2017, doi: 10.1016/j.jobe.2016.11.007.
  • [17] Z. Özçetin and F. Demirel, “Ankara Celal Bayar Bulvarı’nın karayolu gürültüsü açısından eski ve yeni düzenlemesinin karşılaştırılması,” Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol. 36, no. 1, pp. 477–496, Dec. 2020, doi: 10.17341/gazimmfd.656548.
  • [18] P. M. Arezes, C. A. Bernardo, and O. A. Mateus, “Measurement strategies for occupational noise exposure assessment: A comparison study in different industrial environments,” Int J Ind Ergon, vol. 42, no. 1, pp. 172–177, Jan. 2012, doi: 10.1016/j.ergon.2011.10.005.
  • [19] M. D. Fernández, S. Quintana, N. Chavarría, and J. A. Ballesteros, “Noise exposure of workers of the construction sector,” Applied Acoustics, vol. 70, no. 5, pp. 753–760, May 2009, doi: 10.1016/j.apacoust.2008.07.014.
  • [20] P. C. Eleftheriou, “Industrial noise and its effects on human hearing,” Applied Acoustics, vol. 63, no. 1, pp. 35–42, Jan. 2002, doi: 10.1016/S0003-682X(01)00022-6.
  • [21] US Department of Labor, Occupational noise exposure, 29 CFR 1910.95. 1996.
  • [22] Europan Union, “Environmental Noise Directive (Çevresel Gürültü Direktifi).” Accessed: Oct. 28, 2023. [Online]. Available: https://environment.ec.europa.eu/topics/noise/environmental-noise-directive_en
  • [23] World Health Organization, Enviromental Noise Guidelines for the European Region. 2018.
  • [24] L. T. Silva, A. Magalhães, J. F. Silva, and F. Fonseca, “Impacts of low-frequency noise from industrial sources in residential areas,” Applied Acoustics, vol. 182, p. 108203, Nov. 2021, doi: 10.1016/j.apacoust.2021.108203.
  • [25] M. Sofer, O. Potchter, N. Gnaim, and J. M. Gnaim, “Environmental nuisances from industrial activities in residential areas of Arab municipalities in Israel,” Applied Geography, vol. 35, no. 1–2, pp. 353–362, Nov. 2012, doi: 10.1016/j.apgeog.2012.08.005.
  • [26] O. S. Oyedepo and A. A. Saadu, “A comparative study of noise pollution levels in some selected areas in Ilorin Metropolis, Nigeria,” Environ Monit Assess, vol. 158, no. 1–4, pp. 155–167, Nov. 2009, doi: 10.1007/s10661-008-0570-5.
  • [27] R. B. Hunashal and Y. B. Patil, “Assessment of Noise Pollution Indices in the City of Kolhapur, India,” Procedia Soc Behav Sci, vol. 37, pp. 448–457, 2012, doi: 10.1016/j.sbspro.2012.03.310.
  • [28] S. A. Ali, “A case study of construction noise exposure for preserving worker’s hearing in Egypt,” Acoust Sci Technol, vol. 32, no. 5, pp. 211–215, 2011, doi: 10.1250/ast.32.211.
  • [29] M. Grashof, “The assessment of noise from industrial plants by direct measurement and by calculation,” Applied Acoustics, vol. 9, no. 3, pp. 177–192, Jul. 1976, doi: 10.1016/0003-682X(76)90016-5.
  • [30] D. Baker, “Application of noise guidance to the assessment of industrial noise with character on residential dwellings in the UK,” Applied Acoustics, vol. 93, pp. 88–96, Jun. 2015, doi: 10.1016/j.apacoust.2015.01.018.
  • [31] P. Nassiri et al., “The interactive effect of industrial noise type, level and frequency characteristics on occupational skills,” Perform Enhanc Health, vol. 3, no. 2, pp. 61–65, Jun. 2014, doi: 10.1016/j.peh.2015.01.001.
  • [32] E. Emmerich, F. Richter, U. Reinhold, V. Linss, and W. Linss, “Effects of industrial noise exposure on distortion product otoacoustic emissions (DPOAEs) and hair cell loss of the cochlea – long term experiments in awake guinea pigs,” Hear Res, vol. 148, no. 1–2, pp. 9–17, Oct. 2000, doi: 10.1016/S0378-5955(00)00101-5.
  • [33] E. Murphy and E. A. King, “Wind Farm, Industrial and Construction Noise,” in Environmental Noise Pollution, Elsevier, 2022, pp. 177–209. doi: 10.1016/B978-0-12-820100-8.00011-7.
  • [34] D. Brouzet, B. Krisna, D. McCormick, C. A. Reimann, J. Mendoza, and M. Ihme, “Analysis of direct and indirect noise in a next-generation aviation gas turbine combustor,” Combust Flame, vol. 260, p. 113249, Feb. 2024, doi: 10.1016/j.combustflame.2023.113249.
  • [35] N. Heerema and M. Hodgson, “Empirical models for predicting noise levels, reverberation times and fitting densities in industrial workrooms,” Applied Acoustics, vol. 57, no. 1, pp. 51–60, May 1999, doi: 10.1016/S0003-682X(98)00037-1.
  • [36] M. Hodgson, “On the accuracy of models for predicting sound propagation in fitted rooms,” J Acoust Soc Am, vol. 88, no. 2, pp. 871–878, Aug. 1990, doi: 10.1121/1.399737.
  • [37] A. M. Ondet and J. L. Barbry, “Modeling of sound propagation in fitted workshops using ray tracing,” J Acoust Soc Am, vol. 85, no. 2, pp. 787–796, Feb. 1989, doi: 10.1121/1.397551.
  • [38] M. Hodgson, “Review and critique of existing simplified models for predicting factory noise levels,” Canadian Acoustics, vol. 19, no. 1, Jan. 1991.
  • [39] G. Hessler, “Proposed criteria in residential communities for low-frequency noise emissions from industrial sources,” Noise Control Eng J, vol. 52, no. 4, pp. 179–185, 2004.
  • [40] B. Berglund, P. Hassmén, and R. F. S. Job, “Sources and effects of low-frequency noise,” J Acoust Soc Am, vol. 99, no. 5, pp. 2985–3002, May 1996, doi: 10.1121/1.414863.
  • [41] K. P. Waye, “Effects of Low Frequency Noise and Vibrations: Environmental and Occupational Perspectives,” in Encyclopedia of Environmental Health, Elsevier, 2011, pp. 240–253. doi: 10.1016/B978-0-444-52272-6.00245-2.
  • [42] C. Baliatsas, I. van Kamp, R. van Poll, and J. Yzermans, “Health effects from low-frequency noise and infrasound in the general population: Is it time to listen? A systematic review of observational studies,” Science of The Total Environment, vol. 557–558, pp. 163–169, Jul. 2016, doi: 10.1016/j.scitotenv.2016.03.065.
  • [43] R. D. O’Neal, R. D. Hellweg, and R. M. Lampeter, “Low frequency noise and infrasound from wind turbines,” Noise Control Eng J, vol. 59, no. 2, p. 135, 2011, doi: 10.3397/1.3549200.
  • [44] J. Alves, L. Silva, and P. Remoaldo, “The Influence of Low-Frequency Noise Pollution on the Quality of Life and Place in Sustainable Cities: A Case Study from Northern Portugal,” Sustainability, vol. 7, no. 10, pp. 13920–13946, Oct. 2015, doi: 10.3390/su71013920.
  • [45] M. Pawlaczyk-Łuszczyńska, W. Szymczak, A. Dudarewicz, and M. Śliwińska-Kowalska, “Proposed Criteria for Assessing Low Frequency Noise Annoyance in Occupational Settings,” Int J Occup Med Environ Health, vol. 19, no. 3, Jan. 2006, doi: 10.2478/v10001-006-0022-9.
  • [46] K. P. Waye, J. Bengtsson, A. Kjellberg, and S. Benton, “Low frequency noise" pollution" interferes with performance,” Noise Health, vol. 4, no. 13, pp. 33–49, 2001.
  • [47] M. Cavacas, “Morphological teeth changes caused by industrial noise,” PhD Thesis, University of Porto, Portugal, 2014.
  • [48] C. Tao, Z. Gao, B. Cheng, F. Chen, and C. Yu, “Enhancing wood resource efficiency through spatial agglomeration: Insights from China’s wood-processing industry,” Resour Conserv Recycl, vol. 203, p. 107453, Apr. 2024, doi: 10.1016/j.resconrec.2024.107453.
  • [49] C. Mai, U. Kües, and H. Militz, “Biotechnology in the wood industry,” Appl Microbiol Biotechnol, vol. 63, no. 5, pp. 477–494, May 2004, doi: 10.1007/s00253-003-1411-7.
  • [50] M. Dunky, “Adhesives in the Wood Industry,” in Handbook of Adhesive Technology, 3rd ed., Taylor & Francis Group, 2017.
  • [51] E. Nybakk, P. Crespell, and E. Hansen, “Climate for innovation and innovation strategy as drivers for success in the wood industry: moderation effects of firm size, industry sector, and country of operation,” Silva Fennica, vol. 45, no. 3, pp. 415–430, 2011.
  • [52] M. Mir, F. Nasirzadeh, S. Lee, D. Cabrera, and A. Mills, “Construction noise management: A systematic review and directions for future research,” Applied Acoustics, vol. 197, p. 108936, Aug. 2022, doi: 10.1016/j.apacoust.2022.108936.
  • [53] R. Neitzel, N. S. Seixas, J. Camp, and M. Yost, “An Assessment of Occupational Noise Exposures in Four Construction Trades,” Am Ind Hyg Assoc J, vol. 60, no. 6, pp. 807–817, Nov. 1999, doi: 10.1080/00028899908984506.
  • [54] N. S. Seixas, K. Ren, R. Neitzel, J. Camp, and M. Yost, “Noise Exposure among Construction Electricians,” AIHAJ - American Industrial Hygiene Association, vol. 62, no. 5, pp. 615–621, Sep. 2001, doi: 10.1080/15298660108984661.
  • [55] M. J. Kerr, L. Brosseau, and C. S. Johnson, “Noise Levels of Selected Construction Tasks,” AIHA Journal, vol. 63, no. 3, pp. 334–339, May 2002, doi: 10.1080/15428110208984722.
  • [56] H. Zhang, S. Li, L. Cui, and L. Li, “Energy industry advancedization of dynamic evolution and resource-environment decoupling effect: Evidence from China’s value chain upgrading,” Energy, vol. 283, p. 128552, Nov. 2023, doi: 10.1016/j.energy.2023.128552.
  • [57] K. Guo, C. Huang, Z. Zhang, A. Y. Diaz Paiz, and W. Chen, “The impact of new energy industry on environmental and economic benefits: Evidence from China,” Energy, vol. 304, p. 132111, Sep. 2024, doi: 10.1016/j.energy.2024.132111.
  • [58] H. Xiao, W. Xie, and B. Liu, “An empirical study on the influence of new generation employees’ job satisfaction on contextual performance in the energy industry,” Heliyon, vol. 10, no. 9, p. e30073, May 2024, doi: 10.1016/j.heliyon.2024.e30073.
  • [59] K. M. Møller, “Domestic renewable energy industries and national decarbonization policy,” Energy Policy, vol. 192, p. 114249, Sep. 2024, doi: 10.1016/j.enpol.2024.114249.
  • [60] M. del M. D. del Amor, A. B. Caracena, M. Llorens, and F. Esquembre, “Tools for evaluation and prediction of industrial noise sources. Application to a wastewater treatment plant.,” J Environ Manage, vol. 319, p. 115725, Oct. 2022, doi: 10.1016/j.jenvman.2022.115725.
  • [61] J. Mattei, “Planning for Noise Control of New Industrial Plant,” Journal of Sound Vibration, vol. 4, no. 2, pp. 249–255, 1966.
  • [62] N. R. Puthenveettil and P. K. Sappati, “A review of smart contract adoption in agriculture and food industry,” Comput Electron Agric, vol. 223, p. 109061, Aug. 2024, doi: 10.1016/j.compag.2024.109061.
  • [63] J. Czuchaj, A. Sliwinski, and K. Srodecki, “Noise sources and acoustic properties of workrooms in the plants of food-processing and pharmaceutical industry,” Applied Acoustics, vol. 62, pp. 1141–1156, Jan. 2001.
  • [64] N. L. Wouters et al., “Noise Exposure and Hearing Loss among Brewery Workers in Lagos, Nigeria,” Int J Environ Res Public Health, vol. 17, no. 8, p. 2880, Apr. 2020, doi: 10.3390/ijerph17082880.
  • [65] W. Busse, C. Ganellin, and L. Mitscher, “Vocational training for medicinal chemists: views from industry,” Eur J Med Chem, vol. 31, no. 10, pp. 747–760, Jan. 1996, doi: 10.1016/0223-5234(96)83968-7.
  • [66] B. Onyinyi and N. Asiimwe, “Key drivers of investment initiatives in Uganda’s pharmaceutical industry,” Soc Sci Med, vol. 344, p. 116558, Mar. 2024, doi: 10.1016/j.socscimed.2024.116558.
  • [67] S. Calciolari, M. Cesarini, and M. Ruberti, “Sustainability disclosure in the pharmaceutical and chemical industries: Results from bibliometric analysis and AI-based comparison of financial reports,” J Clean Prod, vol. 447, p. 141511, Apr. 2024, doi: 10.1016/j.jclepro.2024.141511.
  • [68] M. Benn and C. Stoy, “Implementing asset information requirement templates for corporate real estate management: A study in the chemical industry,” Developments in the Built Environment, vol. 16, p. 100224, Dec. 2023, doi: 10.1016/j.dibe.2023.100224.
  • [69] M. M. Abdullah Abkar, R. Yunus, Y. Gamil, and M. A. Albaom, “Enhancing construction site performance through technology and management practices as material waste mitigation in the Malaysian construction industry,” Heliyon, vol. 10, no. 7, p. e28721, Apr. 2024, doi: 10.1016/j.heliyon.2024.e28721.
  • [70] Q. Zhao, T. Wang, W. Gao, Y. Su, J. Wang, and J. Dai, “The synergistic decarbonization potential from construction industry and upstream sectors with a city-scale: A case study of hangzhou, China,” J Clean Prod, vol. 460, p. 142572, Jul. 2024, doi: 10.1016/j.jclepro.2024.142572.
  • [71] N. Seixas, R. Neitzel, L. Sheppard, and B. Goldman, “Alternative Metrics for Noise Exposure Among Construction Workers,” Annals of Occupational Hygiene, vol. 49, no. 6, pp. 493–502, Mar. 2005, doi: 10.1093/annhyg/mei009.
  • [72] R. Neitzel and N. Seixas, “The Effectiveness of Hearing Protection Among Construction Workers,” J Occup Environ Hyg, vol. 2, no. 4, pp. 227–238, Apr. 2005, doi: 10.1080/15459620590932154.
  • [73] M. Al Salaheen, W. S. Alaloul, M. A. Musarat, M. A. Bin Johari, K. M. Alzubi, and A. M. Alawag, “Women career in construction industry after industrial revolution 4.0 norm,” Journal of Open Innovation: Technology, Market, and Complexity, vol. 10, no. 2, p. 100277, Jun. 2024, doi: 10.1016/j.joitmc.2024.100277.
  • [74] Q. Liu, Y. Ma, L. Chen, W. Pedrycz, M. J. Skibniewski, and Z.-S. Chen, “Artificial intelligence for production, operations and logistics management in modular construction industry: A systematic literature review,” Information Fusion, vol. 109, p. 102423, Sep. 2024, doi: 10.1016/j.inffus.2024.102423.
  • [75] M. J. Ballesteros, M. D. Fernández, S. Quintana, J. A. Ballesteros, and I. González, “Noise emission evolution on construction sites. Measurement for controlling and assessing its impact on the people and on the environment,” Build Environ, vol. 45, no. 3, pp. 711–717, Mar. 2010, doi: 10.1016/j.buildenv.2009.08.011.
  • [76] Z. Canfeng, Y. Shujie, and L. Dong, “Comprehensive Control of the Noise Occupational Hazard in Cement Plant,” Procedia Eng, vol. 43, pp. 186–190, 2012, doi: 10.1016/j.proeng.2012.08.032.
  • [77] Ö. Aktaş, E. Şahinkaya, M. Yüceyurt, and M. Uludağ, “Kimya Endüstrisi Atık Suyunun Pilot Ölçekte Anaerobik/Anoksik/Aerobik Membran Biyoreaktörde Arıtımı,” International Journal of Advances in Engineering and Pure Sciences, vol. 31, no. 2, pp. 140–148, Jun. 2019, doi: 10.7240/jeps.517719.
  • [78] C. Toraman and C. Karaca, “Kimya Endüstrisinde Faaliyet Gösteren Firmalar Üzerinde Mali Başarısızlık Tahmini: Borsa İstanbul’da Bir Uygulama,” Muhasebe ve Finansman Dergisi, no. 70, pp. 111–128, Apr. 2016, doi: 10.25095/mufad.396683.
  • [79] D. N. Patel, P. Matalon, and G. Oluleye, “A novel temporal mixed-integer market penetration model for cost-effective uptake of electric boilers in the UK chemical industry,” J Clean Prod, vol. 446, p. 141156, Mar. 2024, doi: 10.1016/j.jclepro.2024.141156.
  • [80] H.-X. Zou et al., “Catalytic removal of chemical oxygen demand during ozonation of the simulated wastewater from coal chemical industry,” Journal of Water Process Engineering, vol. 64, p. 105542, Jul. 2024, doi: 10.1016/j.jwpe.2024.105542.
  • [81] Y. Kloo, L. J. Nilsson, and E. Palm, “Reaching net-zero in the chemical industry—A study of roadmaps for industrial decarbonisation,” Renewable and Sustainable Energy Transition, vol. 5, p. 100075, Aug. 2024, doi: 10.1016/j.rset.2023.100075.
  • [82] Y. Zhang et al., “Research on waste gas treatment technology and comprehensive environmental performance evaluation for collaborative management of pollution and carbon in China’s pharmaceutical industry based on life cycle assessment (LCA),” Science of The Total Environment, vol. 919, p. 170555, Apr. 2024, doi: 10.1016/j.scitotenv.2024.170555.
  • [83] R. Gangipamula, P. Ranjan, and R. S. Patil, “Comparative studies on air borne noise and flow induced noise of a double suction centrifugal pump,” Applied Acoustics, vol. 202, p. 109148, Jan. 2023, doi: 10.1016/j.apacoust.2022.109148.
  • [84] M. Y. N. Attari and A. E. Torkayesh, “Developing benders decomposition algorithm for a green supply chain network of mine industry: Case of Iranian mine industry,” Operations Research Perspectives, vol. 5, pp. 371–382, 2018, doi: 10.1016/j.orp.2018.11.002.
  • [85] M. Gul, M. F. Ak, and A. F. Guneri, “Pythagorean fuzzy VIKOR-based approach for safety risk assessment in mine industry,” J Safety Res, vol. 69, pp. 135–153, Jun. 2019, doi: 10.1016/j.jsr.2019.03.005.
  • [86] A. M. Donoghue, “Occupational health hazards in mining: an overview,” Occup Med (Chic Ill), vol. 54, no. 5, pp. 283–289, Aug. 2004, doi: 10.1093/occmed/kqh072.
  • [87] M. Kısakürek, S. Elden, and M. Tatlı, “Türkiye’de Maden İşletmelerinde Yatırım Teşvik Uygulaması Ve Örneklerle Muhasebe Kayıtları,” Kahramanmaraş Sütçü İmam Üniversitesi Sosyal Bilimler Dergisi, vol. 17, no. 2, pp. 1135–1163, Oct. 2020, doi: 10.33437/ksusbd.690792. [88] O. Sharma, V. Mohanan, and M. Singh, “Noise Emission Levels in Coal Industry,” Applied Acoustics, vol. 54, pp. 1–7, Aug. 1997.
  • [89] P. Novák, J. Vyskočil, J. Kubalík, P. Kadera, M. Jílek, and V. Jirkovský, “Smart Counting Machines for Modular Industry 4.0 Packing Lines,” IFAC-PapersOnLine, vol. 56, no. 2, pp. 2976–2981, 2023, doi: 10.1016/j.ifacol.2023.10.1422.
  • [90] C. Martínez-Ruedas, F. J. Adame-Rodríguez, and J. M. Díaz-Cabrera, “Integrating and interconnecting of older SINUMERIK CNC machines with industry 4.0 using a plug-and-play system,” J Ind Inf Integr, vol. 38, p. 100583, Mar. 2024, doi: 10.1016/j.jii.2024.100583.
  • [91] C. İ. Çalışkan and Ü. Arpacıoğlu, “Yapı Üretiminde Eklemeli İmalat Teknolojilerinin Karşılaştırmalı Değerlendirmesi,” Uludağ University Journal of The Faculty of Engineering, pp. 1117–1136, Aug. 2020, doi: 10.17482/uumfd.696952.
  • [92] C. Assunta et al., “Noise and cardiovascular effects in workers of the sanitary fixtures industry,” Int J Hyg Environ Health, vol. 218, no. 1, pp. 163–168, Jan. 2015, doi: 10.1016/j.ijheh.2014.09.007.
  • [93] A. T. James, G. Kumar, P. Tayal, A. Chauhan, C. Wadhawa, and J. Panchal, “Analysis of human resource management challenges in implementation of industry 4.0 in Indian automobile industry,” Technol Forecast Soc Change, vol. 176, p. 121483, Mar. 2022, doi: 10.1016/j.techfore.2022.121483.
  • [94] G. You et al., “Emission factors and source profiles of volatile organic compounds from the automobile manufacturing industry,” Science of The Total Environment, vol. 927, p. 172183, Jun. 2024, doi: 10.1016/j.scitotenv.2024.172183.
  • [95] Y. Li et al., “Stocks and flows of the non-negligible toxic polybrominated diphenyl ethers (BDE-209) in the Chinese automobile industry,” Resour Conserv Recycl, vol. 203, p. 107456, Apr. 2024, doi: 10.1016/j.resconrec.2024.107456.
  • [96] R. Espinosa, H. Ponce, and S. Gutiérrez, “Click-event sound detection in automotive industry using machine/deep learning,” Appl Soft Comput, vol. 108, p. 107465, Sep. 2021, doi: 10.1016/j.asoc.2021.107465.
  • [97] C. Xu et al., “Cleaner production evaluation system for textile industry: An empirical study from LCA perspectives,” Science of The Total Environment, vol. 913, p. 169632, Feb. 2024, doi: 10.1016/j.scitotenv.2023.169632.
  • [98] Ç. Işık and H. Altundağ, “Tekstil Fabrikalarında Yangın Tehlikesi, Yangından Korunma Ve Güvenlik Önlemleri ‘Örnek Vaka Analizi,’” Uluslararası Yakıtlar Yanma Ve Yangın Dergisi, vol. 10, no. 1, pp. 132–147, Dec. 2022, doi: 10.52702/fce.1122280.
  • [99] S. Komal and S. M. Saad, “Supply Chain Management Strategies Approach for the UK Textile Industry,” Procedia Comput Sci, vol. 232, pp. 117–127, 2024, doi: 10.1016/j.procs.2024.01.012.
  • [100] D. İ. Çifçi, “Fe-Mn-textile waste synthesis for COD and color removal from textile wastewater by UV/S2O82− oxidation,” International Journal of Environmental Science and Technology, vol. 20, no. 7, pp. 7313–7324, Jul. 2023, doi: 10.1007/s13762-023-04837-5.
  • [101] A. Panhwar, A. Sattar Jatoi, S. Ali Mazari, A. Kandhro, U. Rashid, and S. Qaisar, “Water resources contamination and health hazards by textile industry effluent and glance at treatment techniques: A review,” Waste Management Bulletin, vol. 1, no. 4, pp. 158–163, Mar. 2024, doi: 10.1016/j.wmb.2023.09.002. [102] F. Shabani, I. Alimohammadi, J. Abolghasemi, T. Dehdari, and R. Ghasemi, “The study of effect of educational intervention on noise annoyance among workers in a textile industry,” Applied Acoustics, vol. 170, p. 107515, Dec. 2020, doi: 10.1016/j.apacoust.2020.107515.
  • [103] A. P. Cardoso, M. J. R. Oliveira, Á. M. da Silva, A. P. Águas, and A. Sousa Pereira, “Effects of long term exposure to occupational noise on textile industry workers’ lung function,” Revista Portuguesa de Pneumologia (English Edition), vol. 12, no. 1, pp. 45–59, Jan. 2006, doi: 10.1016/S2173-5115(06)70387-6.
  • [104] P. S. Badkar and M. M. Benal, “Noise reduction in power looms using nitrile rubber polymer,” Mater Today Proc, vol. 66, pp. 1779–1783, 2022, doi: 10.1016/j.matpr.2022.05.277.
  • [105] A. K. Zaw et al., “Assessment of Noise Exposure and Hearing Loss Among Workers in Textile Mill (Thamine), Myanmar: A Cross-Sectional Study,” Saf Health Work, vol. 11, no. 2, pp. 199–206, Jun. 2020, doi: 10.1016/j.shaw.2020.04.002.
  • [106] T. S. TSE, “TSE CEN/TS 54 - 14: Yangın algılama ve yangın alarm sistemleri - Bölüm 14: Planlama, tasarım, kurulum, devreye alma, kullanım ve bakım için rehber.”
  • [107] T. S. TSE, “TS EN 54-3+A1: Yangın Algılama ve Yangın Alarm Sistemleri: Bölüm 3: Yangın Alarm Cihazları – Ses Cihazları.”
  • [108] T.C. Çevre ve Şehircilik Bakanlığı, “Binaların Gürültüye Karşı Korunması Hakkında Yönetmelik.”
  • [109] N. Yüğrük Akdağ, “Yapı Fiziği 2 Hacim Akustiği 3.Bölüm,” İstanbul, 2017. [Online]. Available: https://docplayer.biz.tr/43579036-Yapi-fizigi-2-hacim-akustigi.html
  • [110] N. Yüğrük Akdağ, “Gürültü Denetimi 2 - Gürültünün Açık Havada Yayılmasında Önem Taşıyan Etkenler,” İstanbul, 2024.
  • [111] F. Effa, J.-P. Arz, R. Serizel, and N. Grimault, “Evaluating and predicting the audibility of acoustic alarms in the workplace using experimental methods and deep learning,” Applied Acoustics, vol. 219, p. 109955, Mar. 2024, doi: 10.1016/j.apacoust.2024.109955.
  • [112] M. D. Mura and G. Dini, “Improving ergonomics in mixed-model assembly lines balancing noise exposure and energy expenditure,” CIRP J Manuf Sci Technol, vol. 40, pp. 44–52, Feb. 2023, doi: 10.1016/j.cirpj.2022.11.005.
  • [113] T. S. TSE, “TS EN ISO 7731: Ergonomi - Kamu alanları ve iş yerleri için tehlike sinyalleri - Sesli tehlike sinyalleri.”
  • [114] F. Alton Everest, “Master Handbook of Acoustics.” Fifth Edt. McGraw Hill Professional. 2009.

Yangın Alarm Sistemi Ses Düzeyinin Sanayi Prosesleri Özelinde İşitilebilirlik Değerlendirmesi

Year 2025, Volume: 13 Issue: 3, 353 - 368, 30.09.2025

Abstract

Yangın alarm sistemleri, yangın tahliyesinin ilk aşamasıdır. Yangın alarmının işitilebilirliği hayati derecede önem taşır. Sanayi yapılarında neredeyse sürekli devam eden bir mesleki gürültü söz konusudur. Bu gürültünün süresi, sıklığı, düzeyi ve frekans aralığı gibi değişkenler yapılan iş ile ilgili olarak değişiklik gösterebilir. Bu çalışma kapsamında, yangın alarmının proses esnasında çalması durumunda işitilmesi değerlendirilmiştir. İşitilebilirlik, ses düzeyi üzerinden yapılmıştır. Literatürden çeşitli prosesler için ses düzeyleri elde edilmiştir.
Ülkemizde sesli yangın alarm sistemlerinin ses düzeyleri “Binaların Yangından Korunması Hakkında Yönetmelik”de belirtilmiştir. Buna göre en düşük alarm seviyesi 65 dB(A), “gürültülü” olarak nitelendirilen mekanlarda ise +10 dB(A) ile maksimum toplam 75 dB(A)’dır. Yönetmeliğin izin verdiği maksimum ses düzeyi ise 120 dB(A)’dır. Yangın alarmı ses düzeyi ile proseslerin ses düzeyleri birlikte hesaplanarak ortamda oluşan ses düzeyi hesaplanmıştır. Sonuçlar, alt sınırdaki yangın alarm ses seviyesinin proses gürültüsü özelinde yeterli olmadığını, üst sınırdaki yangın alarm seviyesinin ise “acı eşiğine” denk geldiğini göstermiştir.

References

  • [1] Y. Zhu, G. Kong, and C. Che, “Thermally-induced self-cutting surfaced reduced graphene oxide fibers for smart fire alarm,” Colloids Surf A Physicochem Eng Asp, vol. 675, p. 132032, Oct. 2023, doi: 10.1016/j.colsurfa.2023.132032.
  • [2] M. Yu, H. Yuan, K. Li, and J. Wang, “Research on multi-detector real-time fire alarm technology based on signal similarity,” Fire Saf J, vol. 136, p. 103724, Apr. 2023, doi: 10.1016/j.firesaf.2022.103724.
  • [3] X. Han, T. Lu, H. Wang, Z. Zhang, and S. Lu, “Phytic acid modified soy protein isolate/chitosan film: A multi-functional and degradable bio-based composite material for fire alarm sensor,” Polym Degrad Stab, vol. 216, p. 110505, Oct. 2023, doi: 10.1016/j.polymdegradstab.2023.110505.
  • [4] M. F. Pekşen, Y. Kaya, Y. Uyaroğlu, H. S. Soyhan, and C. Çelik, “Kocaeli İli Yangın Karakteristiklerinin İncelenmesi,” Uluslararası Yakıtlar Yanma Ve Yangın Dergisi, vol. 10, no. 1, pp. 9–20, Dec. 2022, doi: 10.52702/fce.1079533.
  • [5] Ü. Arpacıoğlu, “Yangın Olgusu ve Yüksek Yapılarda Yangın Güvenliği,” Yüksek Lisans Tezi, Mimar Sinan Güzel Sanatlar Üniversitesi, İstanbul, 2004.
  • [6] M. Yaman and F. Demirel, “Cephelerde Yangın Güvenlik Önlemleri ve Mevzuatların Karşılaştırmalı Analizi,” Uluslararası Doğu Anadolu Fen Mühendislik ve Tasarım Dergisi, vol. 2, no. 1, pp. 88–108, 2020.
  • [7] T.C. Cumhurbaşkanlığı Yönetmeliği, “Binaların Yangından Korunması Hakkında Yönetmelik.”
  • [8] H. Başdemir, “Eğitim Yapılarında Pasif Yangın Güvenlik Analizi,” Afet ve Risk Dergisi, vol. 5, no. 1, pp. 151–166, Jun. 2022, doi: 10.35341/afet.1000172.
  • [9] A. H. Buchanan, B. L. Deam, M. Fragiacomo, T. Gibson, and H. Morris, “Fifteen years of performance-based design in New Zealand,” in 9th World Conference on Timber Engineering WCTE 2006, University of Canterbury. Civil Engineering., Aug. 2006, pp. 6–10.
  • [10] S. Altıntaş, “Hastanelerde yangın güvenliği: Konunun Türkiye bağlamında incelenmesi ve bir politika önerisi,” Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol. 36, no. 2, pp. 913–924, Mar. 2021, doi: 10.17341/gazimmfd.640353.
  • [11] S. Gupta, S. Kanwar, and M. Kashyap, “Performance characteristics and assessment of fire alarm system,” Mater Today Proc, vol. 57, pp. 2036–2040, 2022, doi: 10.1016/j.matpr.2021.11.184.
  • [12] H. Wu et al., “Smart cement for fire alarms and indoor climate control,” Chemical Engineering Journal, vol. 482, p. 148298, Feb. 2024, doi: 10.1016/j.cej.2023.148298.
  • [13] A. Balboa, A. Cuesta, J. González-Villa, G. Ortiz, and D. Alvear, “Logistic regression vs machine learning to predict evacuation decisions in fire alarm situations,” Saf Sci, vol. 174, p. 106485, Jun. 2024, doi: 10.1016/j.ssci.2024.106485.
  • [14] W. K. Tannous, “The economic cost of unwanted automatic fire alarms,” Fire Saf J, vol. 124, p. 103394, Sep. 2021, doi: 10.1016/j.firesaf.2021.103394.
  • [15] D. Gryboś, D. Młynarczyk, J. Leszczyński, and J. Wiciak, “Mitigation of noise pollution in compressed air installations through the use of an air collection system in the expansion process,” Appl Energy, vol. 364, p. 123158, Jun. 2024, doi: 10.1016/j.apenergy.2024.123158. [16] T. S. Bozkurt and S. Y. Demirkale, “The field study and numerical simulation of industrial noise mapping,” Journal of Building Engineering, vol. 9, pp. 60–75, Jan. 2017, doi: 10.1016/j.jobe.2016.11.007.
  • [17] Z. Özçetin and F. Demirel, “Ankara Celal Bayar Bulvarı’nın karayolu gürültüsü açısından eski ve yeni düzenlemesinin karşılaştırılması,” Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol. 36, no. 1, pp. 477–496, Dec. 2020, doi: 10.17341/gazimmfd.656548.
  • [18] P. M. Arezes, C. A. Bernardo, and O. A. Mateus, “Measurement strategies for occupational noise exposure assessment: A comparison study in different industrial environments,” Int J Ind Ergon, vol. 42, no. 1, pp. 172–177, Jan. 2012, doi: 10.1016/j.ergon.2011.10.005.
  • [19] M. D. Fernández, S. Quintana, N. Chavarría, and J. A. Ballesteros, “Noise exposure of workers of the construction sector,” Applied Acoustics, vol. 70, no. 5, pp. 753–760, May 2009, doi: 10.1016/j.apacoust.2008.07.014.
  • [20] P. C. Eleftheriou, “Industrial noise and its effects on human hearing,” Applied Acoustics, vol. 63, no. 1, pp. 35–42, Jan. 2002, doi: 10.1016/S0003-682X(01)00022-6.
  • [21] US Department of Labor, Occupational noise exposure, 29 CFR 1910.95. 1996.
  • [22] Europan Union, “Environmental Noise Directive (Çevresel Gürültü Direktifi).” Accessed: Oct. 28, 2023. [Online]. Available: https://environment.ec.europa.eu/topics/noise/environmental-noise-directive_en
  • [23] World Health Organization, Enviromental Noise Guidelines for the European Region. 2018.
  • [24] L. T. Silva, A. Magalhães, J. F. Silva, and F. Fonseca, “Impacts of low-frequency noise from industrial sources in residential areas,” Applied Acoustics, vol. 182, p. 108203, Nov. 2021, doi: 10.1016/j.apacoust.2021.108203.
  • [25] M. Sofer, O. Potchter, N. Gnaim, and J. M. Gnaim, “Environmental nuisances from industrial activities in residential areas of Arab municipalities in Israel,” Applied Geography, vol. 35, no. 1–2, pp. 353–362, Nov. 2012, doi: 10.1016/j.apgeog.2012.08.005.
  • [26] O. S. Oyedepo and A. A. Saadu, “A comparative study of noise pollution levels in some selected areas in Ilorin Metropolis, Nigeria,” Environ Monit Assess, vol. 158, no. 1–4, pp. 155–167, Nov. 2009, doi: 10.1007/s10661-008-0570-5.
  • [27] R. B. Hunashal and Y. B. Patil, “Assessment of Noise Pollution Indices in the City of Kolhapur, India,” Procedia Soc Behav Sci, vol. 37, pp. 448–457, 2012, doi: 10.1016/j.sbspro.2012.03.310.
  • [28] S. A. Ali, “A case study of construction noise exposure for preserving worker’s hearing in Egypt,” Acoust Sci Technol, vol. 32, no. 5, pp. 211–215, 2011, doi: 10.1250/ast.32.211.
  • [29] M. Grashof, “The assessment of noise from industrial plants by direct measurement and by calculation,” Applied Acoustics, vol. 9, no. 3, pp. 177–192, Jul. 1976, doi: 10.1016/0003-682X(76)90016-5.
  • [30] D. Baker, “Application of noise guidance to the assessment of industrial noise with character on residential dwellings in the UK,” Applied Acoustics, vol. 93, pp. 88–96, Jun. 2015, doi: 10.1016/j.apacoust.2015.01.018.
  • [31] P. Nassiri et al., “The interactive effect of industrial noise type, level and frequency characteristics on occupational skills,” Perform Enhanc Health, vol. 3, no. 2, pp. 61–65, Jun. 2014, doi: 10.1016/j.peh.2015.01.001.
  • [32] E. Emmerich, F. Richter, U. Reinhold, V. Linss, and W. Linss, “Effects of industrial noise exposure on distortion product otoacoustic emissions (DPOAEs) and hair cell loss of the cochlea – long term experiments in awake guinea pigs,” Hear Res, vol. 148, no. 1–2, pp. 9–17, Oct. 2000, doi: 10.1016/S0378-5955(00)00101-5.
  • [33] E. Murphy and E. A. King, “Wind Farm, Industrial and Construction Noise,” in Environmental Noise Pollution, Elsevier, 2022, pp. 177–209. doi: 10.1016/B978-0-12-820100-8.00011-7.
  • [34] D. Brouzet, B. Krisna, D. McCormick, C. A. Reimann, J. Mendoza, and M. Ihme, “Analysis of direct and indirect noise in a next-generation aviation gas turbine combustor,” Combust Flame, vol. 260, p. 113249, Feb. 2024, doi: 10.1016/j.combustflame.2023.113249.
  • [35] N. Heerema and M. Hodgson, “Empirical models for predicting noise levels, reverberation times and fitting densities in industrial workrooms,” Applied Acoustics, vol. 57, no. 1, pp. 51–60, May 1999, doi: 10.1016/S0003-682X(98)00037-1.
  • [36] M. Hodgson, “On the accuracy of models for predicting sound propagation in fitted rooms,” J Acoust Soc Am, vol. 88, no. 2, pp. 871–878, Aug. 1990, doi: 10.1121/1.399737.
  • [37] A. M. Ondet and J. L. Barbry, “Modeling of sound propagation in fitted workshops using ray tracing,” J Acoust Soc Am, vol. 85, no. 2, pp. 787–796, Feb. 1989, doi: 10.1121/1.397551.
  • [38] M. Hodgson, “Review and critique of existing simplified models for predicting factory noise levels,” Canadian Acoustics, vol. 19, no. 1, Jan. 1991.
  • [39] G. Hessler, “Proposed criteria in residential communities for low-frequency noise emissions from industrial sources,” Noise Control Eng J, vol. 52, no. 4, pp. 179–185, 2004.
  • [40] B. Berglund, P. Hassmén, and R. F. S. Job, “Sources and effects of low-frequency noise,” J Acoust Soc Am, vol. 99, no. 5, pp. 2985–3002, May 1996, doi: 10.1121/1.414863.
  • [41] K. P. Waye, “Effects of Low Frequency Noise and Vibrations: Environmental and Occupational Perspectives,” in Encyclopedia of Environmental Health, Elsevier, 2011, pp. 240–253. doi: 10.1016/B978-0-444-52272-6.00245-2.
  • [42] C. Baliatsas, I. van Kamp, R. van Poll, and J. Yzermans, “Health effects from low-frequency noise and infrasound in the general population: Is it time to listen? A systematic review of observational studies,” Science of The Total Environment, vol. 557–558, pp. 163–169, Jul. 2016, doi: 10.1016/j.scitotenv.2016.03.065.
  • [43] R. D. O’Neal, R. D. Hellweg, and R. M. Lampeter, “Low frequency noise and infrasound from wind turbines,” Noise Control Eng J, vol. 59, no. 2, p. 135, 2011, doi: 10.3397/1.3549200.
  • [44] J. Alves, L. Silva, and P. Remoaldo, “The Influence of Low-Frequency Noise Pollution on the Quality of Life and Place in Sustainable Cities: A Case Study from Northern Portugal,” Sustainability, vol. 7, no. 10, pp. 13920–13946, Oct. 2015, doi: 10.3390/su71013920.
  • [45] M. Pawlaczyk-Łuszczyńska, W. Szymczak, A. Dudarewicz, and M. Śliwińska-Kowalska, “Proposed Criteria for Assessing Low Frequency Noise Annoyance in Occupational Settings,” Int J Occup Med Environ Health, vol. 19, no. 3, Jan. 2006, doi: 10.2478/v10001-006-0022-9.
  • [46] K. P. Waye, J. Bengtsson, A. Kjellberg, and S. Benton, “Low frequency noise" pollution" interferes with performance,” Noise Health, vol. 4, no. 13, pp. 33–49, 2001.
  • [47] M. Cavacas, “Morphological teeth changes caused by industrial noise,” PhD Thesis, University of Porto, Portugal, 2014.
  • [48] C. Tao, Z. Gao, B. Cheng, F. Chen, and C. Yu, “Enhancing wood resource efficiency through spatial agglomeration: Insights from China’s wood-processing industry,” Resour Conserv Recycl, vol. 203, p. 107453, Apr. 2024, doi: 10.1016/j.resconrec.2024.107453.
  • [49] C. Mai, U. Kües, and H. Militz, “Biotechnology in the wood industry,” Appl Microbiol Biotechnol, vol. 63, no. 5, pp. 477–494, May 2004, doi: 10.1007/s00253-003-1411-7.
  • [50] M. Dunky, “Adhesives in the Wood Industry,” in Handbook of Adhesive Technology, 3rd ed., Taylor & Francis Group, 2017.
  • [51] E. Nybakk, P. Crespell, and E. Hansen, “Climate for innovation and innovation strategy as drivers for success in the wood industry: moderation effects of firm size, industry sector, and country of operation,” Silva Fennica, vol. 45, no. 3, pp. 415–430, 2011.
  • [52] M. Mir, F. Nasirzadeh, S. Lee, D. Cabrera, and A. Mills, “Construction noise management: A systematic review and directions for future research,” Applied Acoustics, vol. 197, p. 108936, Aug. 2022, doi: 10.1016/j.apacoust.2022.108936.
  • [53] R. Neitzel, N. S. Seixas, J. Camp, and M. Yost, “An Assessment of Occupational Noise Exposures in Four Construction Trades,” Am Ind Hyg Assoc J, vol. 60, no. 6, pp. 807–817, Nov. 1999, doi: 10.1080/00028899908984506.
  • [54] N. S. Seixas, K. Ren, R. Neitzel, J. Camp, and M. Yost, “Noise Exposure among Construction Electricians,” AIHAJ - American Industrial Hygiene Association, vol. 62, no. 5, pp. 615–621, Sep. 2001, doi: 10.1080/15298660108984661.
  • [55] M. J. Kerr, L. Brosseau, and C. S. Johnson, “Noise Levels of Selected Construction Tasks,” AIHA Journal, vol. 63, no. 3, pp. 334–339, May 2002, doi: 10.1080/15428110208984722.
  • [56] H. Zhang, S. Li, L. Cui, and L. Li, “Energy industry advancedization of dynamic evolution and resource-environment decoupling effect: Evidence from China’s value chain upgrading,” Energy, vol. 283, p. 128552, Nov. 2023, doi: 10.1016/j.energy.2023.128552.
  • [57] K. Guo, C. Huang, Z. Zhang, A. Y. Diaz Paiz, and W. Chen, “The impact of new energy industry on environmental and economic benefits: Evidence from China,” Energy, vol. 304, p. 132111, Sep. 2024, doi: 10.1016/j.energy.2024.132111.
  • [58] H. Xiao, W. Xie, and B. Liu, “An empirical study on the influence of new generation employees’ job satisfaction on contextual performance in the energy industry,” Heliyon, vol. 10, no. 9, p. e30073, May 2024, doi: 10.1016/j.heliyon.2024.e30073.
  • [59] K. M. Møller, “Domestic renewable energy industries and national decarbonization policy,” Energy Policy, vol. 192, p. 114249, Sep. 2024, doi: 10.1016/j.enpol.2024.114249.
  • [60] M. del M. D. del Amor, A. B. Caracena, M. Llorens, and F. Esquembre, “Tools for evaluation and prediction of industrial noise sources. Application to a wastewater treatment plant.,” J Environ Manage, vol. 319, p. 115725, Oct. 2022, doi: 10.1016/j.jenvman.2022.115725.
  • [61] J. Mattei, “Planning for Noise Control of New Industrial Plant,” Journal of Sound Vibration, vol. 4, no. 2, pp. 249–255, 1966.
  • [62] N. R. Puthenveettil and P. K. Sappati, “A review of smart contract adoption in agriculture and food industry,” Comput Electron Agric, vol. 223, p. 109061, Aug. 2024, doi: 10.1016/j.compag.2024.109061.
  • [63] J. Czuchaj, A. Sliwinski, and K. Srodecki, “Noise sources and acoustic properties of workrooms in the plants of food-processing and pharmaceutical industry,” Applied Acoustics, vol. 62, pp. 1141–1156, Jan. 2001.
  • [64] N. L. Wouters et al., “Noise Exposure and Hearing Loss among Brewery Workers in Lagos, Nigeria,” Int J Environ Res Public Health, vol. 17, no. 8, p. 2880, Apr. 2020, doi: 10.3390/ijerph17082880.
  • [65] W. Busse, C. Ganellin, and L. Mitscher, “Vocational training for medicinal chemists: views from industry,” Eur J Med Chem, vol. 31, no. 10, pp. 747–760, Jan. 1996, doi: 10.1016/0223-5234(96)83968-7.
  • [66] B. Onyinyi and N. Asiimwe, “Key drivers of investment initiatives in Uganda’s pharmaceutical industry,” Soc Sci Med, vol. 344, p. 116558, Mar. 2024, doi: 10.1016/j.socscimed.2024.116558.
  • [67] S. Calciolari, M. Cesarini, and M. Ruberti, “Sustainability disclosure in the pharmaceutical and chemical industries: Results from bibliometric analysis and AI-based comparison of financial reports,” J Clean Prod, vol. 447, p. 141511, Apr. 2024, doi: 10.1016/j.jclepro.2024.141511.
  • [68] M. Benn and C. Stoy, “Implementing asset information requirement templates for corporate real estate management: A study in the chemical industry,” Developments in the Built Environment, vol. 16, p. 100224, Dec. 2023, doi: 10.1016/j.dibe.2023.100224.
  • [69] M. M. Abdullah Abkar, R. Yunus, Y. Gamil, and M. A. Albaom, “Enhancing construction site performance through technology and management practices as material waste mitigation in the Malaysian construction industry,” Heliyon, vol. 10, no. 7, p. e28721, Apr. 2024, doi: 10.1016/j.heliyon.2024.e28721.
  • [70] Q. Zhao, T. Wang, W. Gao, Y. Su, J. Wang, and J. Dai, “The synergistic decarbonization potential from construction industry and upstream sectors with a city-scale: A case study of hangzhou, China,” J Clean Prod, vol. 460, p. 142572, Jul. 2024, doi: 10.1016/j.jclepro.2024.142572.
  • [71] N. Seixas, R. Neitzel, L. Sheppard, and B. Goldman, “Alternative Metrics for Noise Exposure Among Construction Workers,” Annals of Occupational Hygiene, vol. 49, no. 6, pp. 493–502, Mar. 2005, doi: 10.1093/annhyg/mei009.
  • [72] R. Neitzel and N. Seixas, “The Effectiveness of Hearing Protection Among Construction Workers,” J Occup Environ Hyg, vol. 2, no. 4, pp. 227–238, Apr. 2005, doi: 10.1080/15459620590932154.
  • [73] M. Al Salaheen, W. S. Alaloul, M. A. Musarat, M. A. Bin Johari, K. M. Alzubi, and A. M. Alawag, “Women career in construction industry after industrial revolution 4.0 norm,” Journal of Open Innovation: Technology, Market, and Complexity, vol. 10, no. 2, p. 100277, Jun. 2024, doi: 10.1016/j.joitmc.2024.100277.
  • [74] Q. Liu, Y. Ma, L. Chen, W. Pedrycz, M. J. Skibniewski, and Z.-S. Chen, “Artificial intelligence for production, operations and logistics management in modular construction industry: A systematic literature review,” Information Fusion, vol. 109, p. 102423, Sep. 2024, doi: 10.1016/j.inffus.2024.102423.
  • [75] M. J. Ballesteros, M. D. Fernández, S. Quintana, J. A. Ballesteros, and I. González, “Noise emission evolution on construction sites. Measurement for controlling and assessing its impact on the people and on the environment,” Build Environ, vol. 45, no. 3, pp. 711–717, Mar. 2010, doi: 10.1016/j.buildenv.2009.08.011.
  • [76] Z. Canfeng, Y. Shujie, and L. Dong, “Comprehensive Control of the Noise Occupational Hazard in Cement Plant,” Procedia Eng, vol. 43, pp. 186–190, 2012, doi: 10.1016/j.proeng.2012.08.032.
  • [77] Ö. Aktaş, E. Şahinkaya, M. Yüceyurt, and M. Uludağ, “Kimya Endüstrisi Atık Suyunun Pilot Ölçekte Anaerobik/Anoksik/Aerobik Membran Biyoreaktörde Arıtımı,” International Journal of Advances in Engineering and Pure Sciences, vol. 31, no. 2, pp. 140–148, Jun. 2019, doi: 10.7240/jeps.517719.
  • [78] C. Toraman and C. Karaca, “Kimya Endüstrisinde Faaliyet Gösteren Firmalar Üzerinde Mali Başarısızlık Tahmini: Borsa İstanbul’da Bir Uygulama,” Muhasebe ve Finansman Dergisi, no. 70, pp. 111–128, Apr. 2016, doi: 10.25095/mufad.396683.
  • [79] D. N. Patel, P. Matalon, and G. Oluleye, “A novel temporal mixed-integer market penetration model for cost-effective uptake of electric boilers in the UK chemical industry,” J Clean Prod, vol. 446, p. 141156, Mar. 2024, doi: 10.1016/j.jclepro.2024.141156.
  • [80] H.-X. Zou et al., “Catalytic removal of chemical oxygen demand during ozonation of the simulated wastewater from coal chemical industry,” Journal of Water Process Engineering, vol. 64, p. 105542, Jul. 2024, doi: 10.1016/j.jwpe.2024.105542.
  • [81] Y. Kloo, L. J. Nilsson, and E. Palm, “Reaching net-zero in the chemical industry—A study of roadmaps for industrial decarbonisation,” Renewable and Sustainable Energy Transition, vol. 5, p. 100075, Aug. 2024, doi: 10.1016/j.rset.2023.100075.
  • [82] Y. Zhang et al., “Research on waste gas treatment technology and comprehensive environmental performance evaluation for collaborative management of pollution and carbon in China’s pharmaceutical industry based on life cycle assessment (LCA),” Science of The Total Environment, vol. 919, p. 170555, Apr. 2024, doi: 10.1016/j.scitotenv.2024.170555.
  • [83] R. Gangipamula, P. Ranjan, and R. S. Patil, “Comparative studies on air borne noise and flow induced noise of a double suction centrifugal pump,” Applied Acoustics, vol. 202, p. 109148, Jan. 2023, doi: 10.1016/j.apacoust.2022.109148.
  • [84] M. Y. N. Attari and A. E. Torkayesh, “Developing benders decomposition algorithm for a green supply chain network of mine industry: Case of Iranian mine industry,” Operations Research Perspectives, vol. 5, pp. 371–382, 2018, doi: 10.1016/j.orp.2018.11.002.
  • [85] M. Gul, M. F. Ak, and A. F. Guneri, “Pythagorean fuzzy VIKOR-based approach for safety risk assessment in mine industry,” J Safety Res, vol. 69, pp. 135–153, Jun. 2019, doi: 10.1016/j.jsr.2019.03.005.
  • [86] A. M. Donoghue, “Occupational health hazards in mining: an overview,” Occup Med (Chic Ill), vol. 54, no. 5, pp. 283–289, Aug. 2004, doi: 10.1093/occmed/kqh072.
  • [87] M. Kısakürek, S. Elden, and M. Tatlı, “Türkiye’de Maden İşletmelerinde Yatırım Teşvik Uygulaması Ve Örneklerle Muhasebe Kayıtları,” Kahramanmaraş Sütçü İmam Üniversitesi Sosyal Bilimler Dergisi, vol. 17, no. 2, pp. 1135–1163, Oct. 2020, doi: 10.33437/ksusbd.690792. [88] O. Sharma, V. Mohanan, and M. Singh, “Noise Emission Levels in Coal Industry,” Applied Acoustics, vol. 54, pp. 1–7, Aug. 1997.
  • [89] P. Novák, J. Vyskočil, J. Kubalík, P. Kadera, M. Jílek, and V. Jirkovský, “Smart Counting Machines for Modular Industry 4.0 Packing Lines,” IFAC-PapersOnLine, vol. 56, no. 2, pp. 2976–2981, 2023, doi: 10.1016/j.ifacol.2023.10.1422.
  • [90] C. Martínez-Ruedas, F. J. Adame-Rodríguez, and J. M. Díaz-Cabrera, “Integrating and interconnecting of older SINUMERIK CNC machines with industry 4.0 using a plug-and-play system,” J Ind Inf Integr, vol. 38, p. 100583, Mar. 2024, doi: 10.1016/j.jii.2024.100583.
  • [91] C. İ. Çalışkan and Ü. Arpacıoğlu, “Yapı Üretiminde Eklemeli İmalat Teknolojilerinin Karşılaştırmalı Değerlendirmesi,” Uludağ University Journal of The Faculty of Engineering, pp. 1117–1136, Aug. 2020, doi: 10.17482/uumfd.696952.
  • [92] C. Assunta et al., “Noise and cardiovascular effects in workers of the sanitary fixtures industry,” Int J Hyg Environ Health, vol. 218, no. 1, pp. 163–168, Jan. 2015, doi: 10.1016/j.ijheh.2014.09.007.
  • [93] A. T. James, G. Kumar, P. Tayal, A. Chauhan, C. Wadhawa, and J. Panchal, “Analysis of human resource management challenges in implementation of industry 4.0 in Indian automobile industry,” Technol Forecast Soc Change, vol. 176, p. 121483, Mar. 2022, doi: 10.1016/j.techfore.2022.121483.
  • [94] G. You et al., “Emission factors and source profiles of volatile organic compounds from the automobile manufacturing industry,” Science of The Total Environment, vol. 927, p. 172183, Jun. 2024, doi: 10.1016/j.scitotenv.2024.172183.
  • [95] Y. Li et al., “Stocks and flows of the non-negligible toxic polybrominated diphenyl ethers (BDE-209) in the Chinese automobile industry,” Resour Conserv Recycl, vol. 203, p. 107456, Apr. 2024, doi: 10.1016/j.resconrec.2024.107456.
  • [96] R. Espinosa, H. Ponce, and S. Gutiérrez, “Click-event sound detection in automotive industry using machine/deep learning,” Appl Soft Comput, vol. 108, p. 107465, Sep. 2021, doi: 10.1016/j.asoc.2021.107465.
  • [97] C. Xu et al., “Cleaner production evaluation system for textile industry: An empirical study from LCA perspectives,” Science of The Total Environment, vol. 913, p. 169632, Feb. 2024, doi: 10.1016/j.scitotenv.2023.169632.
  • [98] Ç. Işık and H. Altundağ, “Tekstil Fabrikalarında Yangın Tehlikesi, Yangından Korunma Ve Güvenlik Önlemleri ‘Örnek Vaka Analizi,’” Uluslararası Yakıtlar Yanma Ve Yangın Dergisi, vol. 10, no. 1, pp. 132–147, Dec. 2022, doi: 10.52702/fce.1122280.
  • [99] S. Komal and S. M. Saad, “Supply Chain Management Strategies Approach for the UK Textile Industry,” Procedia Comput Sci, vol. 232, pp. 117–127, 2024, doi: 10.1016/j.procs.2024.01.012.
  • [100] D. İ. Çifçi, “Fe-Mn-textile waste synthesis for COD and color removal from textile wastewater by UV/S2O82− oxidation,” International Journal of Environmental Science and Technology, vol. 20, no. 7, pp. 7313–7324, Jul. 2023, doi: 10.1007/s13762-023-04837-5.
  • [101] A. Panhwar, A. Sattar Jatoi, S. Ali Mazari, A. Kandhro, U. Rashid, and S. Qaisar, “Water resources contamination and health hazards by textile industry effluent and glance at treatment techniques: A review,” Waste Management Bulletin, vol. 1, no. 4, pp. 158–163, Mar. 2024, doi: 10.1016/j.wmb.2023.09.002. [102] F. Shabani, I. Alimohammadi, J. Abolghasemi, T. Dehdari, and R. Ghasemi, “The study of effect of educational intervention on noise annoyance among workers in a textile industry,” Applied Acoustics, vol. 170, p. 107515, Dec. 2020, doi: 10.1016/j.apacoust.2020.107515.
  • [103] A. P. Cardoso, M. J. R. Oliveira, Á. M. da Silva, A. P. Águas, and A. Sousa Pereira, “Effects of long term exposure to occupational noise on textile industry workers’ lung function,” Revista Portuguesa de Pneumologia (English Edition), vol. 12, no. 1, pp. 45–59, Jan. 2006, doi: 10.1016/S2173-5115(06)70387-6.
  • [104] P. S. Badkar and M. M. Benal, “Noise reduction in power looms using nitrile rubber polymer,” Mater Today Proc, vol. 66, pp. 1779–1783, 2022, doi: 10.1016/j.matpr.2022.05.277.
  • [105] A. K. Zaw et al., “Assessment of Noise Exposure and Hearing Loss Among Workers in Textile Mill (Thamine), Myanmar: A Cross-Sectional Study,” Saf Health Work, vol. 11, no. 2, pp. 199–206, Jun. 2020, doi: 10.1016/j.shaw.2020.04.002.
  • [106] T. S. TSE, “TSE CEN/TS 54 - 14: Yangın algılama ve yangın alarm sistemleri - Bölüm 14: Planlama, tasarım, kurulum, devreye alma, kullanım ve bakım için rehber.”
  • [107] T. S. TSE, “TS EN 54-3+A1: Yangın Algılama ve Yangın Alarm Sistemleri: Bölüm 3: Yangın Alarm Cihazları – Ses Cihazları.”
  • [108] T.C. Çevre ve Şehircilik Bakanlığı, “Binaların Gürültüye Karşı Korunması Hakkında Yönetmelik.”
  • [109] N. Yüğrük Akdağ, “Yapı Fiziği 2 Hacim Akustiği 3.Bölüm,” İstanbul, 2017. [Online]. Available: https://docplayer.biz.tr/43579036-Yapi-fizigi-2-hacim-akustigi.html
  • [110] N. Yüğrük Akdağ, “Gürültü Denetimi 2 - Gürültünün Açık Havada Yayılmasında Önem Taşıyan Etkenler,” İstanbul, 2024.
  • [111] F. Effa, J.-P. Arz, R. Serizel, and N. Grimault, “Evaluating and predicting the audibility of acoustic alarms in the workplace using experimental methods and deep learning,” Applied Acoustics, vol. 219, p. 109955, Mar. 2024, doi: 10.1016/j.apacoust.2024.109955.
  • [112] M. D. Mura and G. Dini, “Improving ergonomics in mixed-model assembly lines balancing noise exposure and energy expenditure,” CIRP J Manuf Sci Technol, vol. 40, pp. 44–52, Feb. 2023, doi: 10.1016/j.cirpj.2022.11.005.
  • [113] T. S. TSE, “TS EN ISO 7731: Ergonomi - Kamu alanları ve iş yerleri için tehlike sinyalleri - Sesli tehlike sinyalleri.”
  • [114] F. Alton Everest, “Master Handbook of Acoustics.” Fifth Edt. McGraw Hill Professional. 2009.
There are 111 citations in total.

Details

Primary Language English
Subjects Architecture (Other), Fire Safety Design
Journal Section Architecture
Authors

Derin Hilal Bilmez 0000-0002-3318-1982

Mustafa Özgünler 0000-0002-5800-3314

Publication Date September 30, 2025
Submission Date June 6, 2025
Acceptance Date July 29, 2025
Published in Issue Year 2025 Volume: 13 Issue: 3

Cite

APA Bilmez, D. H., & Özgünler, M. (2025). Audibility Assessment of Fire Alarm System Sound Level for Industrial Processes. Gazi University Journal of Science Part B: Art Humanities Design and Planning, 13(3), 353-368.